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Abstract

Automation of inspection tasks is crucial for the development of the power industry, where MAVs have
shown a great potential. Self-localization in this context remains a key issue, and is the main subject of
this work. This article presents a methodology to obtain complete 3D local pose estimates in electric tower
inspection tasks with MAVs, using an on-board sensor setup consisting of a 2D LiDAR, a barometer sensor
and an IMU. First, we present a method to track the tower’s cross-sections in the laser scans, and give
insights on how this can be used to model electric towers. Then, we show how the popular ICP algorithm,
that is typically limited to indoor navigation, can be adapted to this scenario, and propose two different
implementations to retrieve pose information. This is complemented with attitude estimates from the IMU
measurements, based on a gain-scheduled non-linear observer formulation. An altitude observer to com-
pensate for barometer drift is also presented. Finally, we address velocity estimation with views to feedback
position control. Validations based on simulations and experimental data are presented.

Keywords: MAV, airborne laser scanning, 2D LiDAR, barometer, inertial measurement unit, ICP, state
estimation.

1 Introduction
Power utilities, such as transmission line towers, are subject to deterioration due to the atmospheric conditions
to which they are exposed. Ensuring their integrity and avoiding network downtime require extensive monitor-
ing programs. For this purpose, aerial surveys have been increasingly common as they allow covering vast areas
in relatively short periods of time, by relying on remote sensing technologies such as thermal imaging, aerial
imaging, optical satellites, among others [27, 21]. In particular, airborne laser scanning (ALS) technologies have
recently attracted a large attention due to their capability of achieving high quality 3D models of infrastructure
with high spatial resolution [45, 21]. In ALS applications, powerful 3D light detection and ranging (LiDAR)
sensors are mounted on manned aircraft, such as helicopters [27, 21, 28], then data acquisition is typically
carried out using a GPS sensor and an inertial measurement unit (IMU) to keep track of the aircraft’s position
and orientation. The geo-referenced range readings are processed afterwards for a wide variety of classification
or reconstruction tasks such as detecting power lines [28, 41], vegetation management [45] and making 3-D
models of the electric towers [20]. Nonetheless, the high operational costs of piloted aircraft have constrained
the proliferation of these applications. The automation of inspection tasks has thus become a key subject of
research in the power industry, in which unmanned air vehicles (UAVs) have surfaced as an attractive solution,
as they provide an affordable and flexible mean of gathering spatial data [30, 16, 22]. This has been mainly
fuelled by developments in lithium polymer batteries that have led to larger flight durations and increased
payload capabilities. However, these small platforms currently can’t carry the heavy LiDARs required in most
ALS applications, and research on inspection tasks with UAVs has mainly focused on vision-based approaches
instead [27, 16, 15, 10]. Rapid advances in light-weight LiDARs have made them an appealing alternative for
UAVs, and while performance and precision remain far from their 3D counterparts, they can be used for basic
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and affordable ALS applications, which has already been demonstrated in previous works, for example, for
power line monitoring [19].

In the context of power utility inspection, GPS sensors remain the predominant choice for achieving au-
tonomous flight capabilities with UAVs [30]. Nonetheless, a GPS signal is not always accurate, can be perturbed
by the strong electromagnetic fields in the proximity of the power lines [35] and provides no perception of the
surroundings environment. As a result, a safe collision-free flight cannot be achieved relying on GPS measure-
ments uniquely, which is instead limited to waypoint navigation at large distances from the inspected objects
[27, 30, 22]. Vision-based navigation systems have been proposed as a substitute in numerous works, relying
mostly on tracking and following the power lines [15, 10]. On the other hand, light-weight LiDARs can also be
employed for autonomous navigation purposes, and have been successfully used for indoor flights with micro
air vehicles (MAVs) [1, 40, 11, 6, 37]. These sensors excel when navigating in cluttered environments, as they
directly measure the distance to surrounding objects and naturally open the way for sense-and-avoid func-
tionalities required for safe flights. As a consequence, they can allow achieving higher levels of autonomy and
close-up inspections in power line corridors, which is hard to accomplish with other sensors. In this work, we
focus on the inspection of transmission line towers, and we explore how 2D LiDARs coupled with commonly
available sensors can be used for pose estimation purposes in these scenarios.

2 Problem statement
One of the first tasks that any autonomous platform must achieve is self-localization. Thus, our primary goal
is to obtain real-time estimates of a MAV’s 6 degree of freedom (DoF) pose with respect to an electric tower,
using uniquely on-board sensors and processing capabilities. Our main interest are steel lattice towers made up
of rectangular cross-sections commonly used to support high-voltage transmission lines, such as the one shown
in Fig. 1. For this first case study, we focus on the tower’s body, which makes up the largest portion of the
structure. The tower heads have a more complex structure that require an extensive parametrisation [20, 12],
and are not considered in this work.

After treating the self-localization problem, the last part of this study focuses on obtaining velocity estimates
and sensor fusion techniques are used for this purpose. Accurate velocity estimates are necessary in the control
loop to successfully stabilize a MAV’s position. Feedback position control, however, is not addressed in this
study. The long term aim of this work is to achieve autonomous inspection capabilities of electric towers with
MAVs.

3 Related works
While laser range finders have been largely popular among ground robots for autonomous navigation tasks,
aerial robots present additional complications that make similar applications not so straightforward. First,
flying robots’ motion is three-dimensional. Then, payload limitations prevent the use of more powerful sensors
such as 3D laser range finders. Finally, flying robots have fast dynamics that make them harder to stabilize
and any state estimation has to be made with low delays and an adequate level of accuracy. This means that
estimation and control algorithms must be preferably implemented on board, and must run at high speeds,
which limits the complexity of the algorithms that can be used, so as to avoid significant processing delays.
Nonetheless, fully autonomous capabilities for MAVs equipped with 2D LiDARs have been shown in numerous
previous works [1, 40, 11, 6, 37, 18, 39, 5, 50], which have mainly focused on indoors scenarios. Most of these
studies adopt a similar strategy: the first goal is to obtain fast and accurate 3D pose estimates from the
embarked sensors’ measurements, preferably using on-board processing capabilities; then, a second goal is to to
derive estimates of the linear velocities using the pose estimates and sensor fusion techniques. We now present
how several previous works have addressed these two tasks.
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Figure 1: A common high voltage transmission line.
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3.1 Laser-based local pose estimation on-board MAVs
Regarding the first goal, this is partly achieved by aligning pairs of laser scans to recover the MAV’s relative
displacement, a technique known as scan matching or scan registration. While these algorithms can pose a
heavy computational burden, satisfying real-time results have been obtained from adaptations of well-known
techniques, such as the iterative closest point (ICP) algorithm [2, 40, 6, 37], and the correlative scan matching
(CSM) algorithm [31, 1, 11]. Following the satisfying results previously obtained on-board MAVs, and due to
its simplicity and efficiency, the ICP algorithm was chosen for the scan registrations.

3.1.1 Typical approach with the ICP algorithm on-board MAVs.

A classic implementation of the ICP algorithm in navigation tasks consists in aligning the current laser scan
to the preceding scan. This is known as incremental scan matching, and is known to lead to drift over time
[40, 37, 6]. An alternative is to use a keyframe approach [6], with a reference scan instead fixed at some initial
time. As long as the robot remains in the proximity of this keyframe, and as long as there is sufficient overlap,
the estimation error remains bounded and the results are drift-free. The ICP implementations proposed in this
article go along this line of work.

In general, on MAVs equipped with 2D LiDARs, the ICP algorithm is limited to aligning pairs of 2D laser
scans to recover 2D pose estimates. The remaining states are estimated from separate sensing (e.g., IMU for
attitude estimation [1, 40, 11, 6, 37] and laser altimeter for altitude estimation [1, 40]). However, to align pairs
of 2D laser scans the measurements must be taken within the same plane. This poses a major drawback for
aerial robots, and requires coping with the 3D motion. A simple solution is to project the laser points to a
common horizontal plane using attitude estimations from IMUs [1, 40, 37, 6]. Then, the projected scans are
aligned with the ICP algorithm. Nonetheless, this has the underlying assumption that surrounding objects
are planar and height-invariant, which holds for common indoors scenarios, with mainly straight walls. In an
inspection scene, this assumption doesn’t hold as the electric towers have a geometry that varies greatly in
3D. Hence, in our scenario aligning pairs of 2D scans in similar way isn’t possible. In this work we explore
alternative ways in which pose information can be recovered from the laser scans, by exploiting basic knowledge
of the tower’s geometry. We also explore two different ways in which the ICP algorithm can be extended to
electric tower case.

3.1.2 Limitations of the ICP algorithm for self-localization.

It is important to note that scan matching techniques, such as ICP, only guarantee local convergence and
depend highly on a good initial guess[2, 36]. A bad initialization may lead ICP to converge to a local minimum
far from the optimal solution. Furthermore, these techniques typically can’t recover from large estimation
errors. Globally optimal solutions for the ICP algorithm have been studied in the past [47], but are typically
too slow for state estimation purposes. In literature, to overcome these issues, it is common for simultaneous
localization and mapping (SLAM) techniques to be used in parallel [1, 40, 11, 6, 50]. These algorithms provide
pose estimates with guaranteed global consistency, that are less sensitive to initialization errors, and that can
allow detecting and correcting errors from scan matching. The faster local pose estimates are still required as
an odometric input to SLAM, to initialize and speed up the mapping process [1, 6]. However, SLAM remains
very computationally expensive and is commonly performed off-board [1, 11], with only a handful of studies
achieving on-board capabilities [40, 6], at very low rates (2-10Hz). Thus, the global pose estimates are seldom
included directly in the control loop, and are mainly limited to providing periodic corrections to the real-time
pose estimates from scan matching [1], and to perform higher level tasks such as path planning [11, 6] and
obstacle avoidance [11]. For the purposes of this article, we focus only on the local pose estimation problem,
keeping in mind that mapping methods can be used in parallel.

Another complex issue is that scan matching performance has a strong dependence on the shape of the
surrounding environment, as the laser scans must capture sufficient geometric detail in order to extract any
useful pose information. The algorithm will thus fail under highly unstructured scenarios, often faced outdoors,
or featureless scenarios, such as long hallways or circular rooms. This, in reality, corresponds to inherent
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limitations of laser range sensing [1]. Previous works have addressed this issue incorporating multiple sensing
modalities, such as GPS sensors, ultrasonic sensors and cameras [39, 5]. This, however, goes beyond the scope
of this work.

3.2 Altitude estimation on-board MAVs
On MAVs equipped with 2D LiDARs, altitude is commonly estimated by placing mirrors to reflect multiple
laser rays downwards and directly measuring the distance to the ground assuming that the ground elevation is
piecewise constant for the most part [1, 11, 6]. However, to account for potential discontinuities and changing
floor elevations several solutions have been proposed, such as creating multilevel grid maps of the ground [11],
or creating histograms of the range measurements to detect edges and floor level changes [6]. While this has
proven to be effective when navigating indoors, performance remains highly dependent on the floor’s layout,
which can be very irregular in typical outdoors inspection scenarios.

On the other hand, barometric sensors are also popular among commercial MAVs. These sensors estimate
the absolute or relative height of an object by measuring the atmospheric pressure. However, fluctuations in
pressure due to weather conditions cause these height measurements to drift over time. Sensor fusion techniques
are thus used to estimate and compensate this drift by using additional sources such as GPS [49], and IMUs
[38, 42]. More recently, differential barometry has been gaining popularity [43, 13] . In this configuration, a
second barometer is set stationary on the ground and used as a reference measurement to track changes in
local pressure, effectively reducing drift and increasing accuracy.

3.3 Attitude estimation on-board MAVs
Fast and accurate attitude estimates are an essential part of any MAV platform. Absolute attitude information
can be recovered from magnetometers and accelerometers [25, 14, 26]. On one hand, magnetometers provide
measurements of the surrounding magnetic field in the body attached frame, and allow deducing the MAV’s
heading [48, 25]. However, they are very sensitive to local magnetic fields and measurements can be noisy. On
the other hand, accelerometers measure the so-called specific acceleration. When the linear acceleration is small,
this sensor directly measures the gravity vector, thus acting as an inclinometer and providing direct observations
of the roll and pitch angles. This is a common assumption applied in attitude estimation [26, 25, 34], which
has shown to work well in practice. On the downside, accelerometers are highly sensitive to vibrations induced
by the propellers and require significant filtering to be useful [14]. This in exchange can introduce important
latencies in the estimations. Thus, complementary attitude information is commonly obtained from gyroscopes,
which measure the angular velocity along the three rotational axis in the body attached frame. These sensors
are less sensitive to vibrations and are very reliable. Absolute attitude can be recovered for the three rotation
axis by integrating the measured angular rates, however, this causes the estimation error to grow without
bound [14].

Hence, sensor fusion techniques are used to combine the information from all three sensors to tackle drift
and noise issues, and to obtain more accurate attitude estimates. In literature, the use of linear stochastic
filters, such as Kalman filters [14] or extended Kalman filters [51, 23], as the means to fuse inertial measure-
ments is very common. While these filters have been successful in certain applications, they can have an
unpredictable behaviour when applied to non-linear systems [24]. An alternative is to use non-linear observer
design techniques, which present strong robustness properties and guaranteed exponential convergence [24, 25].
Numerous recent works have shown successful results in obtaining accurate attitude estimates from noisy and
biased measurements using low-cost IMUs [24, 44]. In this work we adopt a non-linear observer formulation to
obtain attitude estimates.

3.4 Velocity estimation on-board MAVs
Literature regarding MAV velocity estimation is very vast, and is linked to the type of sensing used on-
board. We focus on the approaches applied on MAVs equipped with 2D LiDARs. On one side, directly
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differentiating the position estimates is avoided as this provides noisy and inaccurate results [37, 6]. Instead,
sensor fusion techniques are employed to achieve high quality results by combining laser estimates and inertial
measurements. Stochastic filters, such as EKFs, are predominantly used for this purpose [1, 40, 18], while
simpler complementary filters have also provided satisfying results [37]. Other works focus on using a cascade
of filters for further noise reduction. Dryanovski et al. [6], first use an alpha-beta filter to obtain rough initial
velocity estimates from the laser position estimates, which are then used as a correction in a Kalman filter
which includes inertial measurements. Shen et al. [40] propose a cascade of two separate EKFs to achieve
accurate results and high rates.

4 Technical background

4.1 Sensor setup
One of the first design challenges with MAVs is choosing the right on-board sensor setup, which is tailored to
the specific task at hand. In this section we present our choice for the sensor setup.

4.1.1 2D laser rangefinder.

Since odometric sensors to measure raw displacements aren’t available for MAVs, alternative approaches have
to be used. In this work we are interested in using laser range measurements from LiDARs for this purpose.
However, due to payload limitations only 2D LiDARs can be used [1, 11, 6], and complete 3D pose estimates
can’t be obtained from the laser range measurements alone. Thus additional sensing has to be used together
with sensor fusion techniques to provide reliable 3D pose estimates.

4.1.2 Inertial measurement unit (IMU).

At the heart of MAV platforms one commonly finds inertial measurement units (IMUs) comprised of a three-
axis accelerometer, a three-axis rate gyroscope, and a magnetometer [25]. In this work magnetometers aren’t
used as they are highly sensitive to magnetic interference, and are very unreliable in the proximity of the power
lines. We thus only rely on an accelerometer and a gyroscope for inertial measurements.

4.1.3 Altitude sensor.

With respect to laser altimeters, barometers allow measuring height without any influence of the ground’s
layout, and are thus more appropriate for outdoors navigation. We mainly focus on barometers as a source of
altitude information. While recent works have obtained impressive results with differential barometry [43, 13],
the focus of this work is using on-board sensing only, and differential barometry was not considered.

4.2 Experimental setup
Several experiments were carried out with a quadrotor platform developed at our lab, shown in Fig. 2. This
MAV was equipped with a Hokuyo URG-30LX 2D laser scanner mounted horizontally on top and providing
measurements at 40 Hz. This sensor was connected to an on-board Odroid-XU computer, where all the laser
data acquisition was performed. A Quantec Quanton flight controller card based on an STM32 microcon-
troller was used to estimate the quadrotor’s attitude from measurements obtained from an MPU6000 3 axis
accelerometer/gyrometer unit. Lastly, at the time of the acquisitions, the MAV was equipped with an SF10/A
laser altimeter from Lightware Optoelectronics, which provides readings at 20 Hz of the distance to the ground
along the body-fixed vertical axis. This platform was used towards the beginning of this research to conduct
several test flights in front of real electric towers (see Fig. 3). The acquired data was then analysed and served
as a basis to the methodology developed in this work. While our final results are mostly based on simulations,
and focus on using barometer sensors for altitude estimation, interesting experimental results from these initial
test flights will be presented where altitude information was obtained from the laser altimeter.
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Figure 2: Quadrotor developed at ISIR, equipped with a Hokuyo URG-30LX 2D LiDAR, an MPU6000 3 axis
accelerometer/gyrometer unit and an SF10/A laser altimeter from Lightware Optoelectronics.

(a) (b)

Figure 3: (a) Acquiring laser measurements on an electric tower from a 60 kV distribution line, with the
quadrotor from Fig. 2. (b) The equivalent simulation setup.
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4.3 Simulation setup
The approaches proposed in this work were validated in simulations using the Gazebo simulation environment
[17] and ROS as an interfacing middleware [33], on a PC with an Intel 3.4 GHz Quad-Core processor and 8
GB of RAM. The Hector quadrotor stack from ROS [29] was used to simulate the quadrotor kinematics and
dynamics. Regarding the sensors, the simulated IMU published gyrometer and accelerometer readings at 100
Hz, and the barometer sensor provided measurements at 20 Hz. The 2D laser scanner from Gazebo was set
to match the characteristics of a Hokuyo URG-30LX sensor: 40 Hz scan frequency, 0.25◦ angular resolution
and 270◦ field of view (thus 1080 measurements per scan). This sensor was mounted horizontally on top of the
simulated quadrotor. A CAD model of an electric tower body was used, whose dimensions are 2.5m × 3.5m
at the ground level, and 1.5m× 2m at a height of 10m. These dimensions roughly correspond to those of the
tower from Fig. 3a. The complete simulation setup is shown in Fig. 3b. All algorithm development was done
using C++, and the registration and sample consensus modules from the open source Point Cloud Library
(PCL) [4].

4.4 Notation
Let us denote by I an inertial NED (North-East-Down) frame located at the center of the tower at the ground
level. Let B denote a body-attached frame in the MAV’s center of mass. For simplicity, we consider that this
frame coincides with the sensor frames. Then, let ξ = (x, y, z)ᵀ denote the position vector of B with respect to
I (i.e., the position vector of the MAV’s center of mass) expressed in I. Next, R denotes the rotation matrix
from B to I. Using the Z-X-Y Euler angle convention with roll φ, pitch θ and yaw ψ angles, this rotation
matrix is expressed as

R(ψ, φ, θ) = Rz(ψ)Rx(φ)Ry(θ) =

cψcθ − sφsψsθ −cφsψ cψsθ + cθsφsψ
cθsψ + cψsφsθ cθcψ sψsθ − cψcθsφ
−cφsθ sφ cφcθ

. (1)

With this notation, TX denotes a rigid body transformation parametrized by a vector X, such that

TX(p) = R(ψ, φ, θ)p + ξ , p ∈ R3, (2)

for X = (x, y, z, φ, θ, ψ). This defines the 6 DoF rigid body transformation from B to I, that transforms the
coordinates of a point from B to I.

We now recall the basic translational dynamics of multirotor aircraft with respect to the inertial frame [25]:{
ξ̇ = v
v̇ = ge3 + F

m

(3)

where v = (vx, vy, vz)
ᵀ denotes the linear velocity of B with respect to I expressed in I, g is the gravity constant,

e3 = (0, 0, 1)ᵀ, m is the MAV’s mass, and F = (Fx, Fy, Fz)
ᵀ is the coordinate vector of the aerodynamic forces

acting on the MAV, expressed in I. At zero air-velocity, these forces are reduced to the thrust force generated
by the propellers. Developing Eq. (3) one obtains

ẋ = vx

ẏ = vy

ż = vz

v̇x = Fx

m

v̇y =
Fy

m

v̇z = g + Fz

m

(4)

These equations will be used in our observer formulation to fuse the information from the multiple embarked
sensors and to recover velocity estimates.
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(a) (b)

(c) (d)

Figure 4: Laser range measurements acquired on the tower from Fig. 3a. In the best case, all sides are visible
(a). Occlusions sometimes block the lateral and backsides from view (b-d). In the worst case, only the front
side is visible (d). This happens when horizontal bars on the tower block the lateral and back sides from view.

5 2D local pose estimation
In this section we focus on tracking the cross-sections captured by the individual 2D laser scans, which is
analogous to determining the 2D pose of the MAV with respect to the electric tower. Specifically, we explore
how basic geometric knowledge of the scene can be exploited for this purpose, without the help of additional
sensing. As already mentioned, we focus on the body of electric towers made up of rectangular cross-sections.
Measurements taken with a 2D LiDAR on the electric tower from Fig. 3a are shown on Fig. 4, where the
portion of the tower can be easily identified. The large open spaces on the surface of the tower allow capturing
measurements on all of the tower’s faces (Fig. 4a). However, due to occlusions, the entire cross-section isn’t
always visible (Fig. 4b-4d), and very different scanned structures can be observed. In the worst case scenario
(Fig. 4d), horizontal bars that are part of the tower’s structure block the lateral and back sides from view and
only the front side of the tower is captured in the scans.

Tracking the tower thus requires accounting for the different cases that can be faced. The idea is to gradually
extract notable features from the laser scans, using basic geometric assumptions, to determine the position and
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orientation of the tower. The largest concentration of laser beams fall on the side closest to the MAV, and the
line segment formed by these points is the most notable feature in the laser scans. This front line, denoted
as Lfront, allows recovering essential position and orientation information. The coordinate vectors of the left
and right corners of this front line segment, expressed in B, are denoted as pleft and pright respectively. Since
Lfront remains visible even in the worst case scenario (Fig. 4d), tracking this line is at the heart of our proposed
approach. Then, as the different sides become visible (Fig. 4a-4c), more features are available, such as the
side lines Lleft and Lright, which provide complementary orientation information and allow determining the
depth (and hence the center) of the cross-section. The back side of the tower is not explicitly modelled, as it is
seldom visible and provides unreliable information. Then, the shape of the contour captured by the laser beams
allows establishing a connection between the different features. We consider that this contour is rectangular.
However, for this assumption to hold, the scan plane must remain horizontal. This will be discussed in more
detail at the end of the section.

We now present a parametrization of the laser scans based on our observations of Fig. 4. Since the goal
is to track the cross-sections directly in the laser scans, let {xC , yC , ψC} denote the 2D pose of the cross-
section’s center with respect to the body frame B. Then, C = {OC ,−→ı C ,−→ C} denotes the center-attached
frame, ξC = (xC , yC)

ᵀ denotes the position vector of C with respect to B expressed in B, and ψC denotes the
orientation of C with respect to B. For a completely horizontal scan plane, this frame is aligned with the
inertial frame I. A second frame F = {OF ,−→ı F ,−→ F} is attached to the front side’s center, with corresponding
position vector ξF with respect to B expressed in B and similar orientation to C. Next, the dimensions of
the cross-section are the width and the depth, which are denoted as dwidth and ddepth respectively, which vary
considerably with height due to the tower’s structure. These dimensions are unknown beforehand, and will
be estimated from the laser scans. The complete parametrization is shown in Fig. 5. Note that ξC can be
determined from ξF and ddepth. If the goal is to stabilize the MAV in front of the tower, then tracking F is
sufficient and the task is greatly simplified. The center-attached frame is important, for example, for a 3D
reconstruction of the tower, as will be discussed later. The following subsections describe the different steps
implemented to track the cross-sections.

5.1 Scan segmentation
This step consists in detecting and classifying the laser beams that fall on the surface of the tower. First,
measurements that fall outside of the tower, such as nearby vegetation (Fig.4b and Fig.4c), can perturb the
tracking process and must be extracted from the laser scans. We handle this by setting a fixed outlier rejection
radius from the tracked tower center, and removing points outside this radius. For the first laser scan, we provide
an initial rough guess of the tower’s position. Automatic initialization and adapting the outlier rejection radius
to the estimated tower dimensions are subject of future work. Next, the remaining laser scan is divided into
three subsets of points (expressed in B)

Sfront = {pF,i = (xF,i, yF,i)
ᵀ, i = 1, ..., NF }

Sleft = {pL,j = (xL,j , yL,j)
ᵀ, j = 1, ..., NL}

Sright = {pR,k = (xR,k, yR,k)ᵀ, k = 1, ..., NR}
(5)

which correspond to the front, left and right sides respectively. In the worst case scenario only the front side
is visible (Fig. 4d), so Sfront is extracted first. Then, it can be determined if the lateral sides Sleft and Sright
are visible in the scan.

5.1.1 Extracting the front side.

The random sample consensus (RANSAC) algorithm [7] was used for this purpose, which is a well-known
technique for point cloud segmentation due to its robustness to outliers and noise. This algorithm allows
finding instances of Lfront in the laser scans, which was parametrized according to the line equation in its
general form

Lfront : cF + nxxF + nyyF = 0, n2
x + n2y = 1. (6)
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Figure 5: Parametrization of the electric tower’s cross-section.
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Figure 6: Detecting the front side.
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where (nx, ny) are the coordinates of the normal vector, expressed in B, and (xF , yF ) are the coordinates of a
point on the front line, also expressed in B. To avoid mistakenly extracting the sidelines, a maximal inclination
ψmax was imposed to the line model, which was determined from the previously extracted front line. For the
first scan, it was assumed that there was a rough knowledge of the MAV’s orientation with respect to the
tower. Then, the RANSAC algorithm considers as inliers all points that fall within a distance threshold dthresh
from the model (as shown in Fig. 6), and the subset Sfront is obtained upon convergence. As a result, an initial
estimate of the coefficients of Lfront are also obtained.

5.1.2 Extracting the lateral sides.

Next, we determine if the lateral sides are visible in the laser scan. First, the front side’s corners are identified
from the extracted points. Since the lateral sides of the tower are perpendicular to the front line, projecting
their points onto the estimated Lfront results in a high concentration of points around the location of the front
corners. Thus, pright and pleft are obtained as the two endpoints of the projected points on the front line.
Now, a search region can be determined for the left and right sides by tracing a line through each of the front
corners, perpendicular to the front line. The candidate points for Sleft and Sright are extracted by selecting
points within the distance threshold dthresh as shown on Fig. 7. The candidate point sets are accepted only if
they contain at least Nmin points, and if the maximum separation between the points is at least dmin. This is
done to determine if the sides are sufficiently visible to provide reliable information.

5.2 Geometric fitting
The goal is now to find the geometric model that best fits the extracted points. From the previous step,
three different situations can arise. First, if no side was detected, the estimation process stops since no useful
information is available. Second, if only the front side Sfront was detected, the coefficients for Lfront are
directly provided by the RANSAC algorithm and the orientation can be estimated, but no depth information
is available. Lastly, if the front side and at least one of the lateral sides was detected, then the rectangular shape
of the cross-section can be taken into account to recalculate Lfront which better fits the data, and to obtain
Lleft and Lright. The following formulation applies to the case when both Sleft and Sright are detected, but the
same procedure is valid when only one of the lateral sides is found. Since the lateral sides are perpendicular
to Lfront, then, recalling the definition from Eq. (6), their normal vector is (−ny, nx) and the cross-section is
defined by 

Lfront : cF + nxxF + nyyF = 0,

Lleft : cL − nyxL + nxyL = 0,

Lright : cR − nyxR + nxyR = 0,

n2x + n2y = 1.

(7)

Then, evaluating the extracted point sets Sfront, Sleft and Sright from Eq. (5) with their respective line in
Eq. (7), and expressing in matrix form, one obtains

1 0 0 xF,1 yF,1
...

...
...

...
...

1 0 0 xF,NF
yF,NF

0 1 0 yL,1 −xL,1
...

...
...

...
...

0 1 0 yL,NL
−xL,NL

0 0 1 yR,1 −xR,1
...

...
...

...
...

0 0 1 yR,NR
−xR,NR




cF
cL
cR
nx
ny

 = r. (8)
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Figure 7: Detecting the left and right sides.
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where r = (r1, · · · , rN )ᵀ, with N = NF +NL+NR, are the residuals, and |ri| corresponds to the distance from
a point to the line. The geometric fitting problem is formulated as finding the coefficients of Eq. (7) for which
the sum of squared distances is minimal. That is

min ‖r‖2 = min

N∑
i=1

r2i , subject to Eq. (8) and n2x + n2y = 1, (9)

which is a constrained least squares problem, with non-linear constraint n2x + n2y = 1 to guarantee solution
uniqueness. This is solved numerically following the procedure proposed in [9]. The end result is an estimate
of the parameters of Eq. (7). At this point, pleft and pright are recalculated from the line intersections, as they
will be required in the following step.

5.3 Calculating the position and orientation
We first determine the position and orientation of the front frame F . Recovering the orientation of the tower
results straightforward from the coefficients of Lfront, as

ψC = arctan2(ny, nx). (10)

Then, ξF is calculated as the midpoint between pright and pleft as

ξF =
pright + pleft

2
. (11)

Next, the dimensions of the cross-section are determined. The width dwidth corresponds to the distance between
the two front corners, and the depth ddepth is chosen as the distance of the point in Sleft or Sright furthest from
Lfront. Finally, the coordinates of ξC are calculated as

ξC = ξF +
ddepth

2

(
cosψC
sinψC

)
. (12)

It is important to highlight that the visible cross-section can change drastically from one scan to the other, as
was shown in Fig. 4. This in return can produce large jumps in the estimates, since they are obtained from
each individual laser scan. To reduce this effect and to obtain smoother results, ξF , ψC and ddepth are filtered
using first-order low-pass filters.

5.4 Limitations
Throughout the formulation of the tracking approach it was assumed that the cross-sections captured in
the scans were rectangular. For this assumption to hold, the scan plane must remain horizontal. This is
reasonable for most inspection tasks, where careful inspections require the MAV to operate at low speeds and
inclinations remain small. However, external disturbances, such as strong winds, can produce large inclinations
and bring the MAV to a configuration where the geometric model from Eq. (7) is no longer valid. Under such
circumstances, tracking the tower with this approach will result inaccurate.

Another underlying constraint is that the MAV must always fly on the same side of the tower. This occurs
because the entire approach is based on tracking Lfront. Since this line corresponds to the side of the tower
closest to the MAV, if the MAV navigates around the tower eventually a different line will be tracked. This will
cause shifts in the position and orientation estimates, since they are defined with respect to Lfront (Eq. (10)
and Eq. (11)).

5.5 Simulation results
Simulations were carried out using the setup from Fig. 3b to evaluate the performance of the proposed tracking
algorithm. The initial position of the tower’s center with respect to the MAV was given, and the outlier rejection
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Figure 8: The simulated flight in front of the electric tower. The blue line indicates the trajectory followed by
the quadrotor. An example of a tracked cross-section is visible on the right.
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(a)

(b)

Figure 9: For the simulated flight from Fig. 8: (a) The 2D pose of the tracked cross-section compared to the
simulation ground truth. (b) Absolute estimation errors.
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Figure 10: An example of the tracking method failing for a flight around the electric tower. Failure occurs at
t = 13s.
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radius (as discussed in the segmentation section) was set to 4 meters. The parameters for the RANSAC scan
segmentation were chosen as dthresh = 5cm and ψmax = 10◦. In the first test, the MAV was flown in front of
one side of the tower for different heights and distances from the tower as shown in Fig. 8. This figure also
illustrates an example of a tracked cross-section with its corresponding front and center frames. The resulting
position and orientation estimates are compared to the simulation ground truth in Fig. 9a, for a portion of
the flight. As can be seen, throughout this flight the proposed approach is capable of effectively tracking the
tower’s center. This is further verified from the absolute estimation errors, shown in Fig. 9b, which remain
below 5cm for the translation components, and below 1◦ for the yaw angle.

In a second test, the MAV was flown around the tower, and the results are shown in Fig. 10. In this case,
the algorithm clearly fails at t = 13s . This happens when the MAV transitions from one side of the tower
to the other and the algorithm then starts tracking a different front line. This causes the 90◦ error in the
orientation as seen in Fig. 10. While the algorithm can track the center of the tower again (t = 15s as the
position errors drop), the orientation error isn’t corrected. This illustrates one of the main limitations of the
proposed approach.

5.6 Experimental results
The proposed tracking algorithm was also tested on data previously acquired from several manual test flights,
where the MAV from Fig. 2 was flown vertically in front of an electric tower, as shown in Fig. 3a. An initial
rough guess of the tower’s center with respect to the MAV was given, and the outlier rejection radius was
set to 4 meters. As already mentioned, besides the 2D LiDAR, the MAV was additionally equipped with
a laser altimeter and an IMU. Unfortunately, at the time of the acquisitions no GPS sensor was used, and
a ground truth is not available to determine the estimation errors. However, recalling that our tracking
algorithm estimates the previously unknown depth and width of the tower’s cross-sections, an alternative way
of validating the approach is to determine if these dimensions are coherent with the 3D geometry of the real
tower. Thus, Fig. 11 illustrates the estimated dimensions combined with their corresponding estimated height
from the laser altimeter readings, for one of the test flights. The efficiency of the 2D tracking algorithm is
evident, since electric towers with rectangular cross-sections have a depth and width that vary linearly with
height, a behaviour that is clearly reflected in Fig. 11.

5.6.1 Modelling the electric tower.

A by-product of tracking the cross-section’s center is the possibility of deriving a 3D representation of the
electric tower from the observed data, such as a 3D point cloud reconstruction from the laser scans. A simple
procedure consists in transforming each 2D scan into the estimated center frame C, and projecting into 3D
coordinates using the height measurements and the attitude estimates from the IMU measurements. This was
tested on the same vertical flight data used to obtain Fig. 11, and the final result is shown in Fig. 12. Here,
the efficiency of the tracking method is also evident, as the point cloud is capable of capturing a great amount
of detail, and presents minimal deformations despite being made from data acquired on-flight.

A second possibility is to instead derive an abstract 3D geometric representation of the tower’s body from
the estimated dimensions presented in Fig. 11. A simple approach is to approximate each face as a planar
segment [20], and the edges of the tower as the intersection of adjacent planes mj (j = 1, ..., 4), expressed as

mj : ajx+ bjy + cjz + dj = 0, j = 1, . . . , 4, (13)

where each mj is associated with a face of the tower. Obtaining the planes’ coefficients results straight-forward
from Fig. 11, as the slope of the fitted lines are directly related to the slopes of the planes. For example, for
this particular case this resulted in 

m1 : −x− 0.062z − 1.643 = 0
m2 : y − 0.046z − 1.265 = 0
m3 : x− 0.062z − 1.643 = 0
m4 : −y − 0.046z − 1.265 = 0

(14)
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Figure 11: The estimated depth and width as a function of the height for the electric tower from Fig. 3a, fitted
with straight lines.
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Figure 12: Partial 3D point cloud reconstruction of the electric tower from Fig. 3a, for a vertical flight in front
of the tower. The laser scans are aligned using the tracked cross-section’s center, the quadrotor’s altitude (from
the laser altimeter) and attitude (from the IMU measurements).
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which correspond to the front, right, back and left sides respectively. With respect to an accurate point cloud
reconstruction, which would require exploring extensive sections of the electric tower, this simplified planar
representation can be obtained with more ease, as it only requires exploring a portion of the tower. As will
be seen in the following sections, the main importance of these results is that both 3D representations of the
tower can be exploited for pose estimation purposes.

5.7 Discussion
Since the final goal is to achieve autonomous navigation capabilities, all of the MAV’s 6 DoF must be deter-
mined. For this purpose, this proposed tracking approach could be complemented with additional sensing to
recover complete 3D pose estimates, for example, using inertial measurements to estimate the roll and pitch
angles, and an altitude sensor, such as a laser altimeter or a barometer. However, the constraints imposed on
the MAV’s motion by this tracking approach are too restrictive for general inspection tasks that may require
navigating continuously on all sides of the tower. An alternative strategy is thus to divide the inspection
task into two steps. A first step consists in modelling the electric tower, which would allow to compensate
for the limited information captured by the individual laser scans. The idea is to perform an initial vertical
flight in front of the tower, in which our tracking algorithm is capable of providing a quantitative model of
the tower (Fig. 11 and Fig. 12). A second step would then focus on 3D pose estimation and navigation, using
the estimated model to track the tower in general flight conditions. With such a model-based approach to
recover pose estimates, the scan plane no longer needs to remain horizontal and less restrictions are imposed
on the MAV’s movement. For the following sections, we consider that the first modelling step has already been
performed based on our tracking approach, and instead focus the discussion on how to recover the complete
3D pose estimates.

6 3D local pose estimation
In this section, we present how to obtain complete 3D pose estimates with our sensor setup. As is typically done
with MAVs, the estimation process is broken down into several components [6, 40]. Recalling that the complete 6
DoF pose from B to the inertial frame I is described by {x, y, z, φ, θ, ψ}, the 3D pose is reconstructed as follows:
{x, y, ψ} are estimated from the laser range measurements; then, as will be discussed, {z} is estimated from
the laser range measurements fused with the barometer measurements; finally, {φ, θ} are obtained by fusing
accelerometer and gyrometer measurements from the IMU. The following subsections explain each component
of the estimation process.

We first explore how the classic ICP algorithm that has been successful indoors can be extended to the
case of an electric tower inspection. This technique requires the surrounding environment to have sufficient
geometric detail and is not suitable for highly unstructured scenarios often faced outdoors [6]. However, in an
outdoors inspection scene, the rigid and well-defined structure of the electric towers have sufficient geometric
detail to easily contrast from surrounding unstructured objects. This was exploited in the previous section to
retrieve 2D pose estimates, and will now be used to adapt the ICP algorithm. While common implementations
focus on aligning pairs of scans to retrieve pose information in 2D, we instead treat the problem in 3D by
introducing previous knowledge of the tower’s geometry in the registration process. We now present two
possible implementations of the ICP algorithm.

6.1 Adapting the ICP algorithm: First proposed approach
In this first approach we follow a line of work typically adopted with the ICP algorithm in navigation tasks,
consisting in aligning point clouds. The idea is to maintain the approach as general as possible, as no specific
parametrization of the scene is required and pose information is recovered directly from the point correspon-
dences. Let the current scan be represented by a set of 2D points, denoted Sp = {p1,p2, . . . ,pNp

}. For
simplicity, consider that Sp is expressed in the body attached frame B. Then, let Sq = {q1,q2, . . . ,qNq

}
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denote the 3D reference set, expressed in the inertial frame I, which corresponds to a 3D point cloud re-
construction of the inspection scene, assumed to be acquired beforehand, e.g., from our tracking approach as
discussed in the previous section. The goal is to find the rigid body transformation that best aligns Sp to Sq.
The baseline ICP [2] was used, with several modifications, notably in the minimization step. Each iteration k
(starting from k = 0) is carried out as follows:

1. Initialization: The current estimate TXk
is used to transform all 2D points pi ∈ Sp into 3D coor-

dinates in the inertial frame I, obtaining Sp′ . For the first iteration, the parameter vector is X0 =
(xlaser, ylaser, zlaser, φimu, θimu, ψlaser), such that {xlaser, ylaser, zlaser, ψlaser} are obtained from the scan reg-
istration for the previous laser scan and {φimu, θimu} from the IMU attitude estimation (as will be
explained briefly).

2. Matching: Corresponding pairs (p′i,qi) are established by associating each point in Sp′ to the closest
point in Sq. This correspondence search is the most time consuming step of the algorithm [2]. To speed
up the matching process we make use of K-D trees, as is commonly done with ICP [2, 36].

3. Rejection: Point pairs separated by more than a fixed distance threshold dmin are removed. This is
mainly helpful with accuracy and stability in the presence of outliers [36], which in this case are typically
due to surrounding vegetation.

4. Minimization: The goal is to find the transformation TXmin that minimizes the sum of squared errors,
using the Euclidean distance as the distance metric [2]. For the N remaining point pairs (p′i,qi), this
leads to the following optimization problem:

Xmin = arg min
X

N∑
i=1

‖Tx(p′i)− qi‖2, (15)

such that (φ, θ) = (0, 0),

which is solved with the Levenberg-Marquardt algorithm, since it allows to obtain accurate results and
deal with initialization errors without significant speed losses [8]. The components φ and θ of X are
neglected during the minimization, since φimu and θimu used at the initialization are precise and reliable.
This reduces the optimization problem from a 6-dimensional space to a 4-dimensional space, which further
limits the risk of divergence due to local minima, and provides a more reliable solution. This is the main
modification of the algorithm.

5. Finally, the current estimate is updated as

TXk+1
= TXmin · TXk

(16)

Due to the previous step, TXmin only updates the {x, y, z, ψ} components of TXk
in each iteration.

The end result of the scan registration process is an estimation of the 3D translation vector (xlaser, ylaser, zlaser)
and the yaw angle ψlaser. The main novelty is thus that altitude estimates can now be recovered, which is a
direct consequence of introducing a 3D point cloud reconstruction of the tower in the registration process.

6.1.1 Limitations.

Besides the drawbacks inherent to the ICP algorithm discussed at the beginning of this article, other limitations
can be pointed out. Evidently, this approach is restricted to sections of the tower captured in the 3D point
cloud reconstruction. Pose estimates can’t be recovered in previously unexplored or occluded sections. For
this approach to be effective, the 3D point cloud must accurately capture the complete electric tower, which
is a complex task. With our tracking algorithm from the previous section this requires exploring extensive
portions of the tower. Other existing solutions rely on offline processing of data from powerful and expensive
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3D LiDARs capable of capturing dense measurements from long distances [20, 12]. This, however, goes beyond
the scope of this work.

Further complication arise regarding the altitude estimates. For a 2D LiDAR, measurements from the
individual scans fall within the same plane and don’t directly capture the MAV’s altitude, which is instead
determined from the point correspondences with the 3D point cloud uniquely. The altitude estimates are
thus more unreliable and prone to errors, as will be seen in the simulation results. Furthermore, altitude
estimation is highly dependant on the inclination of the faces of the tower. In the worst case scenario, no
altitude information can be recovered for completely vertical faces, which is a situation rarely faced with high
voltage electric towers considered in this work. These drawbacks justify the use of an additional barometer
sensor. However, as will be seen, this proposed ICP implementation will overall perform well if the electric
tower remains within the sensor’s field of view, and particularly stable results can be achieved for near-hovering
conditions. This quality holds for altitude estimates, and will be exploited to track the barometer drift.

6.2 Adapting the ICP algorithm: Second proposed approach
The difficulties in obtaining an accurate 3D point cloud reconstruction of the inspection scene can render the
previous approach impractical. Nonetheless, the ICP algorithm can be applied to a wide variety of represen-
tations of geometric data such as line sets, triangle sets, parametric surfaces, among others [2]. Therefore, an
alternative is to align the laser scans onto the simplified planar representation of the tower body from Eq. (13),
which is simpler to obtain than a complete point cloud reconstruction, as previously discussed. To achieve
this, we adopt a projection-based matching strategy [3, 32], where, after initialization, the corresponding points
qi are calculated as the orthogonal projection of every point p′i ∈ Sp′ onto the closest planar segment from
mj . This substitutes the time-consuming correspondence search previously used, and, as will be seen, allows
obtaining significant speed gains [36].

Thus, in this approach, the matching step (step 2) for each point p′i is now carried out as follows:

• For the tower face mj (starting with j = 1), calculate the two edge lines LA and LB as the intersection
with the two adjacent planes.

• Project p′i orthogonally to the plane equation of mj (Eq. (13)), obtaining q. We have to determine if q
falls within the planar segment delimited by LA and LB . This is done as follows:

– Project p′i to the edge lines LA and LB , obtaining qA and qB respectively.

– Let AB = qB − qA.

– Calculate the normalized projection ρ = (q−qA)·(AB)

‖AB‖2 .

– If 0 < ρ < 1, then q falls within the planar segment, and the projection is q.

– If ρ ≤ 0, then q falls outside of the planar segment and the projection is qA.

– If ρ ≥ 1, then q falls outside of the planar segment and the projection is qB .

These steps are repeated for the four faces of the tower, and the projected point which yields the minimum
distance to p′i is chosen as the corresponding point qi. Then, the remaining steps from the previous implemen-
tation are left unchanged. As before, the output is (xlaser, ylaser, zlaser, ψlaser).

6.2.1 Limitations.

One of the main drawbacks of this formulation is that it applies specifically to the case of rectangular cross-
sections. The projection strategy would have to be changed for a different tower geometry. In contrast, the
point cloud approach is more general in this matter, and wouldn’t require any modifications. As before, no
altitude information can be recovered if the faces of the tower are completely vertical.
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6.3 Altitude estimation
The altitude estimates obtained previously from the laser range measurements have a strong dependence on the
shape of the tower and can result unreliable. In contrast, barometer measurements are independent from the
shape of surrounding structures, but suffer from drift over time due to varying atmospheric conditions. Better
results can be obtained by combining both sources of altitude information. Recalling the vertical dynamics in
I from Eq. (4), {

ż = vz
v̇z = g + Fz

m

(17)

Accurate vertical velocity estimates can be obtained by fusing the barometer and IMU measurements [13, 43],
and are thus obtained separately, as will be addressed in a later discussion. Therefore, in this section we
consider that vz is a known input, and instead use the following system{

ż = vz
ḃz = 0,

(18)

where bz is the unknown barometer drift, which is modelled as a constant as it varies slowly in time, and is
defined by the relationship zbaro = z + bz, with zbaro denoting the barometer measurement. This leads to a
simple second order feedback observer formulation{

˙̂z = vz − kz(ẑ − z1)
˙̂
bz = −kbz (ẑ − z2)

(19)

where (kz, kbz ) are the estimation gains, and zn is an auxiliary variable defined as

zn = λn(zbaro − b̂z) + (1− λn)zlaser with 0 ≤ λn ≤ 1, n = 1, 2. (20)

which is the weighted sum of the laser altitude estimates zlaser and barometer readings zbaro compensated for
bias. The weights λn allow one to determine how each sensor contributes to the estimation of each state.
In particular, as λn increases, higher priority is given to the barometer readings. The reasoning behind this
parametrization is to use the laser estimates mainly to keep track of slowly varying barometer bias b̂z, and to
maintain the more reliable barometer measurements to estimate ẑ. Choosing the weights λ1 = 1 and λ2 = 0
achieves this purpose. The stability analysis for this observer and details on how to tune the gains (kz, kbz )
are given in the Appendix.

6.4 Attitude estimation
We now present our proposed non-linear observer formulation using the accelerometer and gyroscope measure-
ments. As yaw estimates are already obtained from the laser scan registration, the main goal is to recover
estimates of the roll φ and pitch θ angles. First, let γ = (γ1, γ2, γ3)ᵀ denote the vertical axis of I expressed in
B as

γ = Rᵀe3 (21)

with e3 = (0, 0, 1)ᵀ. From the rotation matrix definition of Eq. (1), it follows that γ contains implicitly the
MAV’s roll and pitch angles, since

φ = arcsin (γ2)

θ = atan2 (−γ1, γ3) .
(22)

Recalling that a MAV’s rotational kinematics is given by [25]

Ṙ = RS(ω), (23)
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with S(.) the skew-symmetric matrix associated with the cross-product (i.e., S(x)y = x× y, ∀x,y ∈ R3), and
ω the angular velocity vector from B to I, expressed in B. Then, the kinematics of γ can be deduced from
Eq. (21) and Eq. (23), and results in

γ̇ = γ × ω. (24)

This is the basis of our observer formulation. As previously mentioned, the goal is to recover roll and pitch
estimates from the gyrometer and accelerometer readings. Let am denote the accelerometer measurements
expressed in B, which measure the specific acceleration acting on the MAV’s airframe [25]

am = Rᵀ(v̇ − ge3) = Rᵀv̇ − gγ. (25)

Then, under the assumption of negligible linear acceleration, one has [26]

am ≈ −gγ, (26)

which shows that accelerometers provide direct observations of the roll and pitch angles (and of γ). Thus, the
following non-linear observer for γ is proposed

˙̂γ = γ̂ × (ωm − kγ(am × γ̂)) , kγ > 0 (27)

with ωm the angular velocities measured by the gyrometer in B.
To analyse the stability of this estimator, consider the candidate Lyapunov function L = 1 − γT γ̂. From

Eq. (26) and Eq. (27) one has
˙̂γ ≈ γ̂ × (ωm − kγg(γ̂ × γ)). (28)

Then, assuming that this approximation of ˙̂γ is perfect, and that ωm = ω, it can be proven that L̇ =
−kγg‖γ̂ × γ‖2, which is decreasing along the solutions of the system if, initially, γ̂ and γ are not opposite to
each other, and kγ > 0. This implies in particular the convergence of γ̂ to γ.

6.4.1 Gain scheduling.

The approximation from Eq.(26) is commonly used in attitude estimation when dealing with accelerometers
[26], but only holds when flying at constant velocity or near stationary flight conditions. An added benefit
of non-linear observer formulations is that the estimation gains can be tuned in real-time during flight [25].
This can be exploited to adapt the observer to changing dynamic conditions, in particular, to high acceleration
states where the assumption from Eq.(26) is no longer valid and estimation performance is deteriorated. In
such situations, which typically last for short periods of time, it is better to lower the estimation gains and to
rely on the gyrometer measurements since they are scarcely affected by the linear accelerations [46], and can
provide short-term rotations accurately [51].

A basic strategy is thus to detect highly accelerated states by comparing the magnitude of the accelerometer
readings to the gravity acceleration [34, 48, 46]. Let ãm denote the absolute accelerometer measurement error
with respect to gravity as

ãm = |‖am‖ − g|, g = 9.81
m

s2
. (29)

This magnitude provides a simple criteria to determine the dynamic state of the MAV, as ãm ≈ 0 for near-
hovering conditions, and large values of ãm correspond to highly dynamic motion. The estimation gains can
then be adapted accordingly. Yoo et al. [48] adopt a simple switching strategy to choose the gain between a
set of nominal values corresponding to no-acceleration, low-acceleration or high-acceleration states. Instead,
Valenti et al. [46] set a nominal gain for hovering state, which is then decreased linearly during transitions
to high acceleration states. We adopt a strategy similar to [46]. Let kL and kH denote the nominal gains
during low and high acceleration states respectively, the idea is to transition smoothly between these gains.
The following gain scheduling approach is proposed

kγ(ãm) = kLe
−αãm + kH(1− e−αãm), α > 0, (30)
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Figure 13: An example of the attitude observer gains according to Eq. (30), for different values of α.
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where α is an arbitrary positive constant that determines the steepness of the transitions between kL and kH .
It is simple to verify that as ãm ≈ 0, then kγ remains near kL, and as ãm increases, then kγ decreases towards
kH , which is the desired behaviour. This is further illustrated on Fig. 13 for kL = 0.1, kH = 0.01 and different
values of α. It can be noted that α = 0 corresponds to the constant gain case, and as α increases, the gains
decrease faster towards kH .

6.4.2 Complete rotation matrix reconstruction.

The estimated roll φimu and pitch θimu angles are recovered from γ̂ and Eq. (22) as

φimu = arcsin (γ̂2)

θimu = atan2 (−γ̂1, γ̂3) .
(31)

Finally, the complete estimated rotation matrix R̂ is recovered by combining the estimated angles as

R̂ = Rz(ψlaser)Rx(φimu)Ry(θimu). (32)

This matrix is subsequently used at each initialization of the laser scan registration, and for the velocity
estimation described in the following section.

7 Velocity estimation
In the previous section, the complete 6 DoF pose of the MAV was determined from the sensor measurements.
The goal is now to derive velocity estimates by combining the pose estimates with the inertial measurements
from the IMU. For this purpose, we make use of the translational dynamics of the MAV with respect to the
inertial frame I from Eq. (3) to formulate velocity observers. In the following analysis, the external aerodynamic
forces F = (Fx, Fy, Fz)

ᵀ from Eq. (4) are determined from the accelerometer readings am and the estimated
attitude R̂ as

F = mR̂am. (33)

Since different sensors are used for the different states, the horizontal and vertical velocity components are
analysed separately.

7.1 Horizontal velocity estimation
From Eq. (4) it follows that the dynamics for {x, y} in I are two independent second-order systems. Estimating
the horizontal velocities results straightforward, and is achieved with simple feedback state observers defined
as 

˙̂x = v̂x − kx(x̂− xlaser)

˙̂vx =
Fx
m
− kvx(x̂− xlaser), kx, kvx > 0


˙̂y = v̂y − ky(ŷ − ylaser)

˙̂vy =
Fy
m
− kvy (ŷ − ylaser), ky, kvy > 0

(34)

where (kx, kvx) and (ky, kvy ) are the scalar observer gains, which guarantee exponential convergence if they are
positive, and (xlaser, ylaser) are the estimates obtained from the laser scan registration described in the previous
section.
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7.2 Vertical velocity estimation
As previously mentioned, satisfying estimates of the vertical velocity can be recovered from barometer and
accelerometer measurements [13, 43]. As will be seen, these estimates remain accurate even in the presence of
barometer drift. Recalling the vertical dynamics from Eq. (17), we now formulate the following feedback state
observer 

˙̂z = v̂z − kz(ẑ − zbaro)

˙̂vz = g +
Fz
m
− kvz (ẑ − zbaro), kz, kvz > 0

(35)

where (kz, kvz ) are the observer gains, and zbaro are the barometer altitude measurements. The altitude
estimates from the laser scan registration are not included as they only degrade the performance. The vertical
velocity estimates v̂z are subsequently used as an input to the altitude observer from Eq. (19).

8 Simulation results: 3D local pose estimation
The purpose of this section is to assess the performance of the different components of the pose estimation
process. The results presented here were obtained from simulated flights carried out using the previously
discussed simulation setup, illustrated in Fig. 3b. For the flights, a set of waypoints was given for the quadrotor
to follow, accounting for a complete displacement around the tower. Meanwhile, the MAV’s yaw angle was
oriented towards the center of the tower, so that the latter remains in the LiDAR’s field of view. Since the
focus of this section is to assess the quality of the pose estimates, the simulation ground truth is directly used
to stabilize the MAV’s position and attitude. The complete flight is shown in Fig. 14.

8.1 Attitude estimation results
The attitude observer from Eq. (27) was used to fuse the accelerometer and gyrometer measurements and re-
cover estimates of the roll and pitch angles {φ, θ}. We now analyse the performance of this observer throughout
the flight. Fig. 15a illustrates the deviations of the accelerometer readings from the acceleration of gravity (ãm
from Eq. (29)) for a portion of the flight. As can be seen, the MAV spends larger amounts of time in low
acceleration states (ãm ≈ 0). Then, the peaks correspond to instants when the MAV accelerates towards a
different waypoint. The idea is to adapt the observer to these peaks by lowering the estimation gain kγ . This
was carried out with the gain scheduling approach from Eq. (30). Based on results observed in the simulations,
the nominal gains were set to kL = 0.1 and kH = 0.01. Moreover, the estimation process was repeated for
different values of the parameter α, from α = 0, which corresponds to the constant gain case since kγ = kL
(from Eq. (30)), to α = 100. As explained, this parameter determines the steepness of the transitions between
the two nominal gains. The resulting scheduled gains for a portion of the flight are shown on Fig. 15b. When
comparing the two figures, it can be noted the gain kγ rapidly drops in the presence of acceleration peaks (e.g.,
t = 26s and t = 30s), which is the desired behaviour. However, as α increases, the gains can result overly
sensitive to small changes in ãm (t = 38s for α = 100).

Next, the absolute estimation errors with respect to the simulation ground truth are shown on Fig. 16a and
Fig. 16b for the roll and pitch angles respectively. When comparing Fig. 16a and Fig. 16b to Fig. 16c, it can be
noted that the observer can accurately trace the roll and pitch angles in low acceleration states (when ãm ≈ 0)
for all cases, and the errors for the most part remain below 1◦. On the other hand, the largest estimation errors
correspond to peaks in ãm (e.g., t = 26s and t = 40s), reaching a maximum for the constant gain observer
of 2.45◦ for the roll angle, and 2.62◦ for the pitch angle. In contrast, as the parameter α is increased, error
peaks related to ãm are now largely suppressed and the overall performance is improved with the simple gain
scheduling strategy. Based on these results, a gain scheduled attitude estimation with α = 10 was used for
the following sections, as it offers a good trade-off between sensibility to changes in ãm and estimation error
reduction.
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Figure 14: The simulated flight around the tower. The blue line indicates the trajectory. Throughout the flight
the quadrotor was oriented towards the center of the tower.
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(a)

(b)

Figure 15: For a portion of the flight from Fig. 14: (a) The deviations of the accelerometer readings from
gravity according to Eq. (29). (b) The resulting scheduled gains for different values of α. The gains become
more reactive for larger values of α.
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(a)

(b)

(c)

Figure 16: For the attitude observer from Eq. (27) and different values of α: (a) Absolute roll estimation error.
(b) Absolute pitch estimation error. (c) The corresponding ãm. As α increases, the errors caused by peaks in
ãm are reduced.
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(a) (b)

Figure 17: The two models used as reference in the ICP algorithm to align the laser scans: (a) Point cloud
reconstruction. (b) Planar model.

8.2 Laser-based local pose estimation results
The two proposed implementations of the ICP algorithm were tested in the simulations to recover estimates
of the remaining states {x, y, z, ψ}. In the first case, the laser scans were aligned to the 3D point cloud
reconstruction shown in Fig. 17a, which was obtained beforehand from the simulated tower shown in Fig. 3b,
following the same procedure for Fig. 12 based on our tracking approach. In the second case, the laser scans
were instead aligned to the planar representation of the tower illustrated in Fig. 17b, which was also obtained
beforehand following the procedure used for Fig. 11 and Eq. (14), relying on our tracking approach. Here, the
estimated coefficients from Eq. (7) resulted in

m1 : −x− 0.076z − 1.749 = 0
m2 : y − 0.046z − 1.219 = 0
m3 : x− 0.076z − 1.749 = 0
m4 : −y − 0.046z − 1.219 = 0

(36)

which correspond to the front, right, back and left sides respectively. In both ICP implementations, an initial
rough knowledge of the MAV’s position with respect to the tower was given for the first scan registration.
For each subsequent laser scan, the estimation process was initialized with the results from the previous scan
registration and attitude estimates from the IMU measurements.

We now analyse the performance of the two approaches. First, the computation time required for the scan
registration in both cases is shown in Fig. 18. As expected, using the planar model results in significantly
faster estimates with an average of 1.4ms, compared to the point cloud case average of 16ms. This shows the
effectiveness of the projection-based matching strategy used to establish point correspondences, which avoids
the computationally extensive correspondence search required for the point cloud registration.

Next, Fig. 19 compares the MAV’s ground truth position with the estimates from both approaches. As
can be seen, the results obtained with the planar model approach effectively follow the ground truth for the
duration of the flight. However, the point cloud approach ultimately fails before completing the flight. This
can be further observed from the absolute errors shown in Fig. 20. For the planar model case, the {x, y}
errors remain below 5cm (Fig. 20a and Fig. 20b). Furthermore, the yaw estimates are also very precise, with
a maximum error of 0.8◦ (Fig. 20d). In these figures it can be noted that the point cloud approach achieves
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Figure 18: Comparing the computation time for the laser scan registrations. The planar model approach is
approximately ten times faster.
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Figure 19: Comparing the ICP position estimates with the ground truth, for the simulated flight from Fig. 14.
The point cloud approach fails before finishing the flight.
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(a)

(b)

(c)

(d)

Figure 20: Absolute estimation errors with respect to the simulation ground truth for the results from Fig. 19,
for both implementations of the ICP algorithm.
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Figure 21: The ICP position estimates after introducing the altitude observer. The large altitude errors are
corrected and the point cloud approach no longer fails.

similar performance before failing (near t = 40s). Then, particular attention must be given to the altitude
estimation errors from Fig. 20c. As previously pointed out, the horizontally placed 2D laser scanner captures
very limited altitude information. As a result, it was observed throughout the simulations that the altitude
estimates were easily deteriorated in complicated situations, for example, when the horizontal bars on the
tower block most of the sides from the sensor’s view (as in Fig. 4d). For the planar model case, this typically
caused spurious estimates, with the absolute error jumping above 20cm (e.g., t = 20s and t = 30s in Fig. 20c).
For the point cloud case, this eventually caused the approach to completely fail (around t = 30s in Fig. 20c).
Despite these complications, in Fig. 20c it can be observed that the altitude errors remain at acceptable levels
below 10cm throughout most of the flight for the planar case, and similarly for the point cloud approach before
failure. Properly exploiting the limited altitude information requires special attention and is addressed in the
following section.

37



This article was published in IJMAV, 2018. 8 SIMULATION RESULTS: 3D LOCAL POSE ESTIMATION

(a)

(b)

Figure 22: The absolute altitude errors for ICP without the aid of the altitude observer, the barometer
measurements with drift, and the altitude observer for: (a) ICP with planar model. (b) ICP with point cloud
reconstruction.

8.3 Altitude estimation results
We now present the results for the altitude observer from Eq. (19), which fuses the laser altitude estimates
from both implementations of the ICP algorithm with the barometer measurements. Barometer readings are
sensitive to changes in atmospheric conditions (strong winds, temperature changes), which generally translates
into a slowly varying drift. In order to study the observer’s behavior under large barometer drift, this was
simulated as a sinusoid with a maximum speed of 1 meter per minute. As previously mentioned, the weights
from Eq. (20) were chosen as λ1 = 1, to rely mainly on the barometer measurements to estimate the altitude,
and λ2 = 0, to rely on the laser estimates to estimate the barometer drift. Then, the estimation gains were set
to (kz, kbz ) = (6.6,−1.36), which achieved a good performance in the simulations. An explanation on how to
determine these gains is given in the Appendix. In these simulations, the observer’s output was used at each
scan registration initialization, instead of the laser altitude estimates. The impact of this can be observed in
Fig. 21, where the complete position estimates of the ICP implementations are once again compared to the
simulation ground truth. In contrast to the results from Fig. 19, it can be noted that the introduction of the
altitude observer allows correcting the large altitude errors that previously caused the point cloud case to fail,
which now offers a similar performance to the planar model case. Furthermore, Fig. 22 presents a comparison
of the absolute errors of the barometer measurements, the altitude estimates of the ICP algorithm (without
the aid of the observer), and the altitude observer’s output. In both cases it can be noted that, while the
barometer readings accumulate a large error over time, the presence of this drift doesn’t significantly degrade
the quality observer’s altitude estimates, which instead provides notable improvements. For the planar model
case in Fig. 22a, the spurious error peaks are largely filtered, and the maximum error is lowered to 10cm. More
importantly, for the point cloud case in Fig. 22b, the observer manages to avoid failing at t = 30s and provides
continuous estimates throughout the entire flight. The effectiveness of this formulation is further verified in
Fig. 23, as the observer manages to estimate the previously unknown barometer drift, with less than 10cm of
error.
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Figure 23: For the altitude observer and both ICP implementations: (Top) Comparing the barometer drift
estimates with the ground truth. (Bottom) Absolute estimation errors. The observer succeeds in both cases.
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9 Simulation results: Velocity estimation

9.1 Horizontal velocity estimation results
The {x, y} estimates from the laser scan registration were used as an input to the velocity observers from
Eq. (34), where they were fused with the accelerometer readings to recover the horizontal velocity estimates.
The estimation gains were chosen identical for both axis as (kx, kvx) = (6.4, 16) and (ky, kvy ) = (6.4, 16). The
estimated horizontal velocities for a portion of the flight and both implementations of the ICP algorithm are
shown in Fig. 24. For both axis, the high estimation gains allow the speed estimates to converge fast towards
the ground truth. Furthermore, the good quality of the position estimates from the scan registration allows
the velocity errors to remain below 10 cms .

9.2 Vertical velocity estimation results
Finally, the observer from Eq. (35) was used to recover vertical velocity estimates from the barometer and
accelerometer readings. As before, the observer gains were chosen as (kz, kvz ) = (6.4, 16). Fig. 25a shows
the estimation results without barometer drift. As can be seen, the vertical velocity estimates are sufficiently
accurate without the need of the laser estimates, as they remain below 1.5 cms . Then, the velocity estimates in
the presence of barometer drift are shown in Fig. 25b. With respect to the previous case, the estimation error
slightly increases, but remains within acceptable levels.

10 Conclusions and future work
In this article we have presented a methodology to recover complete 3D pose estimates in electric tower
inspection tasks with MAVs, using a sensor setup consisting of a 2D LiDAR, a barometer sensor and an IMU.
First, we addressed 2D local pose estimation using uniquely the laser range measurements. Basic geometric
knowledge of the tower was used to extract the notable features captured in the individual laser scans, which
were then used to track the cross-sections and to estimate their previously unknown dimensions. Simulations
yielded satisfying results under simple flight conditions, but the assumptions used by this approach proved too
restrictive for general inspection tasks. It was shown that this tracking method could instead be used with
additional sensing to model the tower. This was tested on data acquired from real flights, and results were
presented for a partial point cloud reconstruction of the tower’s body and a simplified planar representation
derived from the dimensions estimated on-flight. The inspection task was thus divided into two steps, tower
modelling and pose estimation.

Then, we focused on 3D local pose estimation using the complete sensor setup, which was divided into
three components. At the lowest level, a non-linear observer formulation to estimate the roll and pitch angles
from the accelerometer and gyrometer measurements was presented. A gain scheduling approach to adapt the
observer to changing flight dynamics was also introduced. Then, the four remaining states were determined
from the laser scans with two proposed implementations of the ICP algorithm. The first approach consisted
in aligning the 2D laser scans to a 3D point cloud reconstruction of the tower, and the second approach relied
instead on a simplified planar representation and a projection-based matching strategy. In both cases, the
registration process was carried out in 3D and aided by the attitude estimates from IMU measurements, which
allowed recovering altitude information. Lastly, a third component fused the barometer measurements and
the altitude estimates from the scan registration. This simple formulation allowed estimating the unknown
barometer drift in the process. Each of these components were validated in simulations. When combined, they
showed satisfying results in terms of accuracy and computation time.

Finally, velocity estimation was achieved with simple feedback observers to exploit the MAV’s dynamics.
On one hand, the pose estimates were fused with inertial measurements to recover horizontal velocity estimates.
On the other hand, the barometer measurements were fused with accelerometer measurements to recover the
vertical velocity component. Simulations were also used to validate the efficiency of these estimations.
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(a)

(b)

Figure 24: Horizontal velocity estimation results for the observer from Eq. (34). (a) x-component (Vx). (b)
y-component (Vy).
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(a)

(b)

Figure 25: Vertical velocity estimates (Vz) obtained by fusing barometer and IMU measurements. (a) Without
barometer drift. (b) With barometer drift.
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An immediate continuation of this work includes introducing the pose and velocity estimates in the feed-
back control loop to stabilize the MAV’s position. We are also interested in conducting further experimental
validations of the methods proposed in this work. Since this study was limited to electric tower bodies with
rectangular cross-sections, it would also result interesting to extend the methodology to the complete structure,
including the head of the tower, and to more complex tower geometries.

11 Appendix

11.1 Stability analysis and gain tuning of the altitude observer
To analyse the stability of our proposed altitude observer formulation from Eq. (19), we first deduce error
dynamics of the system. Modelling the barometer measurements as zbaro = z + bz and the laser estimates as
zlaser = z, and substituting in Eq. (20), one obtains

zn = z − λnb̃z, 0 ≤ λn ≤ 1, n = 1, 2, (37)

where b̃z = b̂z − bz is the bias estimation error. Substituting this in Eq. (19), and subtracting the vertical
dynamics from Eq. (17), one obtains the error dynamics of the system as{

˙̃z = −kz(z̃ + λ1b̃z)
˙̃
bz = −kbz (z̃ + λ2b̃z)

(38)

where z̃ = ẑ − z. In matrix form, this is expressed as[
˙̃z

˙̃
bz

]
=

[
−kz −λ1kz
−kbz −λ2kbz

] [
z̃

b̃z

]
= Ã

[
z̃

b̃z

]
(39)

Stability analysis follows, by analysing the roots of the characteristic polynomial of Eq. (39), obtained from
solving det(sI− Ã) = 0. This results in

s2 + (λ2kbz + kz)s+ kbzkz(λ2 − λ1) = 0, λ1 6= λ2, (40)

where the λ1 6= λ2 condition avoids a null constant term in the polynomial. Then, exponential convergence
is guaranteed if the two roots of the characteristic polynomial have negative real parts. This can be achieved
with a simple pole placement approach. Recalling the characteristic polynomial for a second order system

s2 + 2ζωns+ ω2
n = 0 ζ, ωn > 0, (41)

where the damping ratio ζ and the natural frequency ωn define the closed-loop poles, which have negative real
part if ζ, ωn > 0. The observer gains are then determined by comparing the coefficients of both polynomials.
This results in two cases depending on the value of λ2.

On one hand, if λ2 = 0, then solving by substitution one obtains
kz = 2ζωn

kbz = − ω2
n

λ1kz
, λ2 = 0, 0 < λ1 ≤ 1.

(42)

In this simple case, to determine (kz, kbz ), one must first choose the closed-loop poles for the desired system
response, which defines the value of ζ and ωn, and then set λ1 to the desired value. This was the case considered
in the simulations, where ζ = 1.1 (overdamped response), ωn = 3.0 and λ1 = 1 lead to (kz, kbz ) = (6.6,−1.36).
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On the other hand, if λ2 > 0, this leads to a quadratic expression for kz and kbz , obtaining
kz =

2ζωn ∓
√

(2ζωn)2 − 4λ2ω2
n

λ2−λ1

2

kbz =
2ζωn ±

√
(2ζωn)2 − 4λ2ω2

n

λ2−λ1

2λ2
, λ2 > 0, λ1 6= λ2.

(43)

Then, to avoid complex gains, the discriminant ∆ must be nonnegative. That is,

∆ = (2ζωn)2 − 4λ2ω
2
n

λ2 − λ1
≥ 0, (44)

leading to the following inequality

ζ2 ≥ λ2
λ2 − λ1

, (45)

which conditions the values of ζ and λn. In this case, a simple way of tuning the gains is to first choose the
closed-loop poles, obtaining ζ and ωn, then set λ2 to the desired value and finally set λ1 ensuring that Eq. 45
holds.
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