
HAL Id: hal-04022821
https://hal.sorbonne-universite.fr/hal-04022821v1

Submitted on 6 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ERK1/2 Has Divergent Roles in LPS-Induced
Microvascular Endothelial Cell Cytokine Production and

Permeability
Erika Wong, Fengyun Xu, Jérémie Joffre, Nina Nguyen, Kevin Wilhelmsen,

Judith Hellman

To cite this version:
Erika Wong, Fengyun Xu, Jérémie Joffre, Nina Nguyen, Kevin Wilhelmsen, et al.. ERK1/2 Has Di-
vergent Roles in LPS-Induced Microvascular Endothelial Cell Cytokine Production and Permeability.
Shock, 2021, 55 (3), pp.349-356. �10.1097/SHK.0000000000001639�. �hal-04022821�

https://hal.sorbonne-universite.fr/hal-04022821v1
https://hal.archives-ouvertes.fr


ERK1/2 has divergent roles in LPS-induced microvascular 
endothelial cell cytokine production and permeability

Erika Wong1,2,*, Fengyun Xu2, Jérémie Joffre3, Nina Nguyen2, Kevin Wilhelmsen2, Judith 
Hellman2

1Department of Pediatrics, Division of Critical Care, UCSF Benioff Children’s Hospital, San 
Francisco, California, 94143

2Department of Anesthesia and Perioperative Care, University of California, San Francisco, San 
Francisco, California, 94143

3Medical Intensive Care Unit, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, 
75571 Paris cedex 12, France.

Abstract

Endothelial cells play a major role in inflammatory responses to infection and sterile injury. 

Endothelial cells express Toll-like receptor 4 (TLR4) and are activated by LPS to express 

inflammatory cytokines/chemokines, and to undergo functional changes, including increased 

permeability. The extracellular signal-regulated kinase 1/2 (ERK1/2) mediates pro-inflammatory 

signaling in monocytes and macrophages, but the role of ERK1/2 in LPS-induced activation of 

microvascular endothelial cells has not been defined. We therefore studied the role of ERK1/2 in 

LPS-induced inflammatory activation and permeability of primary human lung microvascular 

endothelial cells (HMVEC). Inhibition of ERK1/2 augmented LPS-induced IL-6 and vascular cell 

adhesion protein (VCAM-1) production by HMVEC. ERK1/2 siRNA knockdown also augmented 

IL-6 production by LPS-treated HMVEC. Conversely, ERK1/2 inhibition abrogated permeability 

and restored cell-cell junctions of LPS-treated HMVEC. Consistent with the previously described 

pro-inflammatory role for ERK1/2 in leukocytes, inhibition of ERK1/2 reduced LPS-induced 

cytokine/chemokine production by primary human monocytes. Our study identifies a complex role 

for ERK1/2 in TLR4-activation of HMVEC, independent of myeloid differentiation primary 

response gene (MyD88) and TIR domain-containing adaptor inducing IFN-β (TRIF) signaling 

pathways. The activation of ERK1/2 limits LPS-induced IL-6 production by HMVEC, while at the 

same time promoting HMVEC permeability. Conversely, ERK1/2 activation promotes IL-6 

production by human monocytes. Our results suggest that ERK1/2 may play an important role in 

the nuanced regulation of endothelial cell inflammation and vascular permeability in sepsis and 

injury.
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INTRODUCTION

The average human adult is estimated to contain in excess of 1 trillion endothelial cells (2, 7, 

24, 53) as compared to 20–50 billion peripheral blood mononuclear cells and 1–4 billion 

circulating monocytes (40). Endothelial cells line the vast network of blood and lymphatic 

vessels of all tissues, and they dynamically regulate inflammation, leukocyte trafficking, 

coagulation, and the vascular barrier (4, 13, 22, 26, 38). Sepsis and tissue injury cause 

endothelial cell activation at the site of injury, as well as at remote sites. During these acute 

inflammatory processes, dysfunction of microvascular endothelial cells leads to vascular 

leak and coagulopathy, which contribute to shock, organ failure, and reduced survival (28, 

31).

Endothelial cells have not traditionally been viewed as immune cells, but they are key 

players in the host’s immune responses in sepsis (9, 31, 55, 57). Endothelial cells express 

innate immune receptors, including Toll-like receptors (TLRs), NOD-like receptors and 

RIG-I like receptors (28). Furthermore, the direct activation of endothelial TLRs by damage- 

and pathogen-associated molecular proteins (DAMPs and PAMPs, respectively) increases 

the expression of cytokines, chemokines and adhesion molecules, promotes neutrophil-

endothelial adhesion, and induces endothelial permeability (28).

TLR-dependent signaling is mediated by nuclear factor κB (NFκB) and the family of 

mitogen-activated protein kinases (MAPKs), including p38-MAPK, JNK, ERK1/2 and 

ERK5 (12, 28, 50, 51). Notably, while endothelial cells and leukocytes express TLRs and 

share many of the same intracellular signaling intermediaries, there are differences in 

inflammatory signaling between endothelial cells and leukocytes. For example, direct 

activation of endothelial or monocyte TLR2 or TLR4 strongly upregulates IL-6 and IL-8 

production. In contrast, activation of endothelial cell TLR2 and TLR4 does not upregulate 

IL-1β and TNFα production, whereas these cytokines are strongly upregulated in monocytes 

and macrophages activated with TLR2 and TLR4 agonists (23, 37, 52). While mapping out 

endothelial TLR2 signaling pathways, we observed that in human umbilical vein endothelial 

cells (HUVEC), inhibition of MEK1, the upstream kinase of ERK1/2, augmented TLR2-

induced production of IL-6, but not IL-8 (51). This effect of MEK1 inhibition on TLR2-

dependent activation of HUVEC was different from the pro-inflammatory role that MEK1 is 

known to play in leukocytes (51). Our results suggested to us that ERK1/2 activation plays 

an important role in regulating TLR-dependent activation of endothelial cells.

In the current report, we tested the hypothesis that ERK1/2 activation negatively regulates 

TLR4-dependent activation of primary human lung microvascular endothelial cells 

(HMVEC). We assessed the role of ERK1/2 in LPS-induced cytokine/chemokine 

production, permeability, and expression of endothelial tight junction proteins.

Wong et al. Page 2

Shock. Author manuscript; available in PMC 2021 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MATERIALS AND METHODS

Primary human endothelial cells and monocytes

HMVEC (Promocell) from male and female cadavers were cultured in endothelial growth 

media (EGM-2 Basal Medium, Lonza) supplemented with Microvascular Endothelial Cell 

Growth Medium supplements (EGM-2 MV, Lonza) as described (51). Human CD14+ 

monocytes from healthy male and female donors (Lonza) were thawed and cultured in 

RPMI supplemented with 10% heat-inactivated fetal calf serum (FCS), L-glutamine, and 

antibiotics and used immediately for experiments. Cells were incubated at 37°C under 

humidified 5% CO2.

Inflammatory agonist treatment

HMVEC were added to 48-well plates (3×105 cells/well) and grown to confluence. Human 

monocytes were added to 48-well plates (2×105 cells/well) and used immediately. HMVEC 

and monocytes were pre-incubated for 1 hour with vehicle (0.01% DMSO) or ERK1/2 

inhibitor (SCH772984, 1μM, SelleckChem). Then ultrapure LPS (0.01 μg/ml, List 

Laboratories) was added to the wells in the continued presence or absence of ERK1/2 

inhibitor (1μM). Cells were cultured for another 6 hours and supernatants were collected. 

Cytokines were quantified in culture supernatants of using Duoset ELISA kits (R&D 

systems).

Lipopolysaccharide (LPS)

We utilized ultrapure LPS from E. coli O111:B4 bacteria (Ultrapure LPS, List Laboratories, 

Lot 4219A1) for all experiments. The LPS was tested for purity by colloidal gold staining, 

according to manufacturer’s instructions (Bio-Rad), and by immunoblotting for three outer 

membrane proteins (murein lipoprotein [MLP], peptidoglycan-associated lipoprotein [PAL], 

and outer membrane protein A [OmpA]), which are common contaminants of purified LPS 

(16, 17). The LPS contained no protein bands by gold staining, which can detect levels as 

low as 1 ng of protein (Supplemental Figure S1A). Similarly, none of the outer membrane 

proteins were detected in the LPS by immunoblotting (Figure S1B–D) (22, 23). Lysates of 

whole E. coli O111:B4 bacteria, which contain multiple proteins including MLP, PAL and 

OmpA, served as positive controls for gold stains and immunoblots.

Immunoblots

Immunoblots were performed as previously described (51). Primary antibodies used were 

p44/42-MAPK (ERK1/2; 1:1000; 4695; Cell Signaling), actin (0.1 mg/ml, A2066, Sigma), 

phospho-NF-κB p65 (1:1000; 3033; Cell Signaling), anti-murein lipoprotein (MLP), 

peptidoglycan-associated lipoprotein (PAL), and outer membrane protein A (OmpA). MLP, 

PAL, and OmpA antibodies were made as previously described and used at concentration of 

1 μg/ml (17). Total protein concentrations of cell lysates were measured using the RCDC 

protein assay kit (Bio-Rad). Samples were separated by SDS-PAGE, transferred to PVDF 

membrane (Pall Corp), and blocked with 3% BSA in TBST (1 hour, room temperature). 

They were then incubated overnight at 4°C with primary antibodies, washed and incubated 

with suitable secondary antibodies conjugated to peroxidase (Jackson ImmunoResearch) and 
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developed with SuperSignal West Dura Extended Duration Substrate (Thermo Scientific). 

Signal was detected with ChemiDocMP Imaging System (BioRad). Target protein 

expression was normalized using densitometry software to quantify band intensity with 

Image Lab Software (BioRad).

Transfection of HMVEC with siRNAs

ERK1-specific (L-003592-00), ERK2-specific (L-003555-00), or non-targeting 

(D-001810-10) ON-TARGETplus SMARTpool siRNA (Dharmacon) were used following 

the manufacturer’s instructions for transfecting HMVECs with DharmaFECT 4 Transfection 

Reagent (T-2004-01). We placed siRNA (5 μM) in serum-free medium, and diluted 

DharmaFECT transfection reagent in a separate tube, incubated both tubes for 5 minutes, 

and then combined the contents of both tubes and incubated the reagents together for 

another 20 minutes. HMVEC were grown to 80–90% confluence in a T-75 flask, and then 

the medium was replaced with antibiotic- and serum-free medium containing the 

transfection reaction. After 24 hours the transfection reagent media was removed, and cells 

were then treated with LPS (1 μg/ml) in complete media for 24 hours, and cytokines were 

quantified in culture supernatants.

Electric Cell-substrate Impedance Sensing (ECIS)

Transendothelial resistance (TER) was measured using the ECISZeta (Applied Biophysics) 

(44). HMVEC were placed in 96-well electrodes (40,000 cells/well) and allowed to adhere. 

Resistance (ohm), impedance (ohm), and capacitance (nanofarad) were measured at frequent 

intervals, using a frequency of 4000 Hz, which was determined to be the optimal frequency 

for endothelial cells. When cells reached a stable level of resistance, LPS (1 μg/ml) in the 

presence of ERK1/2 inhibitor (1μM), MyD88 inhibitor (10μM, Aobious), TRIF inhibitor 

(10μM, Novus), or vehicle was added to the wells, and TER was measured at frequent 

intervals through 15 hours. To account for differences in resistance of each well, data was 

normalized to the resistance of the individual well immediately before the addition of the 

agonist.

Immunofluorescence microscopy

HMVEC were grown to confluence on Lab Tek II chamber slides (Nunc) that had been pre-

coated with collagen, and then treated for 2, 6, and 24 hours with LPS (1 μg/ml) in the 

presence of ERK1/2 inhibitor or vehicle. Cells were then fixed with 4% paraformaldehyde 

(15 minutes, 37°C) and permeabilized with 0.5% Triton X-100 in PBS (15 minutes, room 

temperature). After blocking (1% BSA in PBS, 30 minutes, room temperature), cells were 

incubated with either anti-ZO1-AlexaFluor594 (Invitrogen, 24 hours, 4°C), or anti-VE-

cadherin (Santa Cruz Biotechnologies) (24 hours, 4°C) followed by AlexaFluor488-tagged 

secondary antibody (60 minutes, room temperature). Nuclei were counterstained with 4’6-

diamidino-2-phenylindole (DAPI). Slides were visualized using fluorescent microscopy 

(Zeiss AxioImager D1), and images were obtained with 40X objective using AxioVision 

SE64 Rel 4.9.1 Software.
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Statistics

Data was analyzed using GraphPad Prism version 7.00 (GraphPad Software, Inc). Results 

are expressed as mean ± SD. With the exception of ECIS, results were analyzed using non-

parametric-based biostatistics. Mann-Whitney tests were used to compare 2 groups. P < 0.05 

was considered to be statistically significant. Data from ECIS experiments were analyzed by 

quantifying area under the curve from baseline = 1 with addition of negative peaks and 

graphed as means ± SD. One-way analysis of variance (ANOVA) followed by the Sidak’s 

multiple comparison was then used to establish significance for multiple comparisons. P < 

0.05 was considered to be statistically significant. Experiments were repeated at least twice.

RESULTS

ERK1/2 inhibitor augments LPS-induced IL-6 and VCAM-1 production, but not IL-8 or PAI-1 
by HMVEC.

HMVEC were pre-incubated for 1 hour with vehicle or ERK1/2 inhibitor (SCH772984; 1 

μM), and then LPS (10 ng/ml) was added in the continued presence of ERK1/2 inhibitor or 

vehicle. At 6 hours, levels of IL-6 and VCAM-1 were significantly higher in the 

supernatants of LPS-activated HMVEC treated with the ERK1/2 inhibitor (Figure 1A and 

1B). In contrast, the inhibitor had no effect on the LPS-induced upregulation of IL-8 and 

plasminogen activator inhibitor-1 (PAI-1) in culture supernatants (Figure 1C and 1D).

Effects of siRNA knockdown of Erk1 and Erk2 in HMVEC on LPS-induced IL-6 production.

We performed siRNA knockdown to define the individual roles of the ERK1 and ERK2 in 

LPS-induced activation of HMVEC. Immunoblots confirmed successful knockdown of each 

protein in HMVEC (Figure 2A). We observed that HMVEC that had undergone siRNA 

knockdown of ERK2 had significantly augmented LPS-induced IL-6 production as 

compared with HMVEC transfected with non-targeted siRNA. In contrast, there were not 

significant differences in LPS-induced cytokine production between HMVEC with ERK1 

siRNA knockdown and control cells. However, combined treatment with ERK1 and ERK2 

siRNAs further augmented LPS-induced IL-6 production in HMVEC as compared with 

individual knockdown of either protein (Figure 2B).

ERK1/2 inhibition decreases LPS-induced NFκB activation.

We assessed for NFκB activation HMVEC by immunoblotting cell lysates for 

phosphorylated NFκB. Treatment with LPS increased phosphorylated NFκB within 30 

minutes. The presence of ERK1/2 inhibitor suppressed the LPS-induced phosphorylation of 

NFκB (Figure 3A–3B).

Effects of ERK1/2 inhibitor on LPS-induced activation of primary human monocytes.

We tested the effects of ERK1/2 inhibition on primary human monocytes from healthy male 

and female donors in order to confirm that we were able to reproduce results of prior studies 

supporting a pro-inflammatory role for ERK1/2 in human monocytes. Monocytes were pre-

treated with vehicle or with ERK1/2 inhibitor (1 μM), and then stimulated with LPS (0.01 

μg/ml) for 6 hours. Consistent with previous studies showing that ERK1/2 plays a pro-
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inflammatory role in monocytes, the inhibition of ERK1/2 led to decreased IL-6, TNFα, 

IL-8, and IL1β levels in culture supernatants of LPS-treated monocytes (Figure 4A–4D).

ERK1/2 inhibitor promotes stability of LPS-treated HMVEC monolayers.

Because ERK1/2 inhibition augments LPS-induced IL-6 production by HMVEC, we 

hypothesized that treatment with ERK1/2 inhibitor would exacerbate LPS-induced loosening 

of endothelial tight junctions and increase permeability. We treated HMVEC with LPS (1 

μg/ml) in the presence and absence of ERK1/2 inhibitor, and quantified TER as a surrogate 

for permeability (44). Contrary to our hypothesis, treatment with ERK1/2 inhibitor 

abrogated LPS-induced TER (Figure 5A–5B). This suggests that ERK1/2 activation 

contributes to TLR4-dependent endothelial permeability. To further study the role of 

ERK1/2 in LPS-induced endothelial permeability, we performed fluorescence microscopy at 

2, 6 and 24 hours to visualize cell-cell adhesion and tight junction proteins, including zonula 

occludens (ZO-1) and vascular endothelial (VE)-cadherin. Representative images following 

a 6-hour stimulation are shown in Figure 5B. At 6 hours, but not at 2 or 24 hours, we 

observed that ERK1/2 inhibitor reduced LPS-induced breakdown of cell-cell junctions and 

interendothelial gaps (white arrows; Figure 5C).

To begin to define the signaling pathways responsible for the disconnect in the apparent role 

of ERK1/2 in LPS-induced IL-6 production versus permeability, we investigated the roles of 

MyD88 and TRIF, two proximal adaptor proteins responsible for activation of a number of 

intermediary signaling molecules (10, 45). In the presence of the MyD88 inhibitor or TRIF 

inhibitor, TLR4-dependent IL-6 production and permeability were unaffected (S2A–S2F).

DISCUSSION

Our study identifies a novel and complex role for ERK1/2 in TLR4-dependent activation of 

HMVEC which differs substantially from the pro-inflammatory role of ERK1/2 in TLR4-

dependent activation of leukocytes (14, 49). Furthermore, despite our finding the ERK1/2 

inhibitor augments LPS-induced IL-6 production by HMVEC, we have found that the 

ERK1/2 inhibitor reduces LPS-induced permeability of HMVEC. This points to divergent 

roles of ERK1/2 in endothelial inflammatory activation and vascular leak.

The vascular endothelium plays a substantial role in the innate immune response, and 

regulates systemic inflammation, coagulation and vascular permeability. During sepsis, the 

upregulation of a number of biomarkers correlate with worse prognosis and increased organ 

dysfunction, including, but not limited to IL-6, IL-8, VCAM-1 and PAI-1 (5, 18, 33, 34, 41). 

Our data show that ERK1/2 inhibition augments upregulation of IL-6 and VCAM-1, but not 

IL-8 or the anti-fibrinolytic coagulation intermediary, PAI-1. This suggests that despite 

having a role in reducing TLR4-dependent IL-6 and adhesion molecule expression of 

VCAM-1 by LPS-activated endothelial cells, ERK1/2 may not play a predominant role in 

TLR4-dependent coagulopathy in HMVEC. This is contrary to the pro-inflammatory role of 

ERK1/2 in TLR4-dependent activation of leukocytes that we confirmed in LPS-activated 

primary human monocytes with reduced production of IL-6, TNFα, IL-8 and IL1β in the 

presence of the ERK1/2 inhibitor.
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Because NF-κB has previously been shown to mediate LPS-induced cytokine production 

and adhesion molecule expression by endothelial cells (6, 11, 42, 47), we hypothesized that 

ERK1/2 might restrain inflammatory activation of HMVEC by modulating NF-κB 

activation. However, we observed that ERK1/2 inhibition reduced LPS-induced activation of 

NF-κB in HMVEC, despite the augmented production of IL-6 and VCAM-1. This finding 

has led us to speculate that in endothelial cells, non-NF-κB pathways may mediate LPS-

induced upregulation of IL-6 and VCAM-1.

The differences in the role of ERK1/2 in inflammatory activation of endothelial cells and 

leukocytes could potentially be exploited therapeutically in patients with sepsis and other 

inflammatory processes that are driven by TLR4 activation, such as ischemia reperfusion 

injury (36). As endothelial activation and dysfunction are believed to contribute to the 

development of organ injury and failure in sepsis (5, 21, 34, 43), it is conceivable that 

augmentation of the ERK1/2 activity specifically in endothelial cells might reduce organ 

injury by limiting endothelial inflammatory responses while still preserving the ability of 

leukocyte populations to combat infection. This concept is supported by reports that ERK1/2 

is critical for monocyte and macrophage development (1, 29, 39).

A perplexing aspect of our data is that ERK1/2 inhibition augmented IL-6 and VCAM-1 

production but reduced permeability of HMVEC treated with LPS. Our permeability results 

are consistent with other reports that ERK1/2 activation increases permeability and alters 

cell-cell junctions in HUVEC and bovine lung artery endothelial cells (27, 46). The effects 

of ERK1/2 inhibition on reducing LPS-induced permeability were paralleled by preservation 

of adherens junction and tight junction proteins, specifically ZO-1 and VE-Cadherin, in the 

presence of the ERK1/2 inhibitor. Disruption of these same endothelial tight junction and 

adhesion proteins has been shown to cause endothelial hyperpermeability in many other 

inflammatory conditions, including burn injury and acute lung injury too (19, 20, 32). Thus 

our results on the role of ERK1/2 in TLR4-dependent endothelial permeability, and on tight 

junction and adhesion proteins, may have mechanistic and therapeutic relevance not only in 

sepsis, but also to these other inflammatory processes.

Upon LPS recognition, TLR4 intracellular signaling is divided into two signaling pathways 

based on the adapter proteins, MyD88 and TRIF (30, 48). We thought that it was possible 

that TRIF-dependent versus MyD88-dependent signaling might account for differences in 

the apparent role of ERK1/2 in TLR4-dependent induction of IL-6 versus permeability. 

However, our data using TRIF and MyD88 inhibitors suggest that neither of these proximal 

adapter proteins are critical for TLR4-dependent IL-6 production in HMVEC, and that 

ERK1/2’s effects on permeability appear to be independent of both of these adaptor proteins. 

Future studies will address potential alternative TLR4-dependent signaling mechanisms in 

human endothelial cells and further delineate proximal and distal ERK1/2 signaling 

pathways. It is also plausible that the downregulation of NF-κB in presence of ERK1/2 

inhibitor we demonstrated can explain this preservation of the endothelial monolayer with 

ERK1/2 inhibition as it has been shown that inhibition of NF-κB reverses endothelial 

leakage in septic mice (56).
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While the details of the mechanism remain to be elucidated, this disconnect between the 

effects of ERK1/2 in endothelial inflammation and permeability challenges the paradigm 

that LPS-induced inflammation per se leads to increased vascular permeability. Other studies 

support this notion in which signaling pathways that modulate cytokine production are 

separate from those that affect permeability. Interleukin signaling is an example and while 

an NF-κB-dependent pathway leads to transcriptional inflammatory activation in endothelial 

cells, a more proximal pathway separate from that is responsible for vascular barrier 

disruption (58). The differential effects of ERK1/2 on cytokine production and permeability 

may facilitate leukocyte migration and movement across the endothelial barrier by loosening 

cell-cell junctions, while also limiting generalized endothelial cell production of pro-

inflammatory mediators. Finally, it is possible that ERK1 and ERK2 each have different 

functions. Our ERK1/2 inhibitor, while specific, inhibits both ERK1 and ERK2. While these 

proteins are generally described together and are approximately 80% homologous, there 

appears to be significant differences between ERK1 and ERK2 as ERK2 deficiency is 

embryonically lethal in mice (15). Consistent with the possibility that ERK1 and ERK2 play 

different roles, we found that siRNA knockdown of ERK2, but not ERK1, significantly 

augmented LPS-induced IL-6 production by HMVEC.

During sepsis, widespread microvascular endotheliopathy leads to vascular leak, 

inflammation, and coagulopathy, and promotes sepsis-induced organ failure (25). However, 

the precise mechanisms of sepsis-induced endotheliopathy, and the role of endothelial 

inflammatory pathways in driving organ injury and failure in sepsis and injury remain 

elusive. ERK1/2 plays key roles in numerous cellular processes including cell adhesion, 

differentiation, and proliferation, and in pro-inflammatory signaling in diseases such as 

asthma, vascular disease, ischemia-reperfusion and rheumatoid arthritis (3, 8, 35, 54). Our 

study has uncovered a substantial difference in the role of ERK1/2 activation in TLR4-

dependent cytokine responses of HMVEC versus leukocytes. Our data suggest that ERK1/2 

activity restrains LPS-induced production of IL-6 in HMVEC, in contrast to the known pro-

inflammatory role of ERK1/2 in monocytes and macrophages. Paradoxically, however, 

ERK1/2 activity also promotes LPS-induced HMVEC permeability. Our study focused on 

lung microvascular endothelial cells because they are centrally involved in lung injury and 

respiratory failure in sepsis. Further studies are needed to determine the role of ERK1/2 in 

LPS-induced activation and permeability of microvascular endothelial cell from other 

organs, to determine the functional relevance of endothelial ERK1/2 activation in sepsis and 

organ injury, and to define the differences in ERK1/2-dependent signaling in endothelial 

cells versus leukocytes.
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Figure 1: ERK1/2 inhibitor augments LPS-induced production of IL-6 and VCAM-1, but not 
IL-8 or PAI-1 by HMVEC.
HMVEC were pre-treated with ERK1/2 inhibitor (SCH772984; 1μM), or vehicle for 1 hour, 

and then with LPS (10 ng/ml) for another 6 hours in the continued presence of ERK1/2 

inhibitor or vehicle. Levels of (A) IL-6, (B) VCAM-1, (C) IL-8, and (D) PAI-1 were 

quantified in culture supernatants. n = 4; *p≤0.05; NS, not significant.

Wong et al. Page 13

Shock. Author manuscript; available in PMC 2021 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: siRNA knockdown of ERK1/2 in HMVEC augments LPS-induced IL-6 production.
HMVEC were transfected with siRNAs for ERK1, ERK2, or both ERK1 and ERK2 for 24 

hours, and then treated with LPS (1 μg/ml). (A) Expression of total ERK1/2 after siRNA 

transfection by western blotting. Relative density of ERK1/2 was compared to that of β-

actin. (B) IL-6 levels in supernatants of LPS-treated HMVEC that had undergone siRNA 

knockdown of ERK1, ERK2, or both ERK1 and ERK2. n = 4; *p≤0.05; NS, not significant.
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Figure 3: ERK1/2 inhibitor suppresses LPS-induced NFκB activation in HMVEC.
HMVEC were pre-treated for 1 hour with ERK1/2 inhibitor (1μM) or vehicle, and then with 

LPS (10 ng/ml) in the continued presence of ERK1/2 inhibitor for 30 minutes. (A) 

Representative images of phospho-NF-κB and actin were detected by immunoblots (δ: 

normalized density of phospho-NF-κBtreatment/normalized density of phospho-NF-κBmedia). 

(B) Bar graphs showing the relative abundance of phospho-NF-κB after normalization to 

actin. n=4; *p ≤ 0.05; NS, not significant.
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Figure 4: ERK1/2 inhibitor decreased LPS-induced IL-6, TNFα, IL-8, and IL1β production by 
human monocytes.
Primary human CD14+ monocytes were pretreated for 1 hour with ERK1/2 inhibitor (1 μM) 

and then stimulated with LPS (1 μg/ml) for 6 hours in the continued presence of ERK1/2 

inhibitor or vehicle. Levels of (A) IL-6, (B) TNFα, (C) IL-8 and (D) IL1β were quantified in 

culture supernatants. n = 6; *p≤0.05; NS, not significant.
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Figure 5: ERK1/2 inhibitor promotes stability of LPS-activated HMVEC monolayers.
(A) ECIS was used to assess the effects of ERK1/2 inhibitor on LPS-induced HMVEC 

permeability. Cells were treated with LPS (1 μg/ml) in the continued presence of ERK1/2 

inhibitor (1 μM) or vehicle. Data was normalized to the resistance immediately before the 

addition of LPS (arrow). (B) Area under the curve was then quantified from baseline = 1 

with addition of negative peaks and graphed as means ± SD. Data was analyzed by one-way 

analysis of variance (ANOVA). n = 5; *p≤0.05; NS, not significant. (C) Representative 

fluorescence microscopy images of HMVEC treated with LPS (1 μg/ml) in the presence and 

absence of ERK1/2 inhibitor. Images were taken at 40x magnification. ZO-1(red), 

VEcadherin (green), or nuclei (blue). White arrows indicate examples of disrupted cellular 

junctions. Scale bar = 25 μm.
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