Rafaela C Brum
email: rafaelabrum@id.uff.br

Pierre Sens
email: pierre.sens@lip6.fr

Luciana Arantes
email: luciana.arantes@lip6.fr

Maria Clicia Castro

Lúcia Maria De A Drummond

Optimizing Execution Time and Costs of Cross-Silo Federated Learning Applications with Datasets on different Cloud Providers

Keywords: Scheduling Problem, Federated Learning, Multi-Cloud

Under the coordination of a central server, Federate Learning (FL) enables a set of clients to collaboratively train a global machine learning model without exchanging their local data. When such clients have powerful machines, it is called cross-silo FL, and they store their data in private repositories denoted silos. We are interested in this paper in cross-silo FL where silos are geographically located in different regions of multi-cloud providers. Thus, aiming at minimizing financial costs and execution times of a cross-silo FL application, we propose a model based on a scheduling problem mathematical formulation, which receives as input both the application parameters and the cloud providers' resource features where clients' data are stored and renders the best assignment of clients and server to virtual machines. This formulation is part of a framework proposal to execute FL applications in different cloud providers. Taking as a use case a Tumor-Infiltrating Lymphocytes Classification problem, an FL application whose clients' datasets spread over different cloud providers' data repositories, evaluation results show that our model is scalable and improves the execution time and financial costs of the FL application by up to 53.70% and 48.34% in a scenario with 50 clients, executing in around 200 seconds, when compared to results where VMs are randomly selected. Experimental results with client silos in different Google (GCP) and Amazon (AWS) cloud regions also confirmed the effectiveness of our proposed model in a real multi-cloud environment.

I. INTRODUCTION

Proposed by McMahan et al. [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF], Federated Learning (FL) is an emerging distributed Machine Learning (ML) technique where the participants (clients) collaboratively train a ML model without sharing their respective private data [START_REF] Shen | From distributed machine learning to federated learning: In the view of data privacy and security[END_REF]. Under the coordination of a central server, each client trains the model locally and communicates only the model weights to the server that, in its turn, updates its global model. Federated Learning has received much attention during the past few years due to the increasing concern with data privacy, particularly with current data protection laws (e.g., GPDR 1 in Europe).

The client-server architecture of FL, also called Model-Centric Federated Learning [START_REF] Yang | Federated Machine Learning: Concept and Applications[END_REF], can be classified into Cross-Device or Cross-Silo Federated Learning. The former has lowpowered clients, such as mobile phones [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF], while the latter has few clients (e.g., companies, institutions, hospitals [START_REF] Rajendran | Cloud-Based Federated Learning Implementation Across Medical Centers[END_REF]) with private large dataset repositories, denoted silos.

This work focuses on Cross-Silo Federated Learning, also taking into account that, due to datasets gradually growing [START_REF] Villars | Big data: What it is and why you should care[END_REF], many clients keep their silos in cloud storage repositories [START_REF] Liu | Big data drives cloud adoption in enterprise[END_REF], [START_REF] Leavitt | Storage challenge: Where will all that big data go?[END_REF] which offer data privacy guarantees and availability. In such a context, we also consider that client silos can be stored in different cloud providers (e.g. Amazon (AWS) S3, Google Cloud (GCP) Storage, etc.). Moreover, the physical infrastructure of a cloud provider is usually divided into independent and isolated geographic regions [START_REF] Services | Region and Zones -Amazon Elastic Compute Cloud[END_REF], [START_REF] Cloud | Geography and regions -Documentation[END_REF], each of them offering several types of virtual machines with different performance and financial costs. Consequently, a multi-cloud platform offers multiple choices of virtual machine types, regions, and cloud providers, with different execution and communication times and costs, for executing the clients and the server of an FL application.

Therefore, considering different types, regions, and cloud providers, the question is how to select the best set of virtual machines to execute the clients and the server of an FL application, whose datasets were previously allocated in one or more storage systems of one of the cloud providers, minimizing both the execution time and the financial cost of the FL application. In order to solve this scheduling problem, we propose in this paper a mathematical formulation model which receives as input information about the FL application as well as about the multi-cloud environment and provides a weighted optimization function whose aim is to minimize the conflicting objectives cost and time. Our mathematical model is part of a framework proposal to execute FL applications in a multi-cloud environment, aiming to minimize time and costs while keeping data privacy.

This framework receives as input information concerning the FL application (e.g. number of clients, location of each client dataset, number of communication rounds, etc) and the environment (e.g., number of CPUs and GPUs in each VM, the price of each VM in each region, limits of VMs per region, etc) and outputs a scheduling map. It also deploys the selected VMs and starts the tasks following the obtained map.

The model has been evaluated theoretically and in a multicloud platform with AWS and GCP. To this end, we chose a use-case application, which searches for Tumor-Infiltrating Lymphocytes (TILs) in high-resolution scanned human tissue images aiming to understand the patient's cancer extension and predicting the most suitable treatments.

Experiments with different data placement scenarios of such an application have been conducted for evaluating the scalability of the model, its effectiveness when compared to a random user VM selection, and its accuracy when compared to a real multi-cloud environment with a client's silo in either Google Cloud Storage or AWS S3 of different regions.

The paper is organized as follows. Section II introduces related work. Section III presents our mathematical formulation to the problem of scheduling FL clients and the server to a multi-cloud environment. Section IV and Section V briefly describe the use-case application and Flower, a tool that creates FL systems. Section VI presents and discusses experimental evaluation results. Finally, Section VII concludes the paper and proposes some future work.

II. RELATED WORK

Most existing Federated Learning works tackle Cross-Device architectures, where the server samples a fraction of clients in each communication round, among hundreds or thousands of connected devices [START_REF] Ren | Joint resource allocation for efficient federated learning in internet of things supported by edge computing[END_REF], [START_REF] Buyukates | Timely communication in federated learning[END_REF], while few of them focus on Cross-Silo Federated Learning [START_REF] Rajendran | Cloud-Based Federated Learning Implementation Across Medical Centers[END_REF], [START_REF] Huang | Personalized Cross-Silo Federated Learning on Non-IID Data[END_REF], [START_REF] Li | Federated learning on non-iid data silos: An experimental study[END_REF]. However, to the best of our knowledge, none of the latter consider the scheduling problem of FL clients and the server in a cloud or datacenter environment.

Regarding distributed machine learning in general, a majority of works focus on the job scheduling problem of multiple ML jobs that should be allocated among a number of limited resources [START_REF] Zhang | Online scheduling of heterogeneous distributed machine learning jobs[END_REF]- [START_REF] Yu | Toward efficient online scheduling for distributed machine learning systems[END_REF]. Few of them handle the scheduling problem of a unique distributed ML application. In [START_REF] Amiri | Computation scheduling for distributed machine learning with straggling workers[END_REF], Amiri et al. consider that some tasks (called workers) may present sporadic slowness due, for instance, to temporary network disconnection. To overcome such a problem, the central dataset is divided into small n chunks. Each worker should then compute a number of them sequentially. Thus, a server task sends chunks to multiple workers and waits for k results, k ≤ n. The authors propose two scheduling schemes for chunks assignment to the workers aiming at minimizing the average completion time. However, the data-sharing approach to this problem is not suitable for Federated Learning scenarios where data privacy and heterogeneity are essential concerns.

III. SCHEDULING FL CLIENTS AND SERVER TO A MULTI-CLOUD ENVIRONMENT

In this section, we present our application and multi-cloud models. Then, we describe our mathematical formulation to schedule FL clients and server into a multi-cloud environment.

A. FL application Model

An FL application is a distributed algorithm, composed of a set of clients, C, and a server, s, that uses communication barriers along execution. We consider in this work, that the FL application executes a set of rounds, each one divided into five steps. In the first one, the server sends the message s msg train containing the model weights to all clients. After receiving the weights, in Step 2, each client, c i ∈ C, trains the neural network for a fixed number of epochs on the local training dataset and sends the updates back to the server, through the message c msg train . Then, in Step 3, the server receives all updates, aggregates them, and sends the final weights to the clients (s msg aggreg message). Upon reception, in Step 4, each client updates their respective weights, tests the model with the test dataset, and sends its evaluation metrics (for example, accuracy and precision) to the server in the message c msg test . Finally, in Step 5, the server aggregates the evaluation metrics of all clients to have the global metrics. Figure 1 shows the execution steps of a round.

B. Multi-Cloud Model

Usually, commercial clouds have their physical infrastructures spread in different regions, which are independent and isolated geographically. For instance, there are currently 26 regions in AWS [START_REF] Services | Region and Zones -Amazon Elastic Compute Cloud[END_REF] and 34 regions in GCP [START_REF] Cloud | Geography and regions -Documentation[END_REF].

Each region offers computational resources packaged as Virtual Machines (VMs). Each VM has a number of virtual cores, named virtual CPUs (vCPUs), and may have one or more Graphics Processing Units (GPUs) connected to it. Thus, let P be a set of available cloud providers. A provider p j ∈ P has associated to it a set of regions R j and a fixed cost cost t j (in $ per GB) to send any message from itself to any other VM, inside or outside the provider, as observed experimentally. A provider p j usually offers a limited number of GPUs (N GP U j) and vCPUs (N CP U j). Moreover, in each region r jk ∈ R j , the number of available GPUs and vCPUs are bounded (N L GP U jk and N L CP U jk , respectively).

Yet, each region r jk ∈ R j has a set of available VM instance types, V jk , that can be deployed in it, where each vm jkl ∈ V jk contains a number of vCPUs, cpu jkl and a number of GPUs, gpu jkl , with a fixed hiring cost (in $ per second) cost jkl .

C. Mathematical Formulation

The problem of scheduling tasks in distributed computing resources is an NP-complete one [START_REF] Ullman | Np-complete scheduling problems[END_REF], even in simple scenarios. Furthermore, some features of multi-clouds render it more difficult. Thus, we model our scheduling problem as a Mixed-Integer Linear Programming problem. In our scheduling problem, we have two objectives: minimize the monetary cost and the total execution time (makespan) of the application. Here, we also consider that the obtained solution has to respect the constraints of a deadline, named T , and of a budget, called B, given by the user.

Considering that the FL application executes n rounds, each one for a similar amount of time, we can divide B and T by n rounds to obtain the maximum budget and deadline for a single FL round, named B round and T round , respectively. Hence, we formulate the scheduling problem for one round.

Table I presents the notation and variables used in the mathematical formulation. The proposed objective function (Equation 1) is a weighted function that minimizes the monetary cost, total costs, and the makespan, t m , of a single FL round, where α, ranging from zero to one, is the weight given by the user for the objectives. Usually, once those objectives are conflicting, they cannot reach the optimal values simultaneously. For instance, for α values close to 1, the formulation prioritizes low costs solutions rather than small makespans. On the other hand, when α = 0.5, both objectives receive the same importance.

min α × total costs + (1 -α) × t m (1)
Let the binary variables x ijkl indicate whether a client c i will execute on VM vm jkl of region r jk of provider p j (x ijkl = 1), or not (x ijkl = 0), and let y jkl be the analogous representation for the server s. The variable total costs includes the VMs' execution costs (vm costs), computed as Equation 2, and the message transfer costs (comm costs), described in Equation 3, where comm jm , presented in Equation 4, is the cost to exchange the FL messages between provider p j and p m (j can be equal to m). Therefore, total costs is calculated as in Equation 5.

vm costs = ci∈C pj ∈P rjk∈Rj vmjkl∈Vjk (x ijkl × cost jkl ×t m) + pj ∈P rjk∈Rj vmjkl∈Vjk (y jkl × cost jkl × t m) (2)
comm costs = ci∈C pj ∈P rjk∈Rj vmjkl∈Vjk pm∈P rmn∈Rm vmmno∈Vmn (x ijkl × y mno × comm jm) [START_REF] Yang | Federated Machine Learning: Concept and Applications[END_REF] comm jm = (size(s msg train) + size(s msg aggreg)) × cost t m +(size(c msg train) + size(c msg test)) × cost t j (4)

total costs = vm costs + comm costs (5)
Both the monetary cost and the makespan have to be first normalized. The normalization procedure updates the target values to share the same minimum and maximum values. Thus, total costs is divided by the product of the monetary cost of hiring the most expensive VM, the maximum execution time of an FL round (T max), and the number of tasks (clients and server); plus the product of the most expensive message exchange between providers (comm jm) and the number of clients, as shown in Equation 6. Similarly, the makespan is divided by the maximum execution time of a FL round (T max).

max pj ∈P,r jk ∈Rj ,vm jkl ∈V jk (cost jkl) × T max × (|C| + 1) + max pj ,pm∈P (comm jm) × |C| (6)
The objective function is subject to the following constraints. Constraints 7 and 8 guarantee that the budget and deadline for a FL application round are not violated, while constraints 9 and 10 ensure that every client and the server execute on a single VM vm jkl ∈ V jk in a region r jk ∈ R j of a provider p j ∈ P .

total costs ≤ B round (7)
t m ≤ T round (8) pj ∈P rjk∈Rj vmjkl∈Vjk x ijkl = 1, ∀c i ∈ C (9) pj ∈P r jk ∈Rj vm jkl ∈V jk y jkl = 1 (10)
Constraints 11 to 14 guarantee that the solution will not exceed the maximum number of GPUs and vCPUs of each provider. Constraints 11 ensure that the total number of available GPUs does not exceed the global limit, while constraints 12 limit the total number of available vCPUs in each provider. Constraint 13 has the same meaning as 11, but here the GPU limit is by region. Constraint 14 is the vCPUs limit constraints per region, similarly as Constraint 12.

ci∈C rjk∈Rj vmjkl∈Vjk x ijkl × gpu jkl + rjk∈Rj vmjkl∈Vjk (y jkl ×gpu jkl) ≤ N GP U j , ∀p j ∈ P (11) Weight given by the user for the objectives (ranging from 0 to 1)

ci∈C rjk∈Rj vmjkl∈Vjk x ijkl × cpu jkl + rjk∈Rj vmjkl∈Vjk (y jkl ×cpu jkl) ≤ N CP U j , ∀p j ∈ P (12) ci∈C vmjkl∈Vjk x ijkl × gpu jkl + vmjkl∈Vjk y jkl × gpu jkl ≤ N L GP U jl , ∀p j ∈ P, ∀r jk ∈ R j (13) ci∈C vmjkl∈Vjk x ijkl × cpu jkl + vmjkl∈Vjk y jkl × cpu jkl ≤ N L CP U jl , ∀p j ∈ P, ∀r jk ∈ R j (14)
Next, constraint 15 guarantees that the FL application will finish before t m , which is considered as the makespan of the FL round. Finally, constraints 16 and 17 define the domain of the decision variables x ijkl and y jkl , respectively.

x ijkl × y mno × (t exec ijkl + t comm jkmn + t aggreg mno) ≤ t m , ∀c i ∈ C, ∀p j , p m ∈ P, ∀r jk ∈ R j , ∀vm jkl ∈ V jk , ∀r mn ∈ R m , ∀vm mno ∈ V mn (15)
x ijkl ∈ {0, 1}, ∀c i ∈ C, ∀p j ∈ P, ∀r jk ∈ R j , ∀vm jkl ∈ V jk [START_REF] Yu | Toward efficient online scheduling for distributed machine learning systems[END_REF]

y jkl ∈ {0, 1}, ∀p j ∈ P, ∀r jk ∈ R j , ∀vm jkl ∈ V jk (17)

IV. CASE STUDY: TUMOR-INFILTRATING LYMPHOCYTES CLASSIFICATION

The selected use-case application searches for Tumor-Infiltrating Lymphocytes (TILs) in high-resolution scanned human tissue images and creates maps representing their spatial distribution. However, the Whole Slide Tissue Images (WSIs) of scanned tissue can have up to 100K×100K pixels, making it difficult for an expert to extract information from thousands of WSIs available in research studies. Because of that, Saltz et al. [START_REF] Saltz | Spatial Organization And Molecular Correlation Of Tumor-Infiltrating Lymphocytes Using Deep Learning On Pathology Images[END_REF] developed a deep learning application to classify and analyze TIL patterns from tissue images.

For the evaluation of our proposal, we focus on the CNN training, which is one step of the application. We assume that the WSIs are previously divided into patches and classified by an expert. The centralized version of the CNN training in this TIL classification problem implements the VGG16 model [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], which has an input layer of size 224 × 224 × 3. After this layer, the model has several convolutional and fully connected layers, ending with an output layer that determines if the TIL is positive or negative. The centralized version was implemented with the TensorFlow API [START_REF] Abadi | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF], which optimizes dataset readings by using multiple threads to load the images from the main memory and transfer them to the GPU memory.

V. FEDERATED LEARNING USING THE FLOWER FRAMEWORK

We used the Flower framework, proposed by Beutel et al. [START_REF] Beutel | Flower: A friendly federated learning research framework[END_REF], to build our federated learning system. Flower offers facilities to execute FL experiments, considering heterogeneous clients on simulation and real-world scenarios. It supports different ML frameworks underneath it (e.g., Tensor-Flow, PyTorch, or a custom one). The FL client implements the VGG16 model [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], using the TensorFlow API [START_REF] Abadi | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF].

For the aggregation function to the server, we chose the FedAvg [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] since it is already implemented in Flower and gives good results on different unbalanced schemes, as shown in Li et al. [START_REF] Li | Federated learning on non-iid data silos: An experimental study[END_REF]. FedAvg computes the weighted average from all clients using their respective dataset size as associated weight.

VI. PERFORMANCE EVALUATION

For our experiments, we considered Amazon Web Services (AWS) and Google Cloud Provider (GCP) as cloud providers with two regions at each of them: N. Virginia (us-east-1) and Oregon (us-west-2) regions in AWS; and Iowa (us-central1) and Oregon (us-west1) regions in GCP.

Initially, we planned to have a testbed composed of several VMs with GPU in both AWS and in GCP, varying from the Kepler GPU architecture to the Ampere one. However, the CUDA version 10.0, used by the use-case TILs application, is not compatible with either of these two architectures. Consequently, we had to discard such GPU architectures from our testbed. Furthermore, experiments showed that a VM with the Volta GPU in AWS had constantly higher execution times than with the Turing one, which led us to also discard the former from our testbed, due to its unexpected behaviour. Finally, in other experiments, we observed that it was not possible to allocate, in either of the two regions, some types of GPU architectures in GCP. Thus, such GPUs were not taken into account either.

Hence, considering all the above constraints, for each region in AWS, we selected two instance types with GPU, Maxwell and Turing, and one instance without GPU. For GCP, we chose instances from the general-purpose N1 family with the same number of vCPUs as the AWS counterparts. Each instance had one GPU, Pascal, Turing or Volta, attached to it. Additionally, we also selected an instance without GPU. Note that in GCP, some GPU architectures are not available in all regions, thus, the number of instance types varies for each region.

Table II summarizes our VM instance selection in both platforms, giving also the amount of memory and cost per hour (obtained in May 2022) of each instance, and IDs that allows us to identify each one. Message transfer cost in AWS is $0.09 per GB in the first 10 TB/month and in GCP is $0.12 per GB in the first 1 TB/month. For storing clients' datasets in AWS and GCP, we respectively chose the Amazon Simple Storage Service (S3) [START_REF] Services | Amazon S3[END_REF] in the N. Virginia region (us-east-1) and the Cloud Storage [START_REF] Cloud | Cloud Storage[END_REF] in the Iowa region (us-central1).

A. Training and test times

In order to have the best scheduling map of a Federated Learning application, it is necessary to know clients' and server execution times with corresponding financial costs as well as the communication time between a client and a server, considering all available VMs. However, to run the whole application in order to obtain those execution times and financial costs would be unrealistic.

T otal runtime = T (Ep 1) + (N ep -1) × T (Ep 2) (18)
The same behaviour of the previous work was observed in the FL approaches presented in [START_REF] Brum | Towards optimizing computational costs of federated learning in clouds[END_REF] and [START_REF] Brum | Evaluating federated learning scenarios in a tumor classification application[END_REF] where the first FL round has a different execution time from all the other ones, which present similar execution times. Therefore, in this work, to obtain the execution time of our use-case FL application, only its first two rounds were executed. Note that execution time includes both CPU and storage access times.

Let define the slowdown sl inst jkl as the ratio between the execution time of a dummy application in one of the virtual machines and the execution time in a chosen baseline virtual machine, in our experiments, the AWS instance g4dn.2xlarge executing in the N. Virginia region (us-east-1 region), vm 111 . Thus, the execution time of a round of a client c i executing on a provider p j , region r jk and virtual machine vm jkl is the sum of training and test steps of client c i executed on the baseline virtual machine (train bl i and test bl i respectively) multiplied by the corresponding slowdown (sl inst jkl), as shown in Equation 19.

t exec ijkl = (train bl i + test bl i) × sl inst jkl [START_REF] Saltz | Spatial Organization And Molecular Correlation Of Tumor-Infiltrating Lymphocytes Using Deep Learning On Pathology Images[END_REF] Note that once having obtained slowdown values for one dataset size, we can execute the FL application with other dataset sizes, without the need of re-executing the first two rounds of the application in all virtual machine types, except for the baseline. We created a dummy application that simulates the execution of one client in the first two rounds of our use-case FL application to compute this slowdown. Three experiment sets were conducted.

In the first experiment set, client datasets were stored in AWS and, in each experiment, only one client was executed in a single instance vm jkl of Table II with an attached GPU. The slowdown of a vm jkl is computed by dividing the sum of the second round execution (training and test) times in this instance by the sum of the second round execution in vm 111 , our baseline instance. Communication times: Let define sl comm xy , the communication slowdown of the pair of regions r x (with x = jk) and r y (with y = lm), as the ratio between the communication time of FL messages between these regions and the communication time in a baseline pair of regions. Here, we define the baseline pair by considering the same region in both sides, the N. Virginia region of AWS (us-east-1 region). The communication time between regions r x and r y is thus given by Equation 20, with train comm bl, the communication time of the training messages, and test comm bl, the communication time of the test messages in the baseline pair of regions. [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] This slowdown sl comm xy is computed as the sum of both communication times between client and server divided by the sum of both times in the baseline pair of regions. In order to obtain this communication slowdown, we considered a dummy application with a single client and the server and measured the total time taken by the client to send and receive messages from the server. Neither the server nor the client does any computation with the messages, they only receive them and send them back. Messages had 25,000,000 floating points (size of the dummy model) which correspond to messages of 1GB size. We collected communication slowdown times of 10 executions per pair of regions r jk and r lm , having 5 of them with the client in the region r jk and the server in the region r lm and 5 the other way round. Table V presents the average times in seconds in all possible pairs of regions and the computed slowdown (Sl). Most standard deviations were below 15%, with only three above.

The training communication time is the time taken by the server to send the message s msg train with the dummy model (message size of 1GB) and receive back the same model, c msg train , (message size of 1GB). The test communication time is the time taken by the server to send the message s msg aggreg with the model (message size of 1GB) and receive back 10 float points, message c msg test , representing the possible ML metrics that clients compute (translated to 1.8KB). See Figure 1.

B. Analysis of the Scalability of the Proposed Mathematical Formulation

We used Gurobi Optimizer [START_REF] Gurobi | Gurobi optimizer[END_REF], a state-of-the-art solver for mathematical programming models, for solving the proposed formulation. In order to analyze its scalability, the number of clients varied from 2 to 50. Furthermore, aiming at increasing the search space, for each VM of Table II, we have created five synthetic VMs. Thus, we have a total of 78 VMs, 54 with GPUs and 24 without any GPU.

For the sake of making the problem solution feasible, we set the GPUs and vCPUs limits of all regions and all providers to the infinite constant of Python's math library. We also considered a deadline and a budget of 10,000 seconds and $30000 per FL round respectively. Figure 2 presents the relation between the number of clients and Gurobi's execution time. We observe in Figure 2 that our mathematical formulation is robust and present the optimal solution, in a realistic time, with a large search space and a considerable number of clients.

Number of Clients

C. Theoretical Analysis of the Scheduling Results against User Random Selection

In this section, we theoretically analyze the optimal setup results obtained with our model, comparing them with user random selection approaches. In order to obtain a solution that offers a balance between the execution time and financial cost, we set α = 0.5.

Let's consider 50 homogeneous clients with 948 training samples and 522 test samples. As all clients datasets have the same size, we considered the same execution time as the baseline execution time for all the 50 clients. Therefore, for those clients that access their dataset in AWS (resp., GCP), the baseline training time (train bl i) is 412.94 (resp., 183.53) seconds, and the baseline test time (test bl i) is 182.77 (resp., 49.47) seconds. Regarding communication, messages of the server as well as the training message of clients have 0.54GB of size and the test message from clients has 1.81KB of size. The total value for the communication baseline time (train comm bl + test comm bl) is 27.26 seconds.

We consider two data placement scenarios: GCP(50) where all datasets are stored in GCP Cloud Storage and GCP(25)-AWS [START_REF] Malta | Exploring the Cost-Benefit of AWS EC2 GPU Instances for Deep Learning Applications[END_REF] where datasets of 25 clients are stored in GCP Cloud Storage and the other 25 in AWS S3. For each scenario, the respective optimal setup results of our model are compared to a given user selection approach, also described in the following. Note that all values are computed from the slowdowns presented in the previous sections.

-GCP(50) scenario: Our model proposes a optimal setup where the 50 clients and the server should be in the Iowa region of GCP (us-central1 region), with all clients in different n1-standard-8 VMs with a Volta GPU in each (vm 213) and the server in a e2-standard-4 VM (vm 214). The vm 213 is the most expensive VM in GCP but has the smallest execution time. On the other hand, we considered a random approach where all clients and the server are placed in the Oregon region of GCP (us-west1 region), using the same VM types, assigning vm 222 to clients and vm 223 to the server. Compared to this approach, the optimal one reduces in 53.70% the execution time and in 25.92% the costs.

-GCP(25)-AWS(25) scenario: Instead of placing the clients near the datasets in each cloud provider, our mathematical model proposes to place all the 50 clients and the server in the Oregon region of AWS (us-west-2): each client in different g4dn.2xlarge VM (vm 121), which is the fastest VM in all regions of AWS, and the server in a t2.xlarge VM (vm 123). On the other hand, we consider a random approach where all clients are placed near the datasets in the fastest VMs of the chosen region and the server in one of the cheapest VMs. Thus, for such a configuration, we used the g4dn.2xlarge VM in the N. Virginia region (vm 111) for the 25 clients with dataset in AWS, the n1-standard-8 VM with a Volta GPU in the Iowa region (vm 213) for the ones with dataset in GCP, and the estandard-4 VM in the Iowa region (vm 214) to the server. In this case, the FL round in the optimal setup reduces in 10.47% the execution time and in 48.34% the costs.

Table VI summarizes these two scenarios. It presents the location of the datasets (Scenario), the optimal setup, the execution time and costs computed by the mathematical formulation, along with the random approaches described above, and the difference between the latter and the optimal setup. This difference is computed by vr-vo vr , where v r is the random approach value and v o is the optimal one.

D. Analysis of the Scheduling Results in a Multi-cloud Platform

For each of the current experiments, we have had to respect the maximum number of global and per region vCPUs and GPUs that a user can allocate in each cloud provider. In GCP, vCPUs (both global and per region one) and GPUs are respectively limited to 40 and 4. In AWS, the limit of the N. Virginia (us-east-1) region vCPUs is 52 and of the Oregon region (us-west-2) is 36. On the other hand, there is no restriction for the number of global vCPU and the GPU limit is included in the vCPU one. Thus, we have kept the infinity constant for these limits in AWS. We use the same input data (baseline execution and communication time) as the previous experiment for all clients c ∈ C.

We have reproduced the best FL scenario presented in [START_REF] Brum | Evaluating federated learning scenarios in a tumor classification application[END_REF] which consists of four clients with equally divided datasets, that execute 10 FL rounds with 5 local epochs each. Each client has 948 training samples and 522 test samples, with 10% of TIL-positive in each dataset. We have then considered three possible dataset placement scenarios: AWS(4), GCP(4) and AWS(2)-GCP [START_REF] Shen | From distributed machine learning to federated learning: In the view of data privacy and security[END_REF]. In AWS(4), all datasets are stored in AWS, while in GCP(4) they are placed in GCP. In the last scenario, AWS(2)-GCP(2), half of the datasets is stored in AWS, while the other half is stored in GCP.

Our model uses only three different VMs to place the clients in each of the above three scenarios. For sake of evaluation comparison, for each scenario, we also created two user random selection assignments. In the case of AWS(4) (resp., GCP(4)) scenarios, the first assignment allocates clients and the server in the cheapest VMs (with GPU, in case of clients) within the same cloud region in AWS (resp., GCP) where is located the dataset of the corresponding client, while the second assignment has a similar allocation but on the other cloud provider, i.e., GCP (resp., AWS). For the GCP(2)-AWS(2) scenario, the two user selection assignments consider that clients are allocated in cheapest VMs with GPU in the same region of their datasets but the server changes position, being in AWS in the first setup and in GCP in the second. All the scheduling assignments are described in Table VII, and the configuration of each VM can be found in Table II.

We first present the execution time and the cost for a single round of FL to all setups in Table VIII. The optimal values come from the mathematical formulation and the random scheduling setups are computed using the slowdowns from the previous subsections. We also present how much the optimal setup gains in terms of percentage from the random scheduling schemes, computed by vr-vo vr , where v r is the user random selection approach value and v o is the optimal one. Note that a negative percentage value means that the optimal value is bigger than the random one.

We can observe from Table VIII that our mathematical model presents better results in all scenarios with an average execution time reduction of 20.03% compared to the randomly selected scenarios Regarding the monetary costs, the average difference is -3.97%. This negative difference comes from scenario GCP [START_REF] Rajendran | Cloud-Based Federated Learning Implementation Across Medical Centers[END_REF], where the optimal setup is more expensive than both random scenarios (by 18.05% and 37.88%), but with a higher reduction in the execution time (47.69% and 58.81%).

The above comparisons show that placing the clients (and server) as close as possible to the dataset does not always provide the best execution time. For example, in the scenario AWS [START_REF] Rajendran | Cloud-Based Federated Learning Implementation Across Medical Centers[END_REF], where all datasets are in the N. Virginia region of AWS and our mathematical formulation places clients and the server in the Oregon region of AWS, the single FL round has presented a small reduction in both execution time and total costs when compared to the first user selection approach, where all allocated VMs are in the N. Virginia region. We should point out that a FL application usually executes for several rounds, which increases the absolute difference in time and costs between the optimal setup and the random ones.

Results from scenario AWS(2)-GCP [START_REF] Shen | From distributed machine learning to federated learning: In the view of data privacy and security[END_REF] show that the misplacement of the server can increase both execution time and costs. Although the execution time of all clients is the same in both random setups, the communication time between the slowest client and the server varies. The clients whose datasets are in AWS take longer to execute than the other two, and communication time inside the same AWS region is much lower than between both providers. Moreover, the transfer costs change according to the server placement. If it is on AWS, the cost is less ($0.09 per GB) than when it is in GCP ($0.12 per GB). Therefore, the difference in execution time and costs between the two random setups for this scenario can be explained.

Finally, we did a real deployment and executed all setups in both cloud providers (AWS and GCP) with 10 FL epochs. Table IX summarizes the obtained results, showing that the optimal solution allows an average execution time reduction of 21.07%, with an average cost increase of only 4.30%.

We can observe in the table that the computed differences

E. Discussion about the multi-cloud environment and results

Firstly, concerning the AWS-GCP environment of our experiments, all AWS EC2 instances were almost always available for deployment, although, they frequently presented performance variation. Particularly, the Volta GPU instance had poor unexpected performance, which led us to remove it from the model's search space. On the contrary, GCP instances presented a stable performance. We also observed that the time taken to access datasets allocated in AWS S3 (Table III) was higher than the time to access the corresponding datasets in the GCP Cloud Storage (Table IV). Such behavior is coherent with other ones from the related literature. In [START_REF] Leitner | Patterns in the chaos-a study of performance variation and predictability in public iaas clouds[END_REF] Leitner et al. present extensive experiments regarding the performance and predictability of different VM instance types in many cloud providers. The authors concluded that, in general, AWS has worse performance and is more unpredictable than GCP.

We also observe that the α parameter of our model has a low impact. The results with α equal to 0.5, 0, or 1 produced the same execution times and costs, for most of the experiments.

Our theoretical analysis shows that the execution time given by the proposed model is reduced by up to 58.81% when compared to random scenarios with four FL clients in the cloud whose datasets are stored in GCP (scenario GCP(4)). Considering 50 clients, with half of them storing their dataset in AWS and the other half in GCP (scenario AWS(25)-GCP(25)), the monetary costs and execution time are reduced by up to 48.34% and 10.47% respectively.

In the experiments conducted in the AWS-GCP platform, scenario GCP(4) yielded a reduction of 40.38% on the execution time when placing clients in the same region of the dataset in the most expensive VM type with a monetary cost increase of 24.61%.

When comparing, for a single FL application round, the theoretical execution times and the ones obtained in the AWS-GCP platform, we observe a difference of 11.14% in scenario AWS(4), -22.96% in scenario GCP(4), and 6.42% in scenario AWS(2)-GCP [START_REF] Shen | From distributed machine learning to federated learning: In the view of data privacy and security[END_REF]. Although in scenario GCP(4), such a difference in percentage is higher than the other two, the absolute value is smaller: only 25 seconds of difference compared to 1 minute and 10 seconds in AWS(4) and 40 seconds in AWS(2)-GCP [START_REF] Shen | From distributed machine learning to federated learning: In the view of data privacy and security[END_REF]. Moreover, Ward and Barker [START_REF] Ward | Observing the clouds: a survey and taxonomy of cloud monitoring[END_REF] have shown in 2014 that the same VM type could vary its performance by up to 29%. The authors associated this variation with the oversold physical machine underneath the VMs and other multi-tenanted phenomena. In our experiments, we observe that the variation among the same VM type is smaller nowadays, but still present.

VII. CONCLUSION AND FUTURE WORK

This paper has presented a mathematical formulation for a Cross-Silo Federated Learning task scheduling problem in a multi-cloud scenario, aiming at minimizing its execution time and monetary cost. This formulation is part of a framework proposal to execute Federated Learning applications in a multicloud scenario. Theoretical results show that the proposed model is robust and scales with the growth of the number of clients and available virtual machines.

Furthermore, in a real scenario using Amazon-GCP multicloud platform with 4 clients and datasets stored in AWS S3 and GCP Cloud Storage, the optimal setup offered an improvement by up to 57.18% in the execution time and up to 21.56% in the monetary costs when compared to random selection approach.

In future work, we aim introducing heterogeneity in clients' datasets and models, to evaluate the proposed approach in terms of performance and quality results. Besides, we intend to use Spot instances, which are offered with a huge discount by cloud providers, but can be revoked. In this case, upon the revocation, our framework will need to to reschedule the interrupted tasks dynamically through a dynamic scheduler module. Moreover, we are currently working on a fault-tolerant module in our framework not to loose all computation when a revocation occurs.

 Execution times: In [25], Malta et al. observed that all training epochs of a centralized Deep Learning training have similar execution times, except for the first one. Consequently, to obtain the total execution time, only the time of the first two epochs is necessary. The authors proposed then the Equation 18 that renders T otal runtime, the total time of the application, where T (Ep 1) and T (Ep 2) are the execution times of the first and second training epoch, respectively, and N ep is the total number of training epochs.

t

 comm xy = (train comm bl + test comm bl) × sl comm xy

Fig. 2 .

 2 Fig. 2. Relation between number of clients and Gurobi's execution time.

TABLE I NOTATION

 I AND VARIABLES USED. Maximum number of available GPUs in the provider p j N CP U j Maximum number of available vCPUs in the provider p j cost t j Cost (in $ per GB) of sending a message from provider p j N L GP U jk Maximum number of available GPUs in region r jk N L CP U jk Maximum number of available vCPUs in region r jk cpu jkl Number of vCPUs in the instance type vm jkl gpu jkl Number of GPUs in the instance type vm jkl cost jkl Cost (in $ per second) of instance type vm jkl c i A client of the FL application size(s msg train) Size of training message sent by the server to a client size(s msgaggreg) Size of test message sent by the server to a client size(c msg

	Name Description
	C	Set of clients in the FL application
	P	Set of available cloud providers
	p j	A cloud provider
	R j	Set of regions available in provider p j
	r jk	A region of provider p j
	V jk	Set of instance types available in region r jk
	vm jkl	A instance type of region r jk
	B round	Maximum budget to a single FL round
	T round	Maximum deadline to a single FL round
	Tmax	Maximum time of a single FL round
	N GP U j	

train) Size of training message sent by a client to the server size(c msgtest) Size of test message sent by a client to the server total costs Total financial costs of a single FL round tm Total execution time (makespan) of a FL round t exec ijkl Computational time (training and test) of client c in vm jkl t comm jklm Communication time (training and test messages) between region r jk and region r lm t aggreg jkl Aggregation time of server in vm jkl vm costs Total financial cost of all VMs in a single FL round comm costs Total financial cost of message exchange within a FL round x ijkl Binary variable which indicates if client c i executes on vm jkl or not y jkl Binary variable which indicates if the server executes on vm jkl or not α

 Table III presents the average values of each step (training and test) of the first (1º r.) and second

TABLE V COMMUNICATION

 V TIMES BETWEEN EACH PAIR OF REGIONS. THE TRAINING PHASE EXCHANGES A TOTAL OF 2GB IN MESSAGES AND THE TEST PHASE EXCHANGES A LITTLE MORE THAN 1GB IN TOTAL

	Pair of regions	Comm. times (s) Training Test	Sl
	us-east-1 (AWS) & us-east-1 (AWS)	6.68	3.59	1.00
	us-east-1 (AWS) & us-west-2 (AWS)	39.67	20.30	5.84
	us-east-1 (AWS) & us-central1 (GCP)	22.83	12.07	3.40
	us-east-1 (AWS) & us-west1 (GCP)	33.02	16.10	4.78
	us-west-2 (AWS) & us-west-2 (AWS)	6.56	3.41	0.97
	us-west-2 (AWS) & us-central1 (GCP)	33.25	14.53	4.65
	us-west-2 (AWS) & us-west1 (GCP)	20.42	10.83	3.04
	us-central1 (GCP) & us-central1 (GCP)	2.30	1.21	0.34
	us-central1 (GCP) & us-west1 (GCP)	7.35	3.86	1.09
	us-west1 (GCP) & us-west1 (GCP)	4.09	2.30	0.62

Execution time (s)

	200.00																									
	180.00																									
	160.00																									
	140.00																									
	120.00																									
	100.00																									
	80.00																									
	60.00																									
	40.00																									
	20.00																									
	0.00	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50

TABLE VI THEORETICAL

 VI RESULTS OF A SINGLE FL ROUND AND 50 CLIENTS

	Scenario	Optimal selection (model) Setup Exec. time	Costs ($)	Setup	User random selection Exec. time	Costs ($)	Difference (%) Exec. time Costs
	GCP(50)	clients in vm213 server in vm214	0:01:45	13.84	clients in vm222 server in vm223	0:03:47	18.69	53.70	25.92
	GCP(25)-AWS(25)	clients in vm121 server in vm123	0:10:16	13.72	half clients in vm111 server in vm214 and half in vm213,	0:11:29	26.56	10.47	48.34

TABLE VII VMS

 VII SETUP FOR OPTIMAL AND RANDOM SCHEDULING SCHEMES FOR ALL SCENARIOS WITH 4 CLIENTS

	Scenarios	Optimal selection (model)	1 st user random selection	2 nd user random selection
	AWS(4)	c1 in vm121, c2 in vm121, c3 in vm121, c4 in vm121, s in vm123	c1 in vm111, c2 in vm111, c3 in vm111, c4 in vm111, s in vm113	c1 in vm211, c2 in vm211, c3 in vm211, c4 in vm211, s in vm214
	GCP(4)	c1 in vm213, c2 in vm213, c3 in vm213, c4 in vm213, s in vm214	c1 in vm211, c2 in vm211, c3 in vm211, c4 in vm211, s in vm214	c1 in vm111, c2 in vm111, c3 in vm111, c4 in vm111, s in vm113
	AWS(2)-GCP(2)	c1 in vm121, c2 in vm121, c3 in vm121, c4 in vm111, s in vm123	c1 in vm111, c2 in vm111, c3 in vm211, c4 in vm211, s in vm113	c1 in vm111, c2 in vm111, c3 in vm211, c4 in vm211, s in vm214

 Leitner et al. have extensively evaluated the performance of different cloud platforms, showing that the performance of IO-bound applications in AWS varies a lot even in the same VM. Hence, since our application transfers data from memory to the GPU at least two times per round, the variation of IO performance has a negative impact on execution times, which explains the difference found between Table VIII and TableIX.

				TABLE IX			
		REAL CLOUD EXECUTION WITH 10 FL ROUNDS		
	Scenarios	Optimal selection (model) Exec. time Costs ($)	#	User random selection Exec. time Costs ($)	Difference (%) Exec. time Costs
	AWS(4)	1:31:18	10.66	1 st 2 nd	1:35:14 1:55:03	10.87 13.59	4.12 20.64	1.92 21.56
	GCP(4)	0:22:00	11.98	1 st 2 nd	0:36:54 0:51:22	9.61 8.53	40.38 57.18	-24.61 -40.34
	AWS(2)-GCP(2)	1:36:09	10.92	1 st 2 nd	1:37:37 1:38:42	11.25 12.51	1.51 2.59	2.93 12.71
	between the optimal values and the random ones are close to				
	the theoretical results (Table VIII) but not equal. Besides, the				
	real cloud differences in the second random setup of scenario				
	AWS(4) are far from the theoretical ones. In [29],						

https://gdpr-info.eu/

ACKNOWLEDGMENT This research is supported by Programa Institucional de Internacionalizac ¸ão (PrInt) from CAPES (process number 88887.310261/2018-00), by CNPq (process number 145088/2019-7), by the Coordenac ¸ão de Aperfeic ¸oamento de Pessoal de Nível Superior (CAPES -Finance Code 001), by Project Universal/CNPq n o 404087/2021-3 and CNE/FAPERJ n o E-26/201.012/2022(271103).