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ORIGINAL ARTICLE
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Abstract

Rationale: Autopsy and biomarker studies suggest that
endotheliopathy contributes to coronavirus disease (COVID-19)-
associated acute respiratory distress syndrome. However, the effects
of COVID-19 on the lung endothelium are not well defined. We
hypothesized that the lung endotheliopathy of COVID-19 is caused
by circulating host factors and direct endothelial infection by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Objectives: We aimed to determine the effects of SARS-CoV-2
or sera from patients with COVID-19 on the permeability and
inflammatory activation of lung microvascular endothelial cells.

Methods: Human lung microvascular endothelial cells were
treated with live SARS-CoV-2; inactivated viral particles; or sera
from patients with COVID-19, patients without COVID-19, and
healthy volunteers. Permeability was determined by measuring
transendothelial resistance to electrical current flow, where
decreased resistance signifies increased permeability.
Inflammatory mediators were quantified in culture supernatants.
Endothelial biomarkers were quantified in patient sera.

Measurements and Main Results: Viral PCR confirmed that
SARS-CoV-2 enters and replicates in endothelial cells. Live
SARS-CoV-2, but not dead virus or spike protein, induces
endothelial permeability and secretion of plasminogen
activator inhibitor 1 and vascular endothelial growth factor.
There was substantial variability in the effects of SARS-CoV-2
on endothelial cells from different donors. Sera from
patients with COVID-19 induced endothelial permeability,
which correlated with disease severity. Serum levels of
endothelial activation and injury biomarkers were increased in
patients with COVID-19 and correlated with severity of
illness.

Conclusions: SARS-CoV-2 infects and dysregulates endothelial
cell functions. Circulating factors in patients with COVID-19 also
induce endothelial cell dysfunction. Our data point to roles for
both systemic factors acting on lung endothelial cells and viral
infection of endothelial cells in COVID-19–associated
endotheliopathy.

Keywords: COVID-19; acute respiratory distress syndrome;
endothelial permeability; lung endothelial injury
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Endothelial cell dysfunction, or
“endotheliopathy,” is believed to contribute
to the pathogenesis of acute respiratory
distress syndrome (ARDS) in severe
coronavirus disease (COVID-19), and the
endothelium has been proposed as a
therapeutic target in severe COVID-19
disease (1, 2). However, despite an
unprecedented focus on defining COVID-19
mechanisms (3), published data on the direct
endothelial effects of COVID-19 are minimal
(4, 5). Endothelial cells regulate vascular
barrier function, vasomotor tone,
vasculogenesis, coagulation and fibrinolysis,
and trafficking of cells and substrates.
Infection and injury induce a
proinflammatory program in endothelial
cells with upregulated production of
cytokines, chemokines, procoagulant factors,
and proadhesive proteins, as well as
glycocalyx damage and vascular
hyperpermeability with resultant tissue
edema (6, 7). Elevated circulating endothelial
cell biomarkers have been reported to
associate with increased disease severity and
risk of death in COVID-19 (8–12).

The radiographic features of bilateral
ground-glass opacities in patients with
COVID-19–associated ARDS are compatible
with endothelial hyperpermeability (13).
Furthermore, autopsies of patients who died
of COVID-19 have revealed diffuse alveolar
damage with perivascular T cell infiltration,
virus within endothelial cells, endothelial
injury, capillary microthrombi, and
microvascular angiogenesis (14). These
findings alongside the high incidence of
thrombotic complications (15) implicate
endotheliopathy in COVID-19–associated
ARDS. The inaccessibility of endothelial cells
to direct sampling in real time in humans
has impeded progress toward understanding
the cause(s) of COVID-19–associated
endotheliopathy and its role in driving ARDS.

We hypothesized that COVID-19–
associated endotheliopathy results from
both viral infection of endothelial cells and

secondary endothelial effects of factors in
the blood of patients with COVID-19. We
therefore tested the effects of live and
inactivated virus, as well as sera from
patients with and without COVID-19, on
the activation and permeability of human
lung microvascular endothelial cells
(HMVECs), and we quantified serum
endothelial biomarkers in patients with and
without COVID-19.

Methods

HMVEC Culture, Agonists, and
Antagonists
HMVECs (passages 3–6; Lonza) frommale
and female cadavers deceased of nonseptic
causes were cultured (37�C, 5% CO2) in
endothelial culturemedium (EGMTM-2 EC
GrowthMedium). Confluentmonolayers were
treated with severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), spike protein,
or sera from patients with andwithout
COVID-19 or healthy volunteers. Some
experiments used agonists, antagonists, or
inhibitors, including the ACE2 agonist
Diminazene aceturate (DMZ, 20 μM;Tocris),
angiotensin-converting enzyme (ACE)
inhibitor (CAS35115-60-7, 20 μM; Sigma-
Aldrich), Toll-like receptor 4 (TLR4) antagonist
LPS-RS ultrapure (1 μg/ml; InvivoGen), and
TLR3 blocker CU-CPT 4a (10 μM;Tocris).

Viral Reagents
Experiments with live SARS-CoV-2 were
performed in a biosafety level 3 laboratory.
Live SARS-CoV-2 (strain nCoV/USA-WA1/
2020) was provided by Dr. Melanie Ott. To
generate viral stocks, Vero E6 cells were
exposed to SARS-CoV-2 for 72 hours, and
supernatants were stored at280�C (16).
Plaque assays were performed using Vero E6
cells to establish viral stock titers. We
purchased inactivated SARS-CoV-2 (strain
nCoV/USA-WA1/2019), produced by
g-irradiation or by heating (65�C, 30 min),

and recombinant spike glycoprotein
(stabilized) from SARS-CoV-2, Wuhan-
Hu-1, produced in a baculovirus expression
system (American Type Culture Collection).

Patient Enrollment Criteria and Serum
Sample Collection
All human studies were approved by the
University of California, San Francisco
Institutional Review Board (IRB). Sera were
collected from acutely ill patients with
COVID-19 (n=99) and patients without
COVID-19 (n=43) in the emergency
department or early after admission to wards
or ICUs at the Zuckerberg San Francisco
General Hospital and the University of
California, San FranciscoMedical Center as
part of two separate clinical studies: the
Co-ACIT study (COVID-19 Associated
Coagulopathy, Inflammation, and
Thrombosis) (IRB 20-30895; n=130) and
the COMET study (COVID-19Multi-
Phenotyping for Effective Therapies;
www.comet-study.org/team; IRB 20-30497;
n=12). The diagnosis of COVID-19 was
based on a positive SARS-CoV-2 PCR test.
The Co-ACIT study includes adults
(aged.18 yr) undergoing evaluation for
possible COVID-19 in the Zuckerberg San
Francisco General Hospital emergency
department based on fever, respiratory
symptoms (cough, shortness of breath,
wheezing), gastrointestinal symptoms
(diarrhea, nausea/vomiting), and/or changes
in taste or smell. The COMET study includes
adults admitted to the wards and ICUs with
symptomatic COVID-19. Subjects in both
studies were followed until discharge from
the emergency department or hospital, and a
comprehensive collection of patient
characteristics, physiological and laboratory
parameters, and clinical outcomes was
documented. Patients were subclassified into
three disease severity categories at Day 1
based on their level of care: mild (ambulatory
mild disease: discharged after evaluation in
the emergency department), moderate
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(hospitalized: moderate disease, admitted to
the floor), and critical (hospitalized: severe
disease, admitted to the ICU) according to
guidelines from theWorld Health
OrganizationWorking Group on the Clinical

Characterization andManagement of
COVID-19 (17, 18). Table 1 includes the
baseline demographics and characteristics of
patients. Sera were also collected from
healthy volunteers without fever or
respiratory or gastrointestinal symptoms
(IRB 10-01981 and 20-30895).

Assessment of Effects of Viral
Particles, Spike Protein, and Human
Sera on HMVEC Permeability and
Biomarker Production
HMVECs were treated with live or inactivated
SARS-CoV-2, spike protein, or human sera.
Permeability was inferred from
transendothelial resistance (TER), which was
measured using electric cell substrate
impedance sensing (Applied Biophysics),
which quantifies the resistance of a cell
monolayer to electrical current flow in real
time (19, 20). Decreased TER reflects
increased permeability. HMVECs were
cultured to confluence based on reaching a
stable plateau in TERmeasured at a frequency
of 4,000 Hz (20). HMVECs were then
incubated with virus or spike protein (four to
eight replicates per condition) or 10% sera
from patients with COVID-19 and patients
without COVID-19 or healthy humans (two
replicates per sample). TER wasmeasured
repeatedly over 24 hours. Data were
quantitatively analyzed by calculating the area
between the control curve (normalized
resistance, 1) and the experimental condition,
called the area under the curve, as an
integrative marker of the permeability (21). At
24 hours, IL-6, IL-8, plasminogen activator
inhibitor 1 (PAI-1), vascular endothelial
growth factor (VEGF), and CCL-2 were
quantified in supernatants by ELISA (R&D
Systems). Viral PCR was performed at 24 and
72 hours in some experiments. Escherichia coli
0111:B4 LPS (1 μg/ml) served as a positive
control that reliably induces HMVEC
permeability across donors.

Quantification of Biomarkers in Sera
from Cohort of 74 Patients
Endothelial biomarkers were quantified in
sera from patients with and without
COVID-19 collected in the Co-ACIT study
during their first medical evaluation in the
emergency department before receiving
fluids, dexamethasone, remdesivir, or plasma
therapy. The specific biomarkers were
chosen because they are produced by or
directly act on the endothelium, or, as in
the case of syndecan-1, reflect endothelial
glycocalyx injury. IL-6, IL-8, VEGF

(R&D Systems), and syndecan-1 (Abcam)
were quantified by ELISA. Other endothelial
biomarkers were quantified using multiplex
fluorescence-based panels (Eve Technology),
including the cardiovascular disease panel
(HCVD4-07-0; follistatin, platelet endothelial
cell adhesion molecule 1 [PECAM-1],
pentraxin-3, sE-selectin, tissue factor,
s-thrombomodulin, troponin T) and the
endothelial biomarker array (HDHSB10;
brain-derived neurotrophic factor [BDNF],
cathepsin D, myeloperoxidase, neural cell
adhesion molecule [NCAM], PAI-1, platelet-
derived growth factor [PDGF]-AA, PDGF-
AB/BB, regulated upon activation, normal T
cell expressed and secreted [RANTES],
soluble intercellular adhesion molecule 1
[sICAM-1], soluble vascular cell adhesion
molecule 1 [sVCAM-1]). ACE and ACE2
were quantified by ELISA (R&D Systems).

Flow Cytometry
HMVECs were detached with Accutase, and
cells were labeled with fluorescein
isothiocyanate CD102 (clone CBR-IC1/2),
phycoerythrin-cyanine 7 CD106 (clone 429
MVCAM.A) (BioLegend), eFluor 450 CD31
(cloneWM59), allophycocyanin CD62P
(clone Psel.KO2.3) (eBioscience), and
phycoerythrin CD144 (clone 16B-1)
(Invitrogen). A fixation step was used to
inactivate live virus before HMVECs
underwent staining. Single-cell suspensions
underwent flow cytometry the same day
(LSRII Fortessa flow cytometer). The data
were analyzed with FlowJo software.
Endothelial cells were defined as
CD311CD1021.

Statistics
Statistics were performed using R software
(www.R-project.org). Graphs showmeans
and SDs. Nonparametric Mann-Whitney
U tests were used for continuous variables;
the chi-square test was used for discrete
variables; or ANOVAwith multiple Tukey’s
post hoc tests were used for comparisons
betweenmultiple groups. For analysis of
biomarkers in patient sera, to limit multiple
testing–related biases, we applied a two-step-
up method with a false discovery rate (q) of
5% (22). We also performed a principal
component analysis based on 10 endothelial
activation and injury biomarkers to assess
the main relationships between the pattern of
biomarkers, COVID-19 status, and disease
severity. All tests were two-sided, and
P values less than 0.05 were considered
significant.

At a Glance Commentary

Scientific Knowledge on the
Subject: The clinical course, autopsy
studies, and available data on immune
cell functions and circulating
concentrations of inflammatory and
endothelial biomarkers in patients
with coronavirus disease (COVID-19)
all point to the endothelium as a
target organ in severe COVID-19
disease. Endothelial cell activation and
dysregulation (“endotheliopathy”) are
pathogenically involved in acute
respiratory distress syndrome caused
by sepsis and tissue injury. Currently,
the understanding of the
endotheliopathy of COVID-19,
including its underlying mechanisms
and role in driving acute respiratory
distress syndrome, is rudimentary.

What This Study Adds to the
Field: This translational-clinical study
demonstrates that live severe acute
respiratory syndrome coronavirus 2
(SARS-CoV-2) can enter primary
human lung microvascular endothelial
cells (HMVECs) and induce
hyperpermeability and a proadhesive
and proinflammatory phenotype.
Analogous to the heterogeneous
course of humans with COVID-19, we
noted substantial variability in the
responses of HMVECs from different
donors. Ex vivo treatment with sera
from patients with COVID-19 induces
HMVEC permeability. Sera from
moderately and critically ill patients
with COVID-19 had a biomarker
signature that was consistent with
endothelial activation and dysfunction.
Our data, in conjunction with other
studies, suggest that COVID-19–
associated lung endotheliopathy is
caused by the actions of systemic and
localized cells and inflammatory
factors on endothelial cells, as well as
SARS-CoV-2 infection of
endothelial cells.
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Results

SARS-CoV-2 Enters and Replicates
in HMVECs
Using PCR, we detected SARS-CoV-2 in
lysates of HMVECs after 24 and 72 hours of
exposure to live SARS-CoV-2 at a
multiplicity of infection (MOI) of 0.1 and 1
viral particle per cell (Figure 1A).
Intracellular viral mRNA concentrations

were higher at 72 hours than at 24 hours,
indicating viral replication within
endothelial cells. Viral mRNAwas not
detected in lysates of medium-treated
HMVECs.

Exposure to Live SARS-CoV-2
Induces HMVEC Permeability
Exposure of HMVECs to SARS-CoV-2 at an
MOI of 1, but not at anMOI of 0.01 or 0.1,

led to decreased TER, consistent with
increased permeability (Figure 1B1–6).
Although the magnitude of the
permeability induced by SARS-CoV-2
varied between HMVECs from different
donors, there were significant differences
between the areas under the curve of
SARS-CoV-2 at anMOI of 1 versus
medium for all six donors (Figure 1B7)
(P, 0.05).

Table 1. Characteristics at Inclusion of 142-Patient Cohort Whose Sera Were Used in Ex Vivo Endothelial Cell Stimulation
Assays

Variable
Total Cohort

(N=142)
Non–COVID-19

(n= 43)
COVID-19
(n=99) P Value

Age, yr, mean6SD 586 16 59616 556 19 0.24
Male, n (%) 88 (62) 28 (65) 60 (60.6) 0.7
Duration of symptoms before admission, d 6.667 5.369.6 7.26 5.3 0.14
Ethnicity, n (%)

White 17 (12) 11 (25.6) 6 (6.1) 0.005
Black or African American 17 (12) 10 (23.3) 7 (7.1) 0.01
Hispanic/Latino 71 (50) 12 (28) 59 (59.6) 0.0009
Asian 19 (13.4) 4 (9.3) 15 (15.1) 0.43
Native American 1 (0.7) 1 (2.3) 0 (0) 0.3
Other/not reported 17 (12) 5 (11.6) 12 (12.1) 0.99

Comorbidities, n (%)
Obesity 49 (34.5) 10 (23.3) 39 (39.4) 0.08
Diabetes 41 (28.9) 9 (20.9) 32 (32.3) 0.23
COPD/asthma/CRD 16 (11.3) 9 (20.9) 7 (7.1) 0.02
CKD 14 (9.8) 3 (7) 11 (11.1) 0.55
CAD/CHF 15 (10.6) 6 (14) 9 (9.1) 0.38
Stroke 8 (5.6) 6 (14) 2 (2) 0.009
Liver disease 12 (8.4) 6 (14) 6 (6) 0.18
HIV/AIDS 6 (4.2) 5 (11.6) 1 (1) 0.009
Cancer 13 (9.1) 5 (11.6) 8 (8.1) 0.53

Admission on Day 1, n (%)
ED only/outpatient: mild 42 (29.6) 14 (32.6) 28 (28.3) 0.55
Floor: moderate 60 (43.7) 19 (44.2) 41 (43.4) 0.85
ICU: critical 40 (26.7) 10 (23.3) 30 (28.3) 0.42

Respiratory support on Day 1, n (%)
None 61 (43) 22 (51.2) 39 (39.4) 0.2
NC/NRB 48 (33.8) 15 (34.8) 33 (33.3) 0.84
HFNC 18 (12.7) 3 (7) 15 (15.1) 0.27
CPAP/BiPAP 1 (0.7) 1 (2.3) 0 (0) 0.3
Intubated 14 (9.9) 2 (4.7) 12 (12.1) 0.23

Severity-of-illness scores
SOFA score, mean6SD 1.863 0.961.2 2.46 3.4 0.01
Respiratory SOFA score, mean6SD 0.6361.1 0.2160.47 0.8261.2 0.02

Diagnosis at admission, n (%)
COVID-19 99 (69.7) 0 (0) 99 (100) NA
Sepsis (of origin) 18 (12.7) 18 (41.8) 0 (0) NA
Pneumonia/URI 12 (8.4) 12 (27.9) 0 (0) NA
UTI 1 (0.7) 1 (2.3) 0 (0) NA
SSTI 2 (1.4) 2 (4.7) 0 (0) NA
Other/not reported 3 (2.1) 3 (7) 0 (0) NA

Asthma/COPD exacerbation 6 (4.2) 6 (14) 0 (0) NA
Heart failure 8 (5.6) 8 (18.6) 0 (0) NA
Pulmonary embolism 1 (0.7) 1 (2.3) 0 (0) NA
Gastrointestinal symptoms 4 (2.8) 4 (9.3) 0 (0) NA
Other/not reported 6 (4.2) 6 (14) 0 (0) NA

Definition of abbreviations: BiPAP=bilevel positive airway pressure; CAD=coronary artery disease; CHF=chronic heart failure; CKD=chronic
kidney disease; COPD=chronic obstructive pulmonary disease; COVID-19=coronavirus disease; CPAP=continuous positive airway pressure;
CRD=chronic respiratory disease; ED=emergency department; HFNC=high-flow nasal cannula; NA=not applicable; NC=nasal cannula;
NRB=non-rebreather mask; SOFA=Sequential Organ Failure Assessment; SSTI= skin and soft tissue infections; URI= upper respiratory
infection; UTI = urinary tract infection.
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Figure 1. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) human lung microvascular endothelial cell (HMVEC) infection and
endothelial permeability. (A) SARS-CoV-2 mRNA was detected and quantified in HMVEC lysates after 24 and 72 hours of exposure to live
SARS-CoV-2 virus (multiplicity of infection [MOI] of 1; orange, strain nCoV/USA-WA1/2020) using quantitative PCR (TaqMan 2019-nCoV assay).
This example shows cells from a single donor; dots are biological replicates. (B1–B6) Transendothelial resistance during treatment with medium
(black line) or live virus (MOI of 1; orange) in six HMVEC donors. (B7) The corresponding area under the curve (AUC) for HMVECs on each of
the six donors. *P, 0.05, **P,0.01, ***P, 0.001 by two-tailed Mann-Whitney U test.
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Effects of ACE and ACE2 Modulation
and Innate Immune Receptor
Blockade on SARS-CoV-2–induced
HMVEC Permeability
Treatment with an ACE inhibitor did not
affect SARS-CoV-2–induced permeability
(Figure 2A1–2). Conversely, the ACE2
agonist DMZ reversed the virus-induced
permeability of HMVECs from three of six
donors (Figure 2A1–2; see Figure E1 in the
online supplement) (P, 0.05). DMZ did not
reduce intracellular SARS-CoV-2
concentrations (data not shown), which
suggests that it reduces permeability
independently of viral entry. Also, DMZ
reduced LPS-induced permeability
(Figure 2B) (P, 0.01), suggesting that its
effects are not specific to SARS-CoV-2.
Neither TLR4 antagonism using LPS-RS nor
TLR3 inhibition using CU-CPT 4a affected
virus-induced permeability (data not shown).

SARS-CoV-2 Effects on HMVEC
Inflammatory Mediator and Adhesion
Molecule Expression
Exposure to live SARS-CoV-2 significantly
upregulated IL-6, PAI-1, and VEGF
secretion by HMVECs from three of the six
donors (donors 2, 5, and 6) and increased
IL-8 and CCL-2 secretion by HMVECs from
one donor (donor 6) (Figure 3A). On the
basis of flow cytometry, there was high
variability in the baseline expression of
multiple adhesion molecules (VCAM-1
[CD106], ICAM-2 [CD102], P-selectin
[CD62P], PECAM-1 [CD31], and
VE-cadherin [CD144]) between HMVECs
from different donors (Figure 3B). As shown
in the heat map in Figure 3B2, exposure to

SARS-CoV-2 significantly upregulated
surface expression of VCAM-1 by two
donors (donors 2 and 4), P-selectin by two
donors (donors 2 and 5), and ICAM-2 by
one donor (donor 2).

Spike Protein and Inactivated Virus
Do Not Induce HMVEC Permeability or
Inflammation
There were no significant effects of spike
protein (0.1–1,000 ng/ml) or inactivated
virus (104, 105, or 106 copies/ml) on
permeability (Figure E2A), nor did spike
protein or inactivated virus induce IL-6, IL-8,
or CCL-2 secretion by HMVECs from any of
the three donors tested (Figure E2B).
Moreover, on the basis of flow cytometry,
neither spike protein nor inactivated virus
affected the surface expression of endothelial
cell proteins, including CD31 (PECAM-1),
CD102 (ICAM-2), CD106 (VCAM-1),
CD144 (VE-cadherin), and CD62P
(P-selectin) (Figure E2C). These data suggest
that spike protein and viral particles do not
activate endothelial cell surface innate
immune receptors.

Effects of Sera from Patients with and
without COVID-19 on HMVEC
Permeability and Inflammation
We exposed HMVECs to sera from patients
with COVID-19 (n=99) and patients
without COVID-19 (n=43) and from
healthy volunteers (n=18). Table 1 includes
baseline demographics, level of care, and
comorbidities of the cohort. Hispanic/Latino
individuals were substantially
overrepresented, whereas Black or African
American andWhite individuals were

substantially underrepresented, among
patients with COVID-19 versus patients
without COVID-19. Compared with sera
from healthy subjects, sera from patients
with COVID-19 with mild (P, 0.05),
moderate (P, 0.001), or critical (P, 0.001)
disease induced reductions in TER, reflecting
increased permeability (Figure 4). Sera from
critical patients without COVID-19 also
induced HMVEC permeability (P, 0.001),
whereas healthy donor sera did not
(Figure 4). There were no differences in
permeability induced by sera from
patients without and with COVID-19
with comparable illness severities
(Figure 4B).

There was considerable variability in
the effects of COVID-19 sera on HMVEC
secretion of different inflammatory
mediators and in the pattern of
upregulation of mediators induced by
COVID-19 and non–COVID-19 sera
(Figure E3). Compared with healthy
human sera, sera from critical but not mild
or moderate COVID-19 disease increased
HMVEC secretion of IL-6 (P, 0.05),
whereas sera from patients without
COVID-19 did not. Exposure to sera from
patients with COVID-19 of any disease
severity and from mild and moderate
patients without COVID-19 significantly
upregulated CCL-2 secretion compared
with healthy human serum. COVID-19
and non-COVID-19 sera did not affect
IL-8 or PAI-1 secretion by HMVECs.
Finally, sera from moderate and critical
patients with COVID-19, but not patients
without COVID-19, significantly increased
VEGF secretion (Figure E3).
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Patients with COVID-19 Have Elevated
Serum Endothelial Activation and
Injury Biomarkers
Concentrations of endothelial biomarkers
in sera from patients with and without

COVID-19 are shown in Table E1. IL-6
(P=0.001), IL-8 (P=0.003), VEGF
(P=0.01), follistatin (P=0.04), tissue factor
(P=0.02), serum thrombomodulin
(P=0.03), sVCAM-1 (P=0.03), and

syndecan-1 were positively associated with
the level of care in COVID-19 and
non–COVID-19 groups. Conversely, BDNF
(P=0.04) and PDGF-AA (P=0.03)
concentrations were negatively associated
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Figure 3. Effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on human lung microvascular endothelial cell (HMVEC)
mediator secretion and proadhesive phenotype. (A) Concentrations of IL-6, IL-8, CCL-2, plasminogen activator inhibitor 1 (PAI-1), and vascular endothelial
growth factor (VEGF) in supernatants of HMVECs from six different donors treated with medium or SARS-CoV-2 (multiplicity of infection [MOI] of 1; orange,
strain nCoV/USA-WA1/2020). *P, 0.05, **P,0.01, ***P, 0.001 by two-tailed Mann-Whitney U test. (B1) Histograms for CD102 (ICAM-2), CD31 (platelet
endothelial cell adhesion molecule 1 [PECAM-1]), CD106 (vascular cell adhesion molecule 1 [VCAM-1]), CD144 (VE-cadherin), and CD62P (P-selectin)
expression on HMVECs from four different donors after 24 hours of treatment with medium (gray) or infection with SARS-CoV-2 (MOI of 1; orange, strain
nCoV/USA-WA1/2020). (B2) A double-gradient heat map of the relative mean fluorescence intensity on endothelial cells from four different donors after
24 hours of treatment with medium versus virus.
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with level of care (Table E2). Disregarding
level of care, patients with COVID-19 had
higher sVCAM-1 (P, 0.0001), sICAM-1
(P=0.006), NCAM (P=0.009), cathepsin
(P=0.002), PAI-1 (P=0.0005), and
syndecan-1 (P=0.017) and lower BDNF
(P=0.03) than patients without COVID-19
(Figure 5A). ACE and ACE2 serum
concentrations were similar between patients
without and with COVID-19 (Figure 5A,
Table E3). After stratification by level of care,
patients with COVID-19 had significantly
higher circulating concentrations of
sVCAM-1, cathepsin D, sICAM-1, NCAM,
PAI-1, and syndecan-1 than patients without
COVID-19 (Figure 5B, Table E2). Applying a
two-step-up method with a false discovery
rate (q) of 5% (22), only sVCAM-1
(q=0.0006), NCAM (q=0.015), sICAM-1
(q=0.03), cathepsin D (q=0.003),
syndecan-1 (q=0.02), PAI-1 (total)
(q=0.003), and IL-8 (q=0.015) were
significantly different between patients with
and without COVID-19. An exploratory
multivariate analysis by a principal component
analysis based on 10 endothelium-related
biomarkers and the level of care showed that
patients with COVID-19 have increased
sVCAM-1, NCAM, sICAM-1, cathepsin D,
and PAI-1 but lower BDNF and RANTES in
comparison to patients without COVID-19
(Figure 5C).

Discussion

This study highlights the complexity of
the endotheliopathy associated with

SARS-CoV-2 infection. We found that
SARS-CoV-2 infects and induces
permeability of HMVECs from all donors,
and it variably affects inflammatory mediator
secretion by HMVECs from different
donors. We observed that ex vivo exposure of
HMVECs to sera of patients with COVID-19
induces endothelial permeability and variable
inflammatory activation. At the time of
presentation to the emergency department,
enrolled patients with COVID-19 had
elevated serum endothelial biomarkers that
correlated with their severity of illness. Our
data, in conjunction with autopsy findings of
SARS-CoV-2 within lung endothelial
cells (14) and reports of elevated circulating
endothelial biomarkers (8–12), suggest that
both viral infection of endothelial cells and
secondary effects of circulating factors and
intrapulmonary leukocytes mediate
COVID-19–associated lung endotheliopathy
and, by extension, ARDS. Figure 6 shows our
hypothetical model of endothelial cells as
targets for SARS-CoV-2 infection and
secondary injury.

We found that exposure to sera from
patients with mild, moderate, or critical
COVID-19 significantly increased HMVEC
permeability. This indicates the presence of
circulating factors capable of dysregulating
endothelial function early during
symptomatic COVID-19.We observed
differences in the effects of sera from patients
with mild, moderate, and severe COVID-19
on HMVEC production of specific
proinflammatory mediators. Sera from
patients with critical COVID-19 significantly
upregulated IL-6 production by HMVECs.

We also observed that live SARS-CoV-2
significantly upregulated production of IL-6,
as well as PAI-1 and VEGF, by HMVECs
from half of the donors. Notably, live
SARS-CoV-2 induced the highest degree of
permeability in HMVECs from the same
donors that produced the most IL-6.
Circulating IL-6 levels are predictive of
nonsurvival in COVID-19 (9). Our data
suggest that enhanced IL-6 secretion by
endothelial cells is linked to endothelial
dysfunction and is associated with increased
endothelial permeability.

We observed large differences in live
SARS-CoV-2 effects on permeability and
activation of HMVECs from different
donors. We hypothesize that intrinsic
differences in lung endothelial cell
susceptibility to SARS-CoV-2 infection and
to the actions of systemic and localized
immune factors underlie the variability in the
outcomes of COVID-19. Possible sources of
the heterogeneity in the responses of
different donor HMVECs include genetics,
epigenetics, age, concomitant diseases, recent
infection or injury, or the cause of the
donor’s death. Interindividual differences in
the ACE/ACE2 system, such as ACE2
polymorphisms or cell surface expression of
ACE2 (23–26), could also contribute to
variability in the susceptibility to HMVEC
infection and downstream inflammation and
permeability (27). One study examining
SNPs in ACE2 and ACE genes in 297
patients with COVID-19 and 253 patients
without COVID-19 reported that the ACE2
rs2285666, the GG genotype, or the G allele
was significantly associated with a twofold
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increased risk of SARS-CoV-2 infection and
a threefold increased risk of severe or lethal
COVID-19 (28). However, it remains
unclear whether endothelial cells express
ACE2 (29–31). In our study, the ACE2
agonist DMZ reduced SARS-CoV-2–
induced permeability, without reducing viral
entry into HMVECs. DMZ also reduced
LPS-induced permeability. This suggests that
activation of ACE2 signaling pathways helps
to stabilize the endothelial barrier during
acute inflammation caused by multiple
processes rather than being specific to
COVID-19 (32, 33).

We observed that sera from patients
with COVID-19 and patients without
COVID-19 with comparable severities of
illness induced similar levels of HMVEC
permeability. This finding is not surprising,
given the known role of endothelial injury

and dysfunction in sepsis and ARDS, but it
does not answer the question whether the
pathogenesis of COVID-19–associated
endotheliopathy is analogous to that of sepsis
or ARDS. There are a number of reports of
elevated blood endothelial biomarkers in
COVID-19, and some studies have shown
associations between elevated serum
endothelial biomarkers, such as PAI-1 and
syndecan-1, with organ failure and death
(8–12, 34–39). Despite similarities between
serum endothelial biomarkers and the degree
of HMVEC permeability induced by sera
from patients with and without COVID-19,
our data suggest that there is a serum
endothelial biomarker signature of
COVID-19 disease that differs from that of
non–COVID-19 disease and includes
increased levels of NCAM, sVCAM-1, and
sICAM-1. The upregulation of these

adhesion molecules may reflect the intensity
of lung leukocyte infiltration and the
angiocentric alveolar inflammation in
COVID-19 ARDS, analogous to sepsis-
induced ARDS (40–42). We found that
cathepsin D levels were positively associated
with the severity of illness and were higher in
patients with COVID-19 than in patients
without COVID-19. Cathepsin D increases
vascular permeability and can activate VEGF
(43) and could play a role in the lung edema
and neoangiogenesis in COVID-19 (14).
Finally, serum BDNF levels were lower in
patients with COVID-19 than in patients
without COVID-19. BDNF is involved in
neuronal survival and differentiation (44)
and in vascular stability (45). We speculate
that lower BDNF levels may contribute to
COVID-19–associated endotheliopathy and
neurological dysfunction (46–48).
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Figure 5. Admission serum endothelial biomarkers in patients with versus without coronavirus disease (COVID-19). (A) Comparison of
endothelium-related biomarkers in serum from patients with COVID-19 (n=50) and patients without COVID-19 (n=24). P values are based on
two-sided Mann-Whitney U tests. (B) Comparison of endothelium-related biomarkers between patients with COVID-19 (n=50) and patients
without COVID-19 (n=24), stratified according to the severity of illness. (C) Principal component analysis showing representation of COVID-19
and non-COVID-19 populations in the two dimensions (score plot). Scores and loadings are presented in a scatterplot of one principal
component (PC) against another. The loadings are represented in a circle of correlations: The closer the arrow of a loading is to the circle
(shown in blue), the more the variable is well represented in the space of the two plotted PCs and contributed to the building of these PCs. The
first two PCs allowed the discrimination of patients with and without COVID-19, consolidating results of the univariate analysis. Patients with
COVID-19 (dotted line ellipse) were characterized by increased cathepsin D, neural cell adhesion molecule (NCAM), soluble vascular cell
adhesion molecule 1 (sVCAM-1), soluble intercellular adhesion molecule 1 (sICAM-1), plasminogen activator inhibitor 1 (PAI-1), and syndecan-1.
Patients without COVID-19 (solid line ellipse) were characterized by increased brain-derived neurotrophic factor (BDNF), RANTES (regulated
upon activation, normal T cell expressed and secreted), and angiotensin-converting enzyme (ACE).
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Our study has certain limitations. First,
we used patient sera that were collected
within the first 24 hours of hospitalization.
This limits the ability to define any associated
dynamic relationship with outcomes.
However, an advantage to using these early
serum samples is that none of the patients
received fluids, dexamethasone, remdesivir,
or plasma before sample collection, which
should have minimized biases resulting from
dilution or the administration of plasma,
immunomodulatory drugs, or antiviral
therapy. Second, the study was designed to
include symptomatic patients with mild,
moderate, and severe COVID-19 to reflect
the broader spectrum of the disease, but the
lowmortality in the COVID-19 group (3 of
99 patients with COVID-19 deceased) does
not allow analysis of the predictive value of
our measured endpoints on clinical outcome.
Third, we observed considerable
heterogeneity in the effects of live virus on

HMVECs from different donors. This
finding limits our ability to draw conclusions
about the lung endothelial cells that are
generalizable to all individuals. Also, for the
serum exposure experiments, we used a
single donor’s HMVECs because of
limitations in the quantity of sera available
for testing. This could have created a
potential “donor-related bias.” This might
have been avoided by using an immortalized
cell line, but using primary human cells is
more clinically relevant. Fourth, we used
only one strain of virus for our experiments
and cannot rule out the possibility that other
variants would have different effects. Last, we
tested effects of sera and virus on HMVECs
under static conditions. However, COVID-
19–induced lung injury undoubtedly
involves a complicated and dynamic
interplay among multiple cell types,
including alveolar epithelial cells, endothelial
cells, and leukocytes (12).

In summary, these studies indicate that
live SARS-CoV-2 can infect and induce
permeability and a proadhesive phenotype of
HMVECs and that sera from patients with
COVID-19 induce permeability and mild
inflammatory activation of HMVECs. Our
data, alongside other published studies on
circulating biomarkers in COVID-19 and
autopsy studies, suggest that both viral
infection of endothelial cells and secondary
injury and activation of endothelial cells by
circulating and localized cells andmediators
contribute to COVID-19–associated lung
endotheliopathy, as depicted in our
hypothetical model in Figure 6. We speculate
that live SARS-CoV-2 may have the
opportunity to interact with and infect lung
endothelial cells longitudinally over the
course of the disease, facilitated by
persistence of live virus in nearby alveolar
epithelial cells (Figure 6A). We further
speculate that circulating and local tissue
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Figure 6. Hypothetical model of coronavirus disease (COVID-19)-associated lung microvascular endotheliopathy. On the basis of our experimental
results, we speculate that viral infection and secondary injury of the endothelium by inflammatory mediators and immune cells contribute to the lung
endotheliopathy of COVID-19 and, in turn, COVID-19–associated acute respiratory distress syndrome (ARDS). (A) Endothelial cell exposure to live
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could occur early or later in the course of the disease if there is persistence of virus
in the host, including in alveolar epithelial cells, which are in proximity to microvascular endothelial cells. In susceptible individuals, immune
dysfunction could lead to increased viral load and release by alveolar epithelial cells. In this speculative model, SARS-CoV-2 infection of lung
microvascular endothelial cells induces permeability, upregulates surface expression of leukocyte adhesion molecules and secretion of
plasminogen activator inhibitor 1 (PAI-1) and vascular endothelial growth factor (VEGF) secretion, and induces low levels of secretion of cytokines
and chemokines. In this context, infection of endothelial cells may promote and/or amplify endotheliopathy and ARDS. (B) Secondary injury to the
lung endothelium is likely to be a principal determinant of COVID-19–induced endotheliopathy. Secondary injury may result from the actions of
circulating inflammatory mediators and toxins and of activated pulmonary leukocytes and damaged alveolar epithelial cells. In susceptible
individuals, impaired viral clearance and persistent viral replication in epithelial or endothelial cells may promote leukocyte recruitment to the lung
and cell death and the release of damage-associated molecular patterns (DAMPs). These DAMPs could, analogously to their roles in sepsis and
injury, further exacerbate the endotheliopathy, as well as acute lung injury and ARDS. RBC= red blood cells.
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leukocytes, inflammatory mediators, and
damage-associated molecular patterns
contribute to COVID-19–associated lung
microvascular endotheliopathy (Figure 6B).
In some patients, impaired viral clearance
and viral replication in epithelial or
endothelial cells may exacerbate the
endotheliopathy by promoting leukocyte
recruitment to the lung and cell death with
release of more damage-associated molecular
patterns. Further studies on direct
endothelial infection by SARS-CoV-2 and
on the secondary actions of systemic factors
and pulmonary leukocytes in COVID-19–
associated endotheliopathy could lead to the
identification of endothelial cell–targeted
approaches to treat COVID-19 disease.�
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