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Abstract—Under the coordination of a central server, Federate
Learning (FL) enables a set of clients to collaboratively train a
global machine learning model without exchanging their local
data. When such clients have powerful machines, it is called
cross-silo FL, and they store their data in private repositories
denoted silos. We are interested in this paper in cross-silo FL
where silos are geographically located in different regions of
multi-cloud providers. Thus, aiming at minimizing financial costs
and execution times of a cross-silo FL application, we propose a
model based on a scheduling problem mathematical formulation,
which receives as input both the application parameters and the
cloud providers’ resource features where clients’ data are stored
and renders the best assignment of clients and server to virtual
machines. This formulation is part of a framework proposal
to execute FL applications in different cloud providers. Taking
as a use case a Tumor-Infiltrating Lymphocytes Classification
problem, an FL application whose clients’ datasets spread over
different cloud providers’ data repositories, evaluation results
show that our model is scalable and improves the execution time
and financial costs of the FL application by up to 53.70% and
48.34% in a scenario with 50 clients, executing in around 200
seconds, when compared to results where VMs are randomly
selected. Experimental results with client silos in different Google
(GCP) and Amazon (AWS) cloud regions also confirmed the effec-
tiveness of our proposed model in a real multi-cloud environment.

Index Terms—Scheduling Problem, Federated Learning, Multi-
Cloud

I. INTRODUCTION

Proposed by McMahan et al. [1], Federated Learning (FL)
is an emerging distributed Machine Learning (ML) technique
where the participants (clients) collaboratively train a ML
model without sharing their respective private data [2]. Under
the coordination of a central server, each client trains the

model locally and communicates only the model weights to
the server that, in its turn, updates its global model. Federated
Learning has received much attention during the past few years
due to the increasing concern with data privacy, particularly
with current data protection laws (e.g., GPDR1 in Europe).

The client-server architecture of FL, also called Model-
Centric Federated Learning [3], can be classified into Cross-
Device or Cross-Silo Federated Learning. The former has low-
powered clients, such as mobile phones [1], while the latter has
few clients (e.g., companies, institutions, hospitals [4]) with
private large dataset repositories, denoted silos.

This work focuses on Cross-Silo Federated Learning, also
taking into account that, due to datasets gradually growing [5],
many clients keep their silos in cloud storage repositories [6],
[7] which offer data privacy guarantees and availability. In
such a context, we also consider that client silos can be
stored in different cloud providers (e.g. Amazon (AWS) S3,
Google Cloud (GCP) Storage, etc.). Moreover, the physical
infrastructure of a cloud provider is usually divided into
independent and isolated geographic regions [8], [9], each of
them offering several types of virtual machines with different
performance and financial costs. Consequently, a multi-cloud
platform offers multiple choices of virtual machine types,
regions, and cloud providers, with different execution and
communication times and costs, for executing the clients and
the server of an FL application.

Therefore, considering different types, regions, and cloud
providers, the question is how to select the best set of
virtual machines to execute the clients and the server of an

1https://gdpr-info.eu/



FL application, whose datasets were previously allocated in
one or more storage systems of one of the cloud providers,
minimizing both the execution time and the financial cost of
the FL application. In order to solve this scheduling problem,
we propose in this paper a mathematical formulation model
which receives as input information about the FL application
as well as about the multi-cloud environment and provides a
weighted optimization function whose aim is to minimize the
conflicting objectives cost and time. Our mathematical model
is part of a framework proposal to execute FL applications in
a multi-cloud environment, aiming to minimize time and costs
while keeping data privacy.

This framework receives as input information concerning
the FL application (e.g. number of clients, location of each
client dataset, number of communication rounds, etc) and the
environment (e.g., number of CPUs and GPUs in each VM,
the price of each VM in each region, limits of VMs per region,
etc) and outputs a scheduling map. It also deploys the selected
VMs and starts the tasks following the obtained map.

The model has been evaluated theoretically and in a multi-
cloud platform with AWS and GCP. To this end, we chose
a use-case application, which searches for Tumor-Infiltrating
Lymphocytes (TILs) in high-resolution scanned human tissue
images aiming to understand the patient’s cancer extension
and predicting the most suitable treatments.

Experiments with different data placement scenarios of
such an application have been conducted for evaluating the
scalability of the model, its effectiveness when compared to a
random user VM selection, and its accuracy when compared
to a real multi-cloud environment with a client’s silo in either
Google Cloud Storage or AWS S3 of different regions.

The paper is organized as follows. Section II introduces
related work. Section III presents our mathematical formula-
tion to the problem of scheduling FL clients and the server to
a multi-cloud environment. Section IV and Section V briefly
describe the use-case application and Flower, a tool that creates
FL systems. Section VI presents and discusses experimental
evaluation results. Finally, Section VII concludes the paper
and proposes some future work.

II. RELATED WORK

Most existing Federated Learning works tackle Cross-
Device architectures, where the server samples a fraction
of clients in each communication round, among hundreds
or thousands of connected devices [10], [11], while few of
them focus on Cross-Silo Federated Learning [4], [12], [13].
However, to the best of our knowledge, none of the latter
consider the scheduling problem of FL clients and the server
in a cloud or datacenter environment.

Regarding distributed machine learning in general, a major-
ity of works focus on the job scheduling problem of multiple
ML jobs that should be allocated among a number of limited
resources [14]–[16]. Few of them handle the scheduling prob-
lem of a unique distributed ML application. In [17], Amiri et
al. consider that some tasks (called workers) may present
sporadic slowness due, for instance, to temporary network

disconnection. To overcome such a problem, the central dataset
is divided into small n chunks. Each worker should then
compute a number of them sequentially. Thus, a server task
sends chunks to multiple workers and waits for k results,
k ≤ n. The authors propose two scheduling schemes for
chunks assignment to the workers aiming at minimizing the
average completion time. However, the data-sharing approach
to this problem is not suitable for Federated Learning scenarios
where data privacy and heterogeneity are essential concerns.

III. SCHEDULING FL CLIENTS AND SERVER TO A
MULTI-CLOUD ENVIRONMENT

In this section, we present our application and multi-cloud
models. Then, we describe our mathematical formulation to
schedule FL clients and server into a multi-cloud environment.

A. FL application Model

An FL application is a distributed algorithm, composed of
a set of clients, C, and a server, s, that uses communication
barriers along execution. We consider in this work, that the
FL application executes a set of rounds, each one divided
into five steps. In the first one, the server sends the message
s msgtrain containing the model weights to all clients. After
receiving the weights, in Step 2, each client, ci ∈ C, trains
the neural network for a fixed number of epochs on the local
training dataset and sends the updates back to the server,
through the message c msgtrain. Then, in Step 3, the server
receives all updates, aggregates them, and sends the final
weights to the clients (s msgaggreg message). Upon reception,
in Step 4, each client updates their respective weights, tests the
model with the test dataset, and sends its evaluation metrics
(for example, accuracy and precision) to the server in the
message c msgtest. Finally, in Step 5, the server aggregates
the evaluation metrics of all clients to have the global metrics.
Figure 1 shows the execution steps of a round.

c_msgtrain c_msgtrain

s_msgaggregs_msgaggreg

Server s

Client c1

c_msgtrain

Client c2 Client c3

s_msgtrain s_msgtrain s_msgtrain

Server s

s_msgaggreg


Server s

c_msgtest c_msgtest c_msgtest

Client c1 Client c2 Client c3

Fig. 1. Steps of one round of a Federated Learning Application

B. Multi-Cloud Model

Usually, commercial clouds have their physical infrastruc-
tures spread in different regions, which are independent and



isolated geographically. For instance, there are currently 26
regions in AWS [8] and 34 regions in GCP [9].

Each region offers computational resources packaged as
Virtual Machines (VMs). Each VM has a number of virtual
cores, named virtual CPUs (vCPUs), and may have one or
more Graphics Processing Units (GPUs) connected to it. Thus,
let P be a set of available cloud providers. A provider pj ∈ P
has associated to it a set of regions Rj and a fixed cost cost tj
(in $ per GB) to send any message from itself to any other VM,
inside or outside the provider, as observed experimentally.
A provider pj usually offers a limited number of GPUs
(N GPUj) and vCPUs (N CPUj). Moreover, in each region
rjk ∈ Rj , the number of available GPUs and vCPUs are
bounded (N L GPUjk and N L CPUjk, respectively).

Yet, each region rjk ∈ Rj has a set of available VM instance
types, Vjk, that can be deployed in it, where each vmjkl ∈ Vjk

contains a number of vCPUs, cpujkl and a number of GPUs,
gpujkl, with a fixed hiring cost (in $ per second) costjkl.

C. Mathematical Formulation

The problem of scheduling tasks in distributed comput-
ing resources is an NP-complete one [18], even in simple
scenarios. Furthermore, some features of multi-clouds render
it more difficult. Thus, we model our scheduling problem
as a Mixed-Integer Linear Programming problem. In our
scheduling problem, we have two objectives: minimize the
monetary cost and the total execution time (makespan) of the
application. Here, we also consider that the obtained solution
has to respect the constraints of a deadline, named T , and of
a budget, called B, given by the user.

Considering that the FL application executes n rounds,
each one for a similar amount of time, we can divide B and T
by n rounds to obtain the maximum budget and deadline for
a single FL round, named Bround and Tround, respectively.
Hence, we formulate the scheduling problem for one round.

Table I presents the notation and variables used in the
mathematical formulation. The proposed objective function
(Equation 1) is a weighted function that minimizes the mon-
etary cost, total costs, and the makespan, tm, of a single
FL round, where α, ranging from zero to one, is the weight
given by the user for the objectives. Usually, once those
objectives are conflicting, they cannot reach the optimal values
simultaneously. For instance, for α values close to 1, the
formulation prioritizes low costs solutions rather than small
makespans. On the other hand, when α = 0.5, both objectives
receive the same importance.

minα× total costs+ (1− α)× tm (1)

Let the binary variables xijkl indicate whether a client
ci will execute on VM vmjkl of region rjk of provider pj
(xijkl = 1), or not (xijkl = 0), and let yjkl be the analogous
representation for the server s. The variable total costs
includes the VMs’ execution costs (vm costs), computed as
Equation 2, and the message transfer costs (comm costs), de-
scribed in Equation 3, where commjm, presented in Equation
4, is the cost to exchange the FL messages between provider

pj and pm (j can be equal to m). Therefore, total costs is
calculated as in Equation 5.

vm costs =
∑

ci∈C

∑
pj∈P

∑
rjk∈Rj

∑
vmjkl∈Vjk

(xijkl × costjkl

×tm) +
∑

pj∈P

∑
rjk∈Rj

∑
vmjkl∈Vjk

(yjkl × costjkl × tm) (2)

comm costs =
∑

ci∈C

∑
pj∈P

∑
rjk∈Rj

∑
vmjkl∈Vjk

∑
pm∈P

∑
rmn∈Rm∑

vmmno∈Vmn
(xijkl × ymno × commjm) (3)

commjm = (size(s msgtrain) + size(s msgaggreg))× cost tm

+(size(c msgtrain) + size(c msgtest))× cost tj (4)

total costs = vm costs+ comm costs (5)

Both the monetary cost and the makespan have to be first
normalized. The normalization procedure updates the target
values to share the same minimum and maximum values. Thus,
total costs is divided by the product of the monetary cost
of hiring the most expensive VM, the maximum execution
time of an FL round (Tmax), and the number of tasks (clients
and server); plus the product of the most expensive message
exchange between providers (commjm) and the number of
clients, as shown in Equation 6. Similarly, the makespan is
divided by the maximum execution time of a FL round (Tmax).

max
pj∈P,rjk∈Rj ,vmjkl∈Vjk

(costjkl)× Tmax × (|C|+ 1)

+ max
pj ,pm∈P

(commjm)× |C| (6)

The objective function is subject to the following con-
straints. Constraints 7 and 8 guarantee that the budget and
deadline for a FL application round are not violated, while
constraints 9 and 10 ensure that every client and the server
execute on a single VM vmjkl ∈ Vjk in a region rjk ∈ Rj of
a provider pj ∈ P .

total costs ≤ Bround (7)

tm ≤ Tround (8)

∑
pj∈P

∑
rjk∈Rj

∑
vmjkl∈Vjk

xijkl = 1,∀ci ∈ C (9)

∑
pj∈P

∑
rjk∈Rj

∑
vmjkl∈Vjk

yjkl = 1 (10)

Constraints 11 to 14 guarantee that the solution will not
exceed the maximum number of GPUs and vCPUs of each
provider. Constraints 11 ensure that the total number of avail-
able GPUs does not exceed the global limit, while constraints
12 limit the total number of available vCPUs in each provider.
Constraint 13 has the same meaning as 11, but here the GPU
limit is by region. Constraint 14 is the vCPUs limit constraints
per region, similarly as Constraint 12.

∑
ci∈C

∑
rjk∈Rj

∑
vmjkl∈Vjk

xijkl × gpujkl +
∑

rjk∈Rj

∑
vmjkl∈Vjk

(yjkl

×gpujkl) ≤ N GPUj ,∀pj ∈ P (11)



TABLE I
NOTATION AND VARIABLES USED.

Name Description
C Set of clients in the FL application
P Set of available cloud providers
pj A cloud provider
Rj Set of regions available in provider pj
rjk A region of provider pj
Vjk Set of instance types available in region rjk

vmjkl A instance type of region rjk
Bround Maximum budget to a single FL round
Tround Maximum deadline to a single FL round
Tmax Maximum time of a single FL round

N GPUj Maximum number of available GPUs in the provider pj
N CPUj Maximum number of available vCPUs in the provider pj

cost tj Cost (in $ per GB) of sending a message from provider pj
N L GPUjk Maximum number of available GPUs in region rjk
N L CPUjk Maximum number of available vCPUs in region rjk

cpujkl Number of vCPUs in the instance type vmjkl

gpujkl Number of GPUs in the instance type vmjkl

costjkl Cost (in $ per second) of instance type vmjkl

ci A client of the FL application
size(s msgtrain) Size of training message sent by the server to a client

size(s msgaggreg) Size of test message sent by the server to a client
size(c msgtrain) Size of training message sent by a client to the server
size(c msgtest) Size of test message sent by a client to the server

total costs Total financial costs of a single FL round
tm Total execution time (makespan) of a FL round

t execijkl Computational time (training and test) of client c in vmjkl

t commjklm Communication time (training and test messages) between region rjk and region rlm
t aggregjkl Aggregation time of server in vmjkl

vm costs Total financial cost of all VMs in a single FL round
comm costs Total financial cost of message exchange within a FL round

xijkl Binary variable which indicates if client ci executes on vmjkl or not
yjkl Binary variable which indicates if the server executes on vmjkl or not

α Weight given by the user for the objectives (ranging from 0 to 1)

∑
ci∈C

∑
rjk∈Rj

∑
vmjkl∈Vjk

xijkl × cpujkl +
∑

rjk∈Rj

∑
vmjkl∈Vjk

(yjkl

×cpujkl) ≤ N CPUj ,∀pj ∈ P (12)

∑
ci∈C

∑
vmjkl∈Vjk

xijkl × gpujkl +
∑

vmjkl∈Vjk
yjkl × gpujkl

≤ N L GPUjl, ∀pj ∈ P,∀rjk ∈ Rj (13)

∑
ci∈C

∑
vmjkl∈Vjk

xijkl × cpujkl +
∑

vmjkl∈Vjk
yjkl × cpujkl

≤ N L CPUjl, ∀pj ∈ P,∀rjk ∈ Rj (14)

Next, constraint 15 guarantees that the FL application will
finish before tm, which is considered as the makespan of the
FL round. Finally, constraints 16 and 17 define the domain of
the decision variables xijkl and yjkl, respectively.

xijkl×ymno×(t execijkl+ t commjkmn+ t aggregmno)

≤ tm,∀ci ∈ C, ∀pj , pm ∈ P,∀rjk ∈ Rj ,∀vmjkl ∈ Vjk,

∀rmn ∈ Rm, ∀vmmno ∈ Vmn (15)

xijkl ∈ {0, 1},∀ci ∈ C, ∀pj ∈ P,∀rjk ∈ Rj ,∀vmjkl ∈ Vjk (16)

yjkl ∈ {0, 1},∀pj ∈ P,∀rjk ∈ Rj ,∀vmjkl ∈ Vjk (17)

IV. CASE STUDY: TUMOR-INFILTRATING LYMPHOCYTES
CLASSIFICATION

The selected use-case application searches for Tumor-
Infiltrating Lymphocytes (TILs) in high-resolution scanned
human tissue images and creates maps representing their
spatial distribution. However, the Whole Slide Tissue Images
(WSIs) of scanned tissue can have up to 100K×100K pixels,
making it difficult for an expert to extract information from
thousands of WSIs available in research studies. Because of
that, Saltz et al. [19] developed a deep learning application to
classify and analyze TIL patterns from tissue images.

For the evaluation of our proposal, we focus on the CNN
training, which is one step of the application. We assume that
the WSIs are previously divided into patches and classified
by an expert. The centralized version of the CNN training
in this TIL classification problem implements the VGG16
model [20], which has an input layer of size 224 × 224 × 3.
After this layer, the model has several convolutional and fully
connected layers, ending with an output layer that determines
if the TIL is positive or negative. The centralized version was
implemented with the TensorFlow API [21], which optimizes
dataset readings by using multiple threads to load the images
from the main memory and transfer them to the GPU memory.



V. FEDERATED LEARNING USING THE FLOWER
FRAMEWORK

We used the Flower framework, proposed by Beutel et
al. [22], to build our federated learning system. Flower offers
facilities to execute FL experiments, considering heteroge-
neous clients on simulation and real-world scenarios. It sup-
ports different ML frameworks underneath it (e.g., Tensor-
Flow, PyTorch, or a custom one). The FL client implements
the VGG16 model [20], using the TensorFlow API [21].

For the aggregation function to the server, we chose the
FedAvg [1] since it is already implemented in Flower and gives
good results on different unbalanced schemes, as shown in
Li et al. [13]. FedAvg computes the weighted average from all
clients using their respective dataset size as associated weight.

VI. PERFORMANCE EVALUATION

For our experiments, we considered Amazon Web Services
(AWS) and Google Cloud Provider (GCP) as cloud providers
with two regions at each of them: N. Virginia (us-east-1) and
Oregon (us-west-2) regions in AWS; and Iowa (us-central1)
and Oregon (us-west1) regions in GCP.

Initially, we planned to have a testbed composed of several
VMs with GPU in both AWS and in GCP, varying from the
Kepler GPU architecture to the Ampere one. However, the
CUDA version 10.0, used by the use-case TILs application,
is not compatible with either of these two architectures.
Consequently, we had to discard such GPU architectures from
our testbed. Furthermore, experiments showed that a VM with
the Volta GPU in AWS had constantly higher execution times
than with the Turing one, which led us to also discard the
former from our testbed, due to its unexpected behaviour.
Finally, in other experiments, we observed that it was not
possible to allocate, in either of the two regions, some types of
GPU architectures in GCP. Thus, such GPUs were not taken
into account either.

Hence, considering all the above constraints, for each region
in AWS, we selected two instance types with GPU, Maxwell
and Turing, and one instance without GPU. For GCP, we chose
instances from the general-purpose N1 family with the same
number of vCPUs as the AWS counterparts. Each instance had
one GPU, Pascal, Turing or Volta, attached to it. Additionally,
we also selected an instance without GPU. Note that in GCP,
some GPU architectures are not available in all regions, thus,
the number of instance types varies for each region.

Table II summarizes our VM instance selection in both
platforms, giving also the amount of memory and cost per
hour (obtained in May 2022) of each instance, and IDs that
allows us to identify each one. Message transfer cost in AWS
is $0.09 per GB in the first 10 TB/month and in GCP is $0.12
per GB in the first 1 TB/month. For storing clients’ datasets
in AWS and GCP, we respectively chose the Amazon Simple
Storage Service (S3) [23] in the N. Virginia region (us-east-1)
and the Cloud Storage [24] in the Iowa region (us-central1).

A. Training and test times

In order to have the best scheduling map of a Federated
Learning application, it is necessary to know clients’ and
server execution times with corresponding financial costs as
well as the communication time between a client and a
server, considering all available VMs. However, to run the
whole application in order to obtain those execution times and
financial costs would be unrealistic.

Execution times: In [25], Malta et al. observed that all
training epochs of a centralized Deep Learning training have
similar execution times, except for the first one. Consequently,
to obtain the total execution time, only the time of the
first two epochs is necessary. The authors proposed then the
Equation 18 that renders Total runtime, the total time of
the application, where T (Ep1) and T (Ep2) are the execution
times of the first and second training epoch, respectively, and
Nep is the total number of training epochs.

Total runtime = T (Ep1) + (Nep − 1)× T (Ep2) (18)

The same behaviour of the previous work was observed in
the FL approaches presented in [26] and [27] where the first
FL round has a different execution time from all the other ones,
which present similar execution times. Therefore, in this work,
to obtain the execution time of our use-case FL application,
only its first two rounds were executed. Note that execution
time includes both CPU and storage access times.

Let define the slowdown sl instjkl as the ratio between the
execution time of a dummy application in one of the virtual
machines and the execution time in a chosen baseline virtual
machine, in our experiments, the AWS instance g4dn.2xlarge
executing in the N. Virginia region (us-east-1 region), vm111.
Thus, the execution time of a round of a client ci executing
on a provider pj , region rjk and virtual machine vmjkl is the
sum of training and test steps of client ci executed on the
baseline virtual machine (train bli and test bli respectively)
multiplied by the corresponding slowdown (sl instjkl), as
shown in Equation 19.

t execijkl = (train bli + test bli)× sl instjkl (19)

Note that once having obtained slowdown values for one
dataset size, we can execute the FL application with other
dataset sizes, without the need of re-executing the first two
rounds of the application in all virtual machine types, except
for the baseline. We created a dummy application that sim-
ulates the execution of one client in the first two rounds of
our use-case FL application to compute this slowdown. Three
experiment sets were conducted.

In the first experiment set, client datasets were stored in
AWS and, in each experiment, only one client was executed
in a single instance vmjkl of Table II with an attached GPU.
The slowdown of a vmjkl is computed by dividing the sum
of the second round execution (training and test) times in this
instance by the sum of the second round execution in vm111,
our baseline instance. Table III presents the average values
of each step (training and test) of the first (1º r.) and second



TABLE II
INSTANCE TYPES SELECTED

Prov. Region VM vCPUS RAM
(GB) GPU GPU

memory (GB)
Costs per
hour ($) ID

AWS

N. Virginia
(us-east-1)

g4dn.2xlarge 8 32 Nvidia Tesla T4 Tensor Core 16 0.7520 vm111

g3.4xlarge 16 122 Nvidia Tesla M60 8 1.1400 vm112

t2.xlarge 4 16 - - 0.1856 vm113

Oregon
(us-west-2)

g4dn.2xlarge 8 32 Nvidia Tesla T4 Tensor Core 16 0.7520 vm121

g3.4xlarge 16 122 Nvidia Tesla M60 8 1.1400 vm122

t2.xlarge 4 16 - - 0.1856 vm123

GCP

Iowa
(us-central1)

n1-standard-8 with Turing GPU 8 30 Nvidia Tesla T4 Tensor Core 16 0.7300 vm211

n1-standard-16 with Pascal GPU 16 60 Nvidia Testa P4 8 1.3600 vm212

n1-standard-8 with Volta GPU 8 30 Nvidia V100 Tensor Core 16 2.8600 vm213

e2-standard-4 4 16 - - 0.1340 vm214

Oregon
(us-west1)

n1-standard-8 with Turing GPU 8 30 Nvidia Tesla T4 Tensor Core 16 0.7300 vm221

n1-standard-8 with Volta GPU 8 30 Nvidia V100 Tensor Core 16 2.8600 vm222

e2-standard-4 4 16 - - 0.1340 vm223

TABLE III
EXECUTION TIMES OF ONE CLIENT WITH FIVE LOCAL EPOCHS, RUN IN
DIFFERENT INSTANCES OF AWS AND GCP AND DATASET STORED IN

AMAZON S3 IN N. VIRGINIA REGION (us-east-1)

Prov. Region VM ID Training time Test time Sl1º r. 2º r. 1º r. 2º r.

AWS

N. Virginia
(us-east-1)

vm111 04:17 06:53 03:13 03:03 1.00
vm112 08:14 31:23 16:29 19:09 5.09

Oregon
(us-west-2)

vm121 04:34 06:34 02:40 03:14 0.99
vm122 07:34 27:47 14:48 16:19 4.44

GCP

Iowa
(us-central1)

vm211 03:24 07:09 03:01 03:04 1.03
vm212 04:27 07:53 03:41 04:47 1.28
vm213 02:59 07:20 03:20 02:56 1.04

Oregon
(us-west1)

vm221 03:51 07:24 02:40 03:11 1.07
vm222 03:11 07:23 03:12 03:31 1.10

TABLE IV
EXECUTION TIMES OF ONE CLIENT WITH FIVE LOCAL EPOCHS, RUN IN

DIFFERENT INSTANCES OF AWS AND GCP AND DATASET STORED IN GCP
CLOUD STORAGE IN IOWA REGION (us-central1)

Prov. Region VM ID Training time Test time Sl1º r. 2º r. 1º r. 2º r.

AWS

N. Virginia
(us-east-1)

vm111 04:21 03:04 00:54 00:49 1.00
vm112 06:09 04:45 01:06 01:09 1.52

Oregon
(us-west-2)

vm121 05:20 04:01 01:15 01:15 1.36
vm122 07:27 05:48 01:42 01:40 1.92

GCP

Iowa
(us-central1)

vm211 03:05 02:44 00:48 00:32 0.84
vm212 03:39 02:57 00:41 00:30 0.89
vm213 01:36 01:11 00:36 00:26 0.42

Oregon
(us-west1)

vm221 04:05 02:56 00:58 00:53 0.99
vm222 02:41 02:41 01:08 00:49 0.90

(2º r.) round, and the computed slowdown (Sl). We executed
the client in each instance type three times and observed an
average standard deviation of 10.96%. The second experiment
set is similar to the previous one, but client datasets are
stored in GCP. Results are presented in Table IV with average
standard deviation of 11.93%. Finally, the aggregation task of
the server was executed in all virtual machines of AWS and
GCP, taking around 0.3 seconds in AWS and 0.2 seconds in
GCP.

Communication times: Let define sl commxy , the commu-
nication slowdown of the pair of regions rx (with x = jk) and

ry (with y = lm), as the ratio between the communication time
of FL messages between these regions and the communication
time in a baseline pair of regions. Here, we define the baseline
pair by considering the same region in both sides, the N. Vir-
ginia region of AWS (us-east-1 region). The communication
time between regions rx and ry is thus given by Equation 20,
with train comm bl, the communication time of the training
messages, and test comm bl, the communication time of the
test messages in the baseline pair of regions.

t commxy = (train comm bl + test comm bl)× sl commxy (20)

This slowdown sl commxy is computed as the sum of
both communication times between client and server divided
by the sum of both times in the baseline pair of regions. In
order to obtain this communication slowdown, we considered
a dummy application with a single client and the server and
measured the total time taken by the client to send and receive
messages from the server. Neither the server nor the client does
any computation with the messages, they only receive them
and send them back. Messages had 25,000,000 floating points
(size of the dummy model) which correspond to messages of
1GB size. We collected communication slowdown times of
10 executions per pair of regions rjk and rlm, having 5 of
them with the client in the region rjk and the server in the
region rlm and 5 the other way round. Table V presents the
average times in seconds in all possible pairs of regions and
the computed slowdown (Sl). Most standard deviations were
below 15%, with only three above.

The training communication time is the time taken by the
server to send the message s msgtrain with the dummy model
(message size of 1GB) and receive back the same model,
c msgtrain, (message size of 1GB). The test communication
time is the time taken by the server to send the message
s msgaggreg with the model (message size of 1GB) and
receive back 10 float points, message c msgtest, representing
the possible ML metrics that clients compute (translated to
1.8KB). See Figure 1.



TABLE V
COMMUNICATION TIMES BETWEEN EACH PAIR OF REGIONS. THE

TRAINING PHASE EXCHANGES A TOTAL OF 2GB IN MESSAGES AND THE
TEST PHASE EXCHANGES A LITTLE MORE THAN 1GB IN TOTAL

Pair of regions Comm. times (s) SlTraining Test
us-east-1 (AWS) & us-east-1 (AWS) 6.68 3.59 1.00
us-east-1 (AWS) & us-west-2 (AWS) 39.67 20.30 5.84

us-east-1 (AWS) & us-central1 (GCP) 22.83 12.07 3.40
us-east-1 (AWS) & us-west1 (GCP) 33.02 16.10 4.78

us-west-2 (AWS) & us-west-2 (AWS) 6.56 3.41 0.97
us-west-2 (AWS) & us-central1 (GCP) 33.25 14.53 4.65

us-west-2 (AWS) & us-west1 (GCP) 20.42 10.83 3.04
us-central1 (GCP) & us-central1 (GCP) 2.30 1.21 0.34

us-central1 (GCP) & us-west1 (GCP) 7.35 3.86 1.09
us-west1 (GCP) & us-west1 (GCP) 4.09 2.30 0.62

B. Analysis of the Scalability of the Proposed Mathematical
Formulation

We used Gurobi Optimizer [28], a state-of-the-art solver for
mathematical programming models, for solving the proposed
formulation. In order to analyze its scalability, the number of
clients varied from 2 to 50. Furthermore, aiming at increasing
the search space, for each VM of Table II, we have created
five synthetic VMs. Thus, we have a total of 78 VMs, 54 with
GPUs and 24 without any GPU.

For the sake of making the problem solution feasible,
we set the GPUs and vCPUs limits of all regions and all
providers to the infinite constant of Python’s math library. We
also considered a deadline and a budget of 10,000 seconds
and $30000 per FL round respectively. Figure 2 presents the
relation between the number of clients and Gurobi’s execution
time.
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Fig. 2. Relation between number of clients and Gurobi’s execution time.

We observe in Figure 2 that our mathematical formulation
is robust and present the optimal solution, in a realistic time,
with a large search space and a considerable number of clients.

C. Theoretical Analysis of the Scheduling Results against User
Random Selection

In this section, we theoretically analyze the optimal setup
results obtained with our model, comparing them with user

random selection approaches. In order to obtain a solution
that offers a balance between the execution time and financial
cost, we set α = 0.5.

Let’s consider 50 homogeneous clients with 948 training
samples and 522 test samples. As all clients datasets have
the same size, we considered the same execution time as the
baseline execution time for all the 50 clients. Therefore, for
those clients that access their dataset in AWS (resp., GCP),
the baseline training time (train bli) is 412.94 (resp., 183.53)
seconds, and the baseline test time (test bli) is 182.77 (resp.,
49.47) seconds. Regarding communication, messages of the
server as well as the training message of clients have 0.54GB
of size and the test message from clients has 1.81KB of
size. The total value for the communication baseline time
(train comm bl + test comm bl) is 27.26 seconds.

We consider two data placement scenarios: GCP(50) where
all datasets are stored in GCP Cloud Storage and GCP(25)-
AWS(25) where datasets of 25 clients are stored in GCP Cloud
Storage and the other 25 in AWS S3. For each scenario, the
respective optimal setup results of our model are compared to
a given user selection approach, also described in the follow-
ing. Note that all values are computed from the slowdowns
presented in the previous sections.

- GCP(50) scenario: Our model proposes a optimal setup
where the 50 clients and the server should be in the Iowa
region of GCP (us-central1 region), with all clients in different
n1-standard-8 VMs with a Volta GPU in each (vm213) and the
server in a e2-standard-4 VM (vm214). The vm213 is the most
expensive VM in GCP but has the smallest execution time. On
the other hand, we considered a random approach where all
clients and the server are placed in the Oregon region of GCP
(us-west1 region), using the same VM types, assigning vm222

to clients and vm223 to the server. Compared to this approach,
the optimal one reduces in 53.70% the execution time and in
25.92% the costs.

- GCP(25)-AWS(25) scenario: Instead of placing the clients
near the datasets in each cloud provider, our mathematical
model proposes to place all the 50 clients and the server in
the Oregon region of AWS (us-west-2): each client in different
g4dn.2xlarge VM (vm121), which is the fastest VM in all
regions of AWS, and the server in a t2.xlarge VM (vm123).
On the other hand, we consider a random approach where all
clients are placed near the datasets in the fastest VMs of the
chosen region and the server in one of the cheapest VMs. Thus,
for such a configuration, we used the g4dn.2xlarge VM in the
N. Virginia region (vm111) for the 25 clients with dataset in
AWS, the n1-standard-8 VM with a Volta GPU in the Iowa
region (vm213) for the ones with dataset in GCP, and the e-
standard-4 VM in the Iowa region (vm214) to the server. In
this case, the FL round in the optimal setup reduces in 10.47%
the execution time and in 48.34% the costs.

Table VI summarizes these two scenarios. It presents the
location of the datasets (Scenario), the optimal setup, the
execution time and costs computed by the mathematical for-
mulation, along with the random approaches described above,
and the difference between the latter and the optimal setup.



TABLE VI
THEORETICAL RESULTS OF A SINGLE FL ROUND AND 50 CLIENTS

Scenario Optimal selection (model) User random selection Difference (%)
Setup Exec. time Costs ($) Setup Exec. time Costs ($) Exec. time Costs

GCP(50) clients in vm213

server in vm214
0:01:45 13.84 clients in vm222

server in vm223
0:03:47 18.69 53.70 25.92

GCP(25)-AWS(25) clients in vm121

server in vm123
0:10:16 13.72

half clients in vm111

and half in vm213,
server in vm214

0:11:29 26.56 10.47 48.34

This difference is computed by vr−vo
vr

, where vr is the random
approach value and vo is the optimal one.

D. Analysis of the Scheduling Results in a Multi-cloud Plat-
form

For each of the current experiments, we have had to respect
the maximum number of global and per region vCPUs and
GPUs that a user can allocate in each cloud provider. In
GCP, vCPUs (both global and per region one) and GPUs
are respectively limited to 40 and 4. In AWS, the limit of
the N. Virginia (us-east-1) region vCPUs is 52 and of the
Oregon region (us-west-2) is 36. On the other hand, there is
no restriction for the number of global vCPU and the GPU
limit is included in the vCPU one. Thus, we have kept the
infinity constant for these limits in AWS. We use the same
input data (baseline execution and communication time) as
the previous experiment for all clients c ∈ C.

We have reproduced the best FL scenario presented in [27]
which consists of four clients with equally divided datasets,
that execute 10 FL rounds with 5 local epochs each. Each
client has 948 training samples and 522 test samples, with
10% of TIL-positive in each dataset. We have then considered
three possible dataset placement scenarios: AWS(4), GCP(4)
and AWS(2)-GCP(2). In AWS(4), all datasets are stored in
AWS, while in GCP(4) they are placed in GCP. In the last
scenario, AWS(2)-GCP(2), half of the datasets is stored in
AWS, while the other half is stored in GCP.

Our model uses only three different VMs to place the
clients in each of the above three scenarios. For sake of
evaluation comparison, for each scenario, we also created two
user random selection assignments. In the case of AWS(4)
(resp., GCP(4)) scenarios, the first assignment allocates clients
and the server in the cheapest VMs (with GPU, in case of
clients) within the same cloud region in AWS (resp., GCP)
where is located the dataset of the corresponding client, while
the second assignment has a similar allocation but on the
other cloud provider, i.e., GCP (resp., AWS). For the GCP(2)-
AWS(2) scenario, the two user selection assignments consider
that clients are allocated in cheapest VMs with GPU in the
same region of their datasets but the server changes position,
being in AWS in the first setup and in GCP in the second. All
the scheduling assignments are described in Table VII, and the
configuration of each VM can be found in Table II.

We first present the execution time and the cost for a single
round of FL to all setups in Table VIII. The optimal values
come from the mathematical formulation and the random

scheduling setups are computed using the slowdowns from the
previous subsections. We also present how much the optimal
setup gains in terms of percentage from the random scheduling
schemes, computed by vr−vo

vr
, where vr is the user random

selection approach value and vo is the optimal one. Note that
a negative percentage value means that the optimal value is
bigger than the random one.

We can observe from Table VIII that our mathematical
model presents better results in all scenarios with an average
execution time reduction of 20.03% compared to the randomly
selected scenarios Regarding the monetary costs, the average
difference is -3.97%. This negative difference comes from
scenario GCP(4), where the optimal setup is more expensive
than both random scenarios (by 18.05% and 37.88%), but with
a higher reduction in the execution time (47.69% and 58.81%).

The above comparisons show that placing the clients (and
server) as close as possible to the dataset does not always
provide the best execution time. For example, in the scenario
AWS(4), where all datasets are in the N. Virginia region of
AWS and our mathematical formulation places clients and the
server in the Oregon region of AWS, the single FL round
has presented a small reduction in both execution time and
total costs when compared to the first user selection approach,
where all allocated VMs are in the N. Virginia region. We
should point out that a FL application usually executes for
several rounds, which increases the absolute difference in time
and costs between the optimal setup and the random ones.

Results from scenario AWS(2)-GCP(2) show that the mis-
placement of the server can increase both execution time and
costs. Although the execution time of all clients is the same
in both random setups, the communication time between the
slowest client and the server varies. The clients whose datasets
are in AWS take longer to execute than the other two, and
communication time inside the same AWS region is much
lower than between both providers. Moreover, the transfer
costs change according to the server placement. If it is on
AWS, the cost is less ($0.09 per GB) than when it is in GCP
($0.12 per GB). Therefore, the difference in execution time
and costs between the two random setups for this scenario
can be explained.

Finally, we did a real deployment and executed all setups
in both cloud providers (AWS and GCP) with 10 FL epochs.
Table IX summarizes the obtained results, showing that the
optimal solution allows an average execution time reduction
of 21.07%, with an average cost increase of only 4.30%.

We can observe in the table that the computed differences



TABLE VII
VMS SETUP FOR OPTIMAL AND RANDOM SCHEDULING SCHEMES FOR ALL SCENARIOS WITH 4 CLIENTS

Scenarios Optimal selection (model) 1st user random selection 2nd user random selection

AWS(4) c1 in vm121, c2 in vm121,
c3 in vm121, c4 in vm121, s in vm123

c1 in vm111, c2 in vm111,
c3 in vm111, c4 in vm111, s in vm113

c1 in vm211, c2 in vm211,
c3 in vm211, c4 in vm211, s in vm214

GCP(4) c1 in vm213, c2 in vm213,
c3 in vm213, c4 in vm213, s in vm214

c1 in vm211, c2 in vm211,
c3 in vm211, c4 in vm211, s in vm214

c1 in vm111, c2 in vm111,
c3 in vm111, c4 in vm111, s in vm113

AWS(2)-GCP(2) c1 in vm121, c2 in vm121,
c3 in vm121, c4 in vm111, s in vm123

c1 in vm111, c2 in vm111,
c3 in vm211, c4 in vm211, s in vm113

c1 in vm111, c2 in vm111,
c3 in vm211, c4 in vm211, s in vm214

TABLE VIII
THEORETICAL RESULTS WITH SINGLE FL ROUND

Scenarios Optimal selection (model) User random selection Difference (%)
Exec. time Costs ($) # Exec. time Costs ($) Exec. time Costs

AWS(4) 0:10:16 1.13 1st 0:10:23 1.13 1.09 0.53
2nd 0:10:23 1.30 1.05 13.44

GCP(4) 0:01:47 1.12 1st 0:03:25 0.95 47.69 -18.05
2nd 0:04:21 0.81 58.81 -37.88

AWS(2)-GCP(2) 0:10:16 1.13 1st 0:10:23 1.16 1.09 2.64
2nd 0:11:29 1.33 10.47 15.51

TABLE IX
REAL CLOUD EXECUTION WITH 10 FL ROUNDS

Scenarios Optimal selection (model) User random selection Difference (%)
Exec. time Costs ($) # Exec. time Costs ($) Exec. time Costs

AWS(4) 1:31:18 10.66 1st 1:35:14 10.87 4.12 1.92
2nd 1:55:03 13.59 20.64 21.56

GCP(4) 0:22:00 11.98 1st 0:36:54 9.61 40.38 -24.61
2nd 0:51:22 8.53 57.18 -40.34

AWS(2)-GCP(2) 1:36:09 10.92 1st 1:37:37 11.25 1.51 2.93
2nd 1:38:42 12.51 2.59 12.71

between the optimal values and the random ones are close to
the theoretical results (Table VIII) but not equal. Besides, the
real cloud differences in the second random setup of scenario
AWS(4) are far from the theoretical ones. In [29], Leitner
et al. have extensively evaluated the performance of different
cloud platforms, showing that the performance of IO-bound
applications in AWS varies a lot even in the same VM. Hence,
since our application transfers data from memory to the GPU
at least two times per round, the variation of IO performance
has a negative impact on execution times, which explains the
difference found between Table VIII and Table IX.

E. Discussion about the multi-cloud environment and results

Firstly, concerning the AWS-GCP environment of our exper-
iments, all AWS EC2 instances were almost always available
for deployment, although, they frequently presented perfor-
mance variation. Particularly, the Volta GPU instance had
poor unexpected performance, which led us to remove it from
the model’s search space. On the contrary, GCP instances
presented a stable performance. We also observed that the time
taken to access datasets allocated in AWS S3 (Table III) was
higher than the time to access the corresponding datasets in
the GCP Cloud Storage (Table IV). Such behavior is coherent
with other ones from the related literature. In [29] Leitner et
al. present extensive experiments regarding the performance

and predictability of different VM instance types in many
cloud providers. The authors concluded that, in general, AWS
has worse performance and is more unpredictable than GCP.

We also observe that the α parameter of our model has a low
impact. The results with α equal to 0.5, 0, or 1 produced the
same execution times and costs, for most of the experiments.

Our theoretical analysis shows that the execution time given
by the proposed model is reduced by up to 58.81% when
compared to random scenarios with four FL clients in the
cloud whose datasets are stored in GCP (scenario GCP(4)).
Considering 50 clients, with half of them storing their dataset
in AWS and the other half in GCP (scenario AWS(25)-
GCP(25)), the monetary costs and execution time are reduced
by up to 48.34% and 10.47% respectively.

In the experiments conducted in the AWS-GCP platform,
scenario GCP(4) yielded a reduction of 40.38% on the exe-
cution time when placing clients in the same region of the
dataset in the most expensive VM type with a monetary cost
increase of 24.61%.

When comparing, for a single FL application round, the
theoretical execution times and the ones obtained in the
AWS-GCP platform, we observe a difference of 11.14% in
scenario AWS(4), -22.96% in scenario GCP(4), and 6.42%
in scenario AWS(2)-GCP(2). Although in scenario GCP(4),
such a difference in percentage is higher than the other two,



the absolute value is smaller: only 25 seconds of difference
compared to 1 minute and 10 seconds in AWS(4) and 40
seconds in AWS(2)-GCP(2). Moreover, Ward and Barker [30]
have shown in 2014 that the same VM type could vary
its performance by up to 29%. The authors associated this
variation with the oversold physical machine underneath the
VMs and other multi-tenanted phenomena. In our experiments,
we observe that the variation among the same VM type is
smaller nowadays, but still present.

VII. CONCLUSION AND FUTURE WORK

This paper has presented a mathematical formulation for a
Cross-Silo Federated Learning task scheduling problem in a
multi-cloud scenario, aiming at minimizing its execution time
and monetary cost. This formulation is part of a framework
proposal to execute Federated Learning applications in a multi-
cloud scenario. Theoretical results show that the proposed
model is robust and scales with the growth of the number
of clients and available virtual machines.

Furthermore, in a real scenario using Amazon-GCP multi-
cloud platform with 4 clients and datasets stored in AWS
S3 and GCP Cloud Storage, the optimal setup offered an
improvement by up to 57.18% in the execution time and up
to 21.56% in the monetary costs when compared to random
selection approach.

In future work, we aim introducing heterogeneity in clients’
datasets and models, to evaluate the proposed approach in
terms of performance and quality results. Besides, we intend
to use Spot instances, which are offered with a huge discount
by cloud providers, but can be revoked. In this case, upon
the revocation, our framework will need to to reschedule the
interrupted tasks dynamically through a dynamic scheduler
module. Moreover, we are currently working on a fault-tolerant
module in our framework not to loose all computation when
a revocation occurs.
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