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Abstract—This paper proposes Multi-FedLS, a Cross-silo Fed-
erated Learning (FL) framework for a multi-cloud environment
aiming at minimizing financial cost as well as execution time.
It comprises four modules: Pre-Scheduling, Initial Mapping,
Fault Tolerance, and Dynamic Scheduler. Given an application
and a multi-cloud environment, the Pre-Scheduling module runs
experiments to obtain the expected execution times of the FL
tasks and communication delays. The Initial Mapping module
receives these computed values and provides a scheduling map
for the server and clients’ VMs. Finally, Multi-FedLS deploys
the selected VMs, starts the FL application, and monitors it. The
Fault Tolerance (FT) module includes fault tolerance strategies
in the FL application, such as checkpoint and replication, and
detects some anomalous behaviors. In case of an unexpected
increase in the communication delay or a VM failure, the FT
module triggers the Dynamic Scheduler Module in order to select
a new VM and resume the concerned tasks of the FL application.
Some preliminary experiments are presented, confirming that
some proposed strategies are crucial to efficiently execute an FL
application on a multi-cloud environment.

Index Terms—Federated Learning Framework, Multi-Cloud
Environment, Efficient Resource Allocation

I. INTRODUCTION

Federated Learning (FL) is a recent type of distributed
Machine Learning (ML) in which the participating clients do
not share their private data [1]. The clients federation solves
the learning task by having a coordinated central server that
keeps the current global model. Each client trains its local
model on its local data set and communicates only the model
weights to the server, updating then the global model.

The server-clients architecture of FL, also called Model-
Centric Federated Learning [2], is classified into Cross-Device
or Cross-Silo Federated Learning, depending on the client’s
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type. In Cross-Device Federated Learning, clients are low-
powered devices, like mobile phones [3] or IoT devices [4]
while in Cross-Silo Federated Learning, clients are companies
or institutions (e.g., hospitals [5]) with similar datasets willing
to create a central model. In this second type of FL, the
central server can assume that all clients are available during
the whole execution, as they are powerful machines or even
clusters.

Nowadays, training ML algorithms uses a huge amount
of generated data. Data are often stored using cloud storage
services [6] whose performance can vary. Besides the latter,
cloud providers also offer Virtual Machines (VMs) with differ-
ent accelerators in a service generically called Infrastructure-
as-a-Service (IaaS). For example, the Amazon Web Services
(AWS) offers GPUs attached to pre-defined VMs types, whose
architectures vary from Kepler to Ampere [7], while Google
Cloud Platform (GCP) allows the user to attach GPUs or TPUs
to a pre-defined or custom instance type [8], [9].

Thus, in a multi-cloud environment, an FL framework
should choose the cloud provider, VM types and regions, and
the minimum required network bandwidth for each client and
server. A wrong choice can result in a considerable increase
in the execution cost of an FL application [10], [11]. In other
words, the allocation of cloud resources is critical for an
efficient execution of FL applications in clouds. Therefore,
a multi-cloud environment should cope with the problem of
configuring the clouds, FL execution monitoring, and selection
of a new VM whenever one of the current allocated ones
becomes unavailable.

Although there is a vast literature on scheduling and re-
source management of FL jobs [12]–[16], most of them
focus on Cross-Device Federated Learning scenarios, where
low-powered resources frequently become offline during the



training process. The scheduling and resource provisioning
problems of Cross-Silo FL applications can be related to the
scheduling of distributed Machine Learning (ML) applica-
tions [17]–[19] as there is the assumption that the workers
are always available. However, there are two main differences
between scheduling distributed ML and FL: (i) in ML, the
scheduler assumes that all workers have the same amount of
data, and (ii) data can be shared among workers.

In this work, we propose Multi-FedLS, an architecture of
a Cross-silo FL framework. The framework comprises four
modules: Pre-Scheduling, Initial Mapping, Fault Tolerance,
and Dynamic Scheduler. The first module collects information
about the FL application and the cloud environment when there
is no previous knowledge about them, such as the expected
execution time of the FL tasks and communication delays.
Then, the Initial Mapping receives these computed values and
provides, through a mathematical formulation, a scheduling
map of the server and clients, aiming at minimizing financial
costs and execution times. Finally, Multi-FedLS deploys the
selected VMs, starts the FL application, and monitors it.
The Fault Tolerance module is responsible for including fault
tolerance strategies in the FL application, such as checkpoint
and replication. In case of an unexpected increase in the
communication delay or a VM failure, that module triggers the
Dynamic Scheduler Module to select a new VM and resume
the concerned tasks of the FL application.

The remaining of this paper is organized as follows. Sec-
tion II presents the main available tools for federated learning.
The proposed Multi-FedLS framework, introduced in Sec-
tion III, is a Flower-based framework to execute Federated
Learning Applications on Multi-clouds. Section IV describes
the Pre-Scheduling components and presents some preliminary
experiments. Finally, Section V, concludes the paper and
present some future research directions.

II. AVAILABLE TOOLS FOR FEDERATED LEARNING

There are several tools for executing Federated Learning
applications in the literature. TensorFlow Federated (TFF) [20]
is a Google’s library to execute Federated Learning applica-
tions in a simulation environment based on the well-known
TensorFlow (TF) API. TFF gives the user two API layers:
Federated Learning (TFF-FL) API for executing basic FL al-
gorithms and Federated Core (TFF-FC) API for implementing
new FL algorithms. The authors claim that TFF can simulate
the FL environment in several machines with multiple GPUs1.
However, we could not find any explanation on how to set up
this multi-machine simulation in TFF tutorials2.

PySyft and PyGrid are two components of a tool focused on
Data-Centric Federated Learning [21], in which users compute
data they cannot see. In this type of FL, the actors are Data
Scientists, which do not have any data, while the Data Owner

1https://www.tensorflow.org/federated/tutorials/simulations with accelerators,
last accessed in January 2022

2https://www.tensorflow.org/federated/tutorials/simulations, last accessed in
January 2022

holds all data and receives computational requests from the
Scientists.

Burlachenko et al. proposed FL PyTorch, an FL simulation
tool built on top of the PyTorch API [22], which helps re-
searchers to develop new FL aggregation techniques. However,
such a tool is focused only on simulation.

Federated AI Technology Enabler (FATE) [23] provides a
framework to support not only the FL training step, but the
whole process: data pre-processing, training, and inference
steps. FATE has several modules to handle different features of
the environment for: (i) describing FL algorithms, data struc-
tures, and communication channels; (ii) post-training inference
and managing the whole FL pipeline; and (iii) helping users
to explore the trained models through visualization tools.

Flower [24] is an open-source FL framework that deals with
heterogeneous clients in simulated or real-world scenarios,
allowing the use of any ML framework underneath it (Tensor-
Flow, PyTorch, or a custom one). Besides, Flower can execute
in several environments with different operating systems and
hardware settings. Researchers can expand Flower’s code in
order to implement new FL algorithms. Due to its modular
structure, the final user only needs to implement a few
functions for transforming a regular ML application into a
federated one.

We have adopted Flower in our proposal because of its
simple architecture and the possibility of execution in real and
heterogeneous environments.

III. MULTI-FEDLS: A FRAMEWORK BASED ON FLOWER
TO EXECUTE FEDERATED LEARNING APPLICATIONS ON

MULTI-CLOUDS

An FL application contains two types of tasks: server and
clients. The clients train their local model with their private
data while the server coordinates the learning by aggregating
the clients’ model weights.

A communication round is the processing unit of an FL
application and it is composed by five steps: (i) the server
sends the initial weights to clients; (ii) the clients train their
local model with their training dataset and send the updated
weights back to the server; (iii) the server receives all updates,
aggregates them and sends back to the clients the new weights;
(iv) the latter update their local weights with the received
ones, evaluate the model with their test dataset and send the
evaluation metrics to the server; and (v) the server receives
all evaluation metrics, aggregates them and starts the next
communication round. Note that there are two communication
barriers in a single round. Thus, due to those synchronization
barriers, any increase in the communication time has an impact
in the total FL execution time. It is worth remarking that the
clients’ datasets may be spread in several storage systems of
different cloud providers.

The proposed Multi-FedLS framework is composed by four
modules: the Pre-scheduling, the Initial Mapping, the Fault
Tolerance, and the Dynamic Scheduler modules.

Figure 1 shows the proposed architecture for the Multi-
FedLS framework.
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Fig. 1: Architecture of Multi-FedLS

A. Pre-Scheduling Module

The Multi-FedLS framework requires information from FL
applications, the available VMs, and cloud providers to define
the best mapping of clients and server to VMs in the multi-
cloud environment. Some types of information, such as the
number of clients, number of communication rounds, number
of training epochs, location of each client’s dataset, and VM
prices, are easily obtained. On the other hand, many others,
such as the communication delay between cloud regions or
the execution time of clients in different VMs, require the
execution of experiments to be known. We also point out
that, due to the communication barriers, any increasing in the
communication time has an impact in the total FL execution
time. Consequently, it is crucial to evaluate the time spent
sending messages between different cloud regions to define
the best VMs locations for the clients and server processes
in the multi-cloud environment. Also, the execution time of
FL clients and server may vary according to the types and
regions of the allocated VMs. Hence, such an information is
also necessary when selecting the most suitable VMs for the
FL application.

Thus, using dummy applications, the Pre-Scheduling mod-
ule is responsible for executing some tests for obtaining all
the above discussed values.

B. Initial Mapping

Receiving as input (i) the datasets locations, (ii) the ma-
chine learning procedures, and (iii) data provided by the Pre-
Scheduling module, the Initial Mapping module generates an
allocation map of the clients and server for a multi-cloud
environment, aiming at minimizing both the total execution
time and financial costs of the FL application. The mapping
problem can be solved using either a mathematical formula
or, in case the execution time is prohibitive, a heuristic.

Public cloud providers offer computing resources through
a plethora of Virtual Machine (VM) instances with different
capacities. They provide these instances under several contract
models that differ according to the availability guarantees and
prices. Under the classic On-demand pricing model, a user
pays for VM instances per hour or second without any long-
term commitment or upfront payment. In the other hand, many
providers also offer their spare unused computing capacity,
as Spot VM Instances, at significant discounts comparing

to their standard On-demand prices. However, such price
advantages come with the caveat of having no guarantees of
VM availability. In order to reduce costs, Multi-FedLS can use
Spot VMs, that, although cheaper than On-demand ones, can
be revoked at any time by the cloud provider. Consequently,
both a monitoring tool and a dynamic scheduler are necessary
to reallocate the clients and server in case of such revocations.

C. Tolerating Faults and Dynamic Scheduler

Usually, Federated Learning tools can deal with clients’
revocations along the execution. When Flower detects a client
failure, the server ignores the faulty client by aggregating only
the results from the other ones. Furthermore, it is possible
to define a minimum number of available clients to start a
new communication round. Since in cross-silo FL there are
few clients, and the lost of one of them can compromise the
learning outcomes, in our proposal, when a client is revoked,
it is re-started from a checkpoint in a new VM, or in some
cases, it is replicated to avoid new VM deploying and recovery
overheads. The selection of a new VM should consider the
characteristics of the used cloud providers. For example, if
the Amazon Web Services stores a dataset only in one region,
a VM belonging to this region is more suitable for executing
the corresponding client than VMs from others regions.

Most FL tools do not handle faults on the server side. In
Flower, when the server of an application fails, all clients
finish their executions with an error. Thus, Multi-FedLS needs
to handle possible server revocations by implementing fault-
tolerant techniques on the server side. Although Flower does
not have an automatic way to save the model updates on the
server side, after each communication round, it allows the
users to modify the server code to implement checkpointing
3. In this case, Multi-FedLS has to deploy another VM
to execute the server, considering all clients’ positions, the
communication times, and costs.

IV. PRE-SCHEDULING COMPONENTS AND PRELIMINARY
EXPERIMENTS

In this section, we describe in more details the Pre-
Scheduling module and introduce some results for a case
study application. The module receives input information
about the FL application and the environment. Concerning the
application, it requires the number of clients, the datasets’ lo-
cation, the number of communication rounds, and the number
of epochs trained in each round. Regarding the multi-cloud
environment, it needs information about the cloud regions and
the possible VMs types that can execute the FL tasks.

The Pre-Scheduling module automatically gets the fol-
lowing data of the multi-cloud environment: (i) regions of
each cloud provider, (ii) number of Availability Zones (AZs,
described later) at each region, and (iii) characteristics of
the offered VMs, e.g.vCPUs, memory, GPU type, and GPU
memory. Then, this module executes tests to compute the com-
munication delay among all cloud regions and the expected
execution time of each client at every instance type.

3https://flower.dev/docs/saving-progress.html



For the experiments, we have chosen a Federated Learning
application for a Tumor Infiltrating Lymphocytes (TIL) clas-
sifier, described in [25], [26], and the Amazon Web Services
(AWS) and Google Cloud Provider (GCP), as cloud providers.

A. Communication delay between cloud regions

Cloud providers divide their physical infrastructure into
cloud regions, which are independent and isolated geographic
areas [27], [28]. Those regions are also divided as isolated
failure points, called Availability Zones (AZs), to improve
the reliability of each region. If a user deploys VMs in two
AZs of the same region and one of them fails, the other one
may continue executing. An AZ is one or more data centers
inside a building, being a region a collection of AZs inside a
small geographical area (usually within one city). In February
2022, GCP had three or four zones at each region, and AWS
contained three to six availability zones at each cloud region.
Cloud providers identify each AZ by a letter at the end of the
region’s name, normally one between a and f.

In our experiments, the Pre-Scheduling module executes
a dummy application with one server and single client to
measure the message exchange time between them. That
application used a floating point vector with the size of the
VGG16 CNN model [29], which has more than 130 millions
weights, to represent the FL model. The training message time
is the time taken by the server to send the vector and receive
it back, while the test message time is the time taken by
the server to send the vector and receive a dictionary with
8 dummy keys and values, representing the possible machine
learning metrics. In the presented experiments, the following
regions and cloud providers were considered: us-east-1 in
AWS and us-central1 (GCP) in GCP.

Tables I and II show the average times of 10 executions
of the dummy application in several scenarios. The execution
times were obtained in different days and times of the week
during a period of one month.

Observing the main diagonal in both Tables I and II, we
can see that all AZs in AWS have more homogeneous com-
munication times than the GCP ones. We can also observe that
GCP is overall faster than AWS, but the latter is more stable.
We can confirm such differences by measuring the average
time to exchange a training (or test) message, along with its
standard deviation, within a cloud region. The average value
and standard deviation of the message exchange in the training
message (Table I) among all AZs from each region, in the
AWS us-east-1 (resp., GCP us-central1 ) is 30.73 (resp., 16.32
) seconds with a standard deviation of 3.09% (resp., 18.38%).
Moreover, the average time of a training message exchange
among the cloud providers (AWS and GCP) is 145.33 seconds,
with a standard deviation of 13.60%. The average values and
standard deviation of the exchange time of a test message are
analogous. In AWS region us-east-1 (resp., GPC region us-
central1) the average value is 16.48 (resp., 8.83) seconds with
a standard deviation of 2.97% (resp., 18.91%). Finally, the
average time for exchanging a test message between providers
is 74.82 seconds with a standard deviation of 14.64%.

Note also that a misplaced task has a great impact on the
total FL execution time. For example, if the scheduler allocates
the FL server in the main AZ of the east region of AWS (us-
east-1a) and the clients in the main AZ of the central region
of GCP (us-central1-a), the communication time is delayed
by 3.87 times.

B. Expected training and evaluation times

Running an application in all available GPU types of a
multi-cloud environment to compute the expected training and
evaluation times and financial costs is unrealistic. Malta et
al. [30] proposed a simple equation to calculate the total exe-
cution time of a centralized Deep Learning training using only
the first two epochs. They observed that all training epochs
have similar execution times, except for the first one. We have
verified similar behaviour in our previous experiments [25],
[26]. Thus, the Pre-Scheduling module obtains only the times
of the first two training and evaluation rounds.

The storage service’s access time has also an impact in
the total execution time because there are repetitive accesses
to the dataset. In turn, the dataset cannot be moved, due to
privacy issues. The region, where the VM is deployed, clearly
influences the application execution time. In order to observe
the impact of accessing the dataset from different regions, the
pre-scheduling module obtains the execution times of the first
two rounds in a scenario with four clients (with 948 training
samples and 522 test samples each) using two different mod-
els: the Inception-ResNet v2 [31] and the VGG16 [29]. The
Inception-ResNet (resp., VGG16) has 164 (resp., 16) layers
with more than 54 (resp., 130) million adjustable weights.

In our experiments, we considered that the datasets were
stored in both providers, using the same regions as the previous
experiments, the us-east-1 region of AWS and us-central1
region of GCP as well as similar VMs to compare the different
execution times. We chose the g4dn.2xlarge instance of AWS
and the n1-standard-8 instance of GCP. Both of them have
eight vCPUs with 32 GB of RAM. The AWS’ instance has an
NVIDIA T4 GPU with 16 GB of memory and the same GPU
model attached to the GCP’s instance.

Tables III and IV respectively present the evaluated times for
the Inception-ResNet v2 and VGG16 models. Column AWS
represents the access time of a g4dn.2xlarge deployed in the
us-east-1a AZ of AWS and column GCP represents the access
time of a n1-standard-8 instance deployed in the us-central1-a
one. These tables also show the client ID (from 0 to 3), the
round of the dummy application, and the step of an FL round
(T for training and E for evaluate), each line represents.

We observe a small difference between VMs in AWS and
GCP, when comparing the time taken to train and evaluate
the datasets in the us-east-1 region (DS in AWS). Sometimes
GCP’s VMs finished earlier than the AWS’ VMs (e.g., both
training times of Client 1 in Table IV). On the other hand,
we observed similar execution times when the dataset is in
the us-central1 region (in GCP). This preliminary experiment
was conducted with only one instance type per cloud provider
and GPU architecture. However, in AWS, there are more than



TABLE I: Required times to exchange a training message between Availability Zones of regions us-east-1 (AWS) and us-
central1 (GCP). Times in seconds

AWS
us-east-1

GCP
us-central1

1a 1b 1c 1d 1e 1f 1-a 1-b 1-c 1-f

AWS

1a 29.74±1.13 31.31±0.71 30.71±1.70 32.49±2.05 29.55±1.03 30.84±0.84 115.24±58.23 94.28±45.02 119.21±47.17 104.24±45.71
1b - 30.15±0.80 30.46±0.69 30.79±1.51 31.66±1.33 29.97±0.52 157.29±25.51 149.25±13.75 159.66±20.19 140.89±15.71
1d - - 30.77±1.41 31.03±3.61 32.28±2.24 30.59±1.4 168.23±22.12 164.59±16.08 171.67±12.92 165.71±20.05
1c - - - 30.96±1.89 31.89±2.27 31.89±3.65 157.13±18.15 151.04±16.51 147.93±15.03 151.06±16.90
1e - - - - 29.38±1.18 29.45±0.95 148.45±16.40 139.53±17.77 136.25±19.22 137.37±19.16
1f - - - - - 29.46±0.42 161.93±17.63 148.60±9.63 150.48±20.28 147.79±11.05

GCP

1-a - - - - - - 12.58±2.19 16.80±3.21 11.76±2.03 15.26±2.80
1-b - - - - - - - 20.49±1.54 17.61±2.79 17.59±2.02
1-c - - - - - - - - 13.37±2.48 17.80±2.69
1-f - - - - - - - - - 19.97±0.94

TABLE II: Required times to exchange a test message between Availability Zones of regions us-east-1 (AWS) and us-central1
(GCP). Times in seconds

AWS
us-east-1

GCP
us-central1

1a 1b 1c 1d 1e 1f 1-a 1-b 1-c 1-f

AWS

1a 15.92±0.59 16.61±0.56 16.43±0.94 17.41±0.92 15.96±0.36 16.53±0.43 54.73±27.20 44.47±19.35 61.72±27.19 57.10±30.56
1b - 16.33±0.80 16.48±0.35 16.29±0.54 16.79±0.80 16.39±0.46 77.02±10.93 72.72±13.48 82.52±16.95 74.25±14.61
1d - - 16.68±1.67 16.13±0.74 17.26±1.42 16.22±0.63 85.55±32.48 83.43±25.42 90.66±27.30 86.51±26.30
1c - - - 17.01±1.74 16.95±0.86 17.23±2.04 84.45±19.70 80.26±17.63 76.58±14.73 77.55±17.90
1e - - - - 15.8±0.58 15.83±0.48 77.42±19.03 72.98±19.13 68.85±19.6 71.06±18.81
1f - - - - - 15.92±0.19 84.32±20.26 75.87±17.21 77.01±19.37 78.73±16.90

GCP

1-a - - - - - - 6.73±1.29 8.96±1.66 6.26±1.15 8.21±1.59
1-b - - - - - - - 10.86±0.38 9.48±1.16 10.07±1.49
1-c - - - - - - - - 7.15±1.43 9.68±1.37
1-f - - - - - - - - - 10.86±0.43

TABLE III: Times of the Inception-ResNet v2 model (four
clients with 5 training epochs per comm. round)

Client Round Step DS in AWS DS in GCP
AWS GCP GCP AWS

0
1st T 0:15:49 0:14:51 0:13:28 0:15:16

E 0:01:04 0:01:09 0:00:41 0:00:52

2nd T 0:05:23 0:06:09 0:03:02 0:03:37
E 0:02:57 0:03:16 0:00:31 0:00:48

1
1st T 0:14:19 0:14:37 0:13:39 0:13:45

E 0:01:14 0:01:18 0:00:42 0:00:51

2nd T 0:05:00 0:06:05 0:03:06 0:03:13
E 0:02:36 0:02:53 0:00:36 0:00:46

2
1st T 0:13:52 0:15:00 0:13:48 0:14:46

E 0:01:21 0:01:23 0:00:41 0:00:48

2nd T 0:05:48 0:06:05 0:03:17 0:03:33
E 0:03:01 0:03:03 0:00:31 0:00:49

3
1st T 0:13:43 0:14:40 0:14:01 0:13:58

E 0:01:05 0:01:45 0:00:42 0:00:50

2nd T 0:05:00 0:06:26 0:02:57 0:03:16
E 0:01:42 0:04:07 0:00:31 0:00:44

30 instance types with NVIDIA GPUs [32], and in GCP, there
are six different NVIDIA GPU architectures attachable to 27
instance types [33]. Therefore, in future experiments, the Pre-
Scheduling module should repeat these tests for every instance
considered in the framework environment.

V. CONCLUDING REMARKS

This paper proposed a framework to execute Federated
Learning applications in a multi-cloud environment minimiz-
ing the total execution time and costs. The concept of the

TABLE IV: Times of the VGG16 model (four clients with 5
training epochs per comm. round)

Client Round Step DS in AWS DS in GCP
AWS GCP GCP AWS

0
1st T 0:03:58 0:03:17 0:02:43 0:04:41

E 0:02:44 0:02:31 0:00:38 0:00:52

2nd T 0:06:52 0:07:26 0:02:23 0:02:54
E 0:02:59 0:03:38 0:00:31 0:00:52

1
1st T 0:03:10 0:03:06 0:02:40 0:02:46

E 0:02:26 0:02:53 0:00:31 0:00:56

2nd T 0:07:26 0:06:09 0:02:24 0:02:55
E 0:02:08 0:03:08 0:00:26 0:00:52

2
1st T 0:02:49 0:03:30 0:02:49 0:04:38

E 0:02:27 0:02:34 0:00:35 0:00:52

2nd T 0:06:39 0:07:27 0:02:23 0:03:16
E 0:02:42 0:03:26 0:00:30 0:00:46

3
1st T 0:02:56 0:03:16 0:02:42 0:02:30

E 0:01:36 0:02:41 0:00:36 0:01:09

2nd T 0:06:24 0:07:17 0:02:25 0:02:58
E 0:02:49 0:02:33 0:00:31 0:00:53

whole framework is introduced. The first module, the Pre-
Scheduling, is more deeply described and some preliminary
experiments were presented and discussed.

As future work, in short-term, we intend to evaluate dif-
ferent scenarios of communication delays and VM failures.
Then, we will consider experiments with other FL applica-
tions, including known datasets, such as CIFAR-10 [34] and
MNIST [35]. Finally, we will focus on the conception of the
other modules of the Multi-FedLS framework.
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