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. A corollary is a constructive representation of p as a sum of squares (SOS) endowed with the Schmüdgen's Positivstellensatz structure.

1. Introduction. We consider real polynomials p P Prxs " Prx 1 , . . . x d s which are moreover positive over a semi-algebraic set K Ă R d . These polynomials can be written as sum of squares (SOS) with the Schmüdgen's (resp. Putinar's) Positivstellensatz [START_REF] Schmüdgen | The K-moment problem for compact semi-algebraic sets[END_REF] (resp. [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF]). A non exhaustive list of additional references is [START_REF] Powers | An algorithm for sums of squares of real polynomials[END_REF][START_REF] Marshall | Positive polynomials and sums of squares[END_REF][START_REF] Nie | On the complexity of Putinar's Positivstellensatz[END_REF][START_REF] Laurent | An effective version of schmüdgen's positivstellensatz for the hypercube[END_REF][START_REF] Schweighofer | On the complexity of Schmüdgen's positivstellensatz[END_REF]. For reasons soundly explained in the work of Lasserre and coauthors [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF][START_REF] Lasserre | An introduction to polynomial and semi-algebraic optimization[END_REF][START_REF] Lasserre | Sos approximations of nonnegative polynomials via simple high degree perturbation[END_REF], there is nowadays a strong impetus to transfer these theoretical characterizations to practical algorithms, in particular because it is way to construct practical certificates of positivity [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF][START_REF] Davis | Dual certificates and efficient rational sum-of-squares decompositions for polynomial optimization over compact sets[END_REF][START_REF] Després | Computation of sum of squares polynomials from data points[END_REF][START_REF] Charles | Algorithms for positive polynomial approximation[END_REF]. The applications [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF] range from finding the global minimum of a function on a subset of R n , to pricing exotic options in Mathematical Finance or computing Nash equilibria, or recently to using such tools in scientific computing [START_REF] Charles | Algorithms for positive polynomial approximation[END_REF]. In this work we focus on the justification of the family of convex algorithms that were proposed in [START_REF] Després | Computation of sum of squares polynomials from data points[END_REF] for general semi-algebraic sets K. These algorithms are based on the construction of a dual function denoted as Gpλq, where by construction G is convex on its domain. The fonction G is constructed from the values at data points of a given polynomial p that one tries to write as a SOS. However the proof that G is coercive (that is infinite at infinity) was conditional in [START_REF] Després | Computation of sum of squares polynomials from data points[END_REF], and this condition was not explicitly stated (except in one dimension because it is much simpler). In particular the choice of the interpolation points at which one collects the polynomial values was not addressed. Therefore, in some sense, the algorithms proposed in [START_REF] Després | Computation of sum of squares polynomials from data points[END_REF] were not fully justified, even if the numerical results showed their usefulness. The reader interested by calculations of SOS with these gradient descent algorithms is advised to refer to the above reference where he will find numerical illustrations and examples.

Our goal is to focus on the case of the hypercube K " r0, 1s d and to provide a simple condition on p such that λ Þ Ñ Gpλq is coercive (infinite at infinity). It has the consequence that G has a global minimum, which justifies on the hypercube the gradient descent algorithms proposed in [START_REF] Després | Computation of sum of squares polynomials from data points[END_REF]. As a corollary, it yields a constructive representation of p as a sum of squares (SOS) endowed with the Schmüdgen's Positivstellensatz [START_REF] Schweighofer | On the complexity of Schmüdgen's positivstellensatz[END_REF][START_REF] Marshall | Positive polynomials and sums of squares[END_REF] structure.

We need some notations before describing the main result. The subset of polynomials of degree less than or equal to m ě 1 is denoted by P m rxs, where the (non standard) convention is that the degree is the maximal univariate degree of the constituting monomials. One has P m rxs " Span pP m rx 1 s ˆ¨¨¨ˆP m rx d sq: for exemple the degree of x 2 y 2 `x `y is equal to 2. This is mainly for the simplicity of the notations by tensorization used in this work, and we do not believe it is a fundamental restriction. Inspired by Schmügden's Putinar's Positvstellensatz, we will use the characterization of ˚Sorbonne-Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions (LJLL), F-75005 Paris, France 1 the hypercube (1.1)

K " x P R d such that g j pxq ě 0 for j P t0, 1u d ( where g j pxq " Π d i"1 x ji i p1 ´xi q 1´ji and j " pj 1 , . . . , j d q with j i P t0, 1u for all 1 ď i ď d. The number of different functions g j and equal to j ˚" 2 d . We will use the alternative notation (1.2)

K " x P R d such that g j pxq ě 0 for 1 ď j ď j ˚( .

Another possibility for the characterization of the hypercube is to consider the functions g 2j´1 pxq " x j and g 2j pxq " 1 ´xj , which makes 2d functions instead of 2 d functions (it makes the same number of functions in dimension d " 2). However it would required to work under the umbrella of the Putinar's Positivstellensatz, which would be a much more ambitious task not considered hereafter. That is why we will continue with the structure (1.1-1.2). The convex set of non-negative polynomials of maximal degree n on K is (1.3) P m K,`r xs " tp P P m rxs such that ppxq ě 0 for any x P Ku .

Inspired by Schmügden's Positvstellensatz, we seek a representation of polynomials in P 2n`1 K,`r xs (that is m " 2n `1) as (1.4) p " jÿ j"1

g j ˜iÿ i"1 q 2 ij ¸" iÿ i"1 ˜jÿ j"1 g j q 2 ij ¸" jÿ j"1 iÿ i"1 g j q 2 ij
where q ij P P n rxs for all i, j and where the maximal number i ˚of squares is specified later. Of course all polynomials (1.4) belong to P m K,`r xs. An elementary exemple which will have its importance in the core of this work is the unit constant polynomial epxq :" 1. It admits the representation (1.4) by taking i ˚" 1 and q 1j pxq " 1 for all j. Indeed one has the identity (1.5) jÿ j"1 g j pxq "

d ÿ i"1 ÿ jiPt0,1u Π d i"1 x ji i p1 ´xi q 1´ji " Π d i"1 px i `p1 ´xi qq " 1 d " 1 " epxq.
To treat more general polynomials, we consider the canonical basis made of monomials with the multiindex notation α " pα 1 , . . . , α d q P N d , |α| " max pα 1 , . . . , α d q and x α " x α1 1 . . . x α d d . The polynomials have the expansion q ij pxq " ř |α|ďnj c ij α x α and one can store the coefficients in a vector of coefficients written as c ij " pc ij α q α P R pn`1q d . We gather the coefficients c i1 , c i2 , ..., c i,j˚i n a single column vector (called a Cholesky factor) U i " `ci1 , c i2 , . . . , c i,j˚˘t P R j˚pn`1q d . The Hankel matrix D P M pn`1q d pRq is defined as Dpxq α,β " x α x β for |α|, |β| ď n. We define the block polynomial-valued symmetric matrix Bpxq " Bpxq t P M j˚pn`1q d pRq

(1.6)
Bpxq " diag ´g1 pxqDpxq, , . . . , g jj ˚pxqDpxq

¯.

This matrix is a block diagonal localizing matrix [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF]. The first square diagonal block is g 1 pxqDpxq until the last square diagonal block which is g j˚p xqDpxq. The block non diagonal terms are set to zero. With these notations the right hand side of (1.4) can be written conveniently as

(1.7) iÿ i"1 ˜jÿ j"1 g j pxqq 2 ij pxq ¸" iÿ i"1 xBpxqU i , U i y .
Next we follow [START_REF] Després | Computation of sum of squares polynomials from data points[END_REF] by introducing unisolvent interpolation points px r q 1ďrďr˚w hich help to achieve further localization. A unisolvent set of points px r q 1ďrďr˚i s such that any polynomial p P P n rXs is uniquely determined by its values y r " ppx r q for all r. In the case of the hypercube, the points will constructed by tensorization and so will naturally be unisolvent. By definition the number of these points will be equal to r ˚" dim `P2n`1 rxs ˘" p2n `2q d . Note that with our previous notations one has r˚" p2n `2q d " j ˚pn `1q d , this is why we will use only one notation for r ˚and for j ˚pn`1q d even if it can be different quantities in a more general case. The evaluation of Bpxq at interpolation points is denoted as B r " Bpx r q P M r˚p Rq.

The evaluation of ppxq at interpolation points is denoted as y r " ppx r q. Let us define the domain

(1.8) D " # λ P R r˚s uch that I `rÿ r"1 λ r B r ą0 + Ă R r˚.
Clearly D ‰ H since it contains at least a small ball centered on λ " 0.

Definition 1.1. The function λ Þ Ñ Gpλq is constructed as follows: if λ P D we set Gpλq " tr

" pI `řrr "1 λ r B r q ´1ı `řrr "1 y r λ r ; if λ R D we set Gpλq " `8.
The value of Gpλq is the sum of the inverse of the eigenvalues of the matrix I `řrr "1 λ r B r , plus a linear contribution which depends on the value of the polynomial p at data points. This function is obtained in [START_REF] Després | Computation of sum of squares polynomials from data points[END_REF] as a dual formulation of (1.4). Two fundamental and general properties follow. Lemma 1.2. Assume G has an extremal point in D. Then p has a SOS representation. Proof. To synthesize the notations, we introduce the matrix valued function λ P R r˚Þ Ñ M pλq " I `řrr "1 λ r B r and the scalar product between real vectors a, b " ř rr "1 a r b r . Then G rewrites as Gpλq " trpM pλq ´1q ` y, λ . Using the differential formula dM ´1pλq " ´M ´1pλqdM pλqM ´1pλq, the gradient of G against a vector µ " pµ 1 , . . . , µ r˚q is (1.9) ∇Gpλq, µ " ´tr ˜M ´1pλq ˜rÿ r"1

µ r B r ¸M ´1pλq ¸` y, µ .
At an extremal point λ e P D, one has that the gradient vanishes ∇Gpλ e q " 0. Let us consider such an extremal point λ e and set (1.10) U e " M pλ e q ´1 P M r˚p Rq.

We also set U i " U e e i P R r˚w here the e i P R r˚a re the r ˚unit vectors in R r˚. The gradient identity (1.9) yields that 0 " ´trpU e B r U e q `yr " ´řri "1 B r U i , U i `yr . This is directly equivalent to the SOS formulas (1.4-1.7) since the points px r q are unisolvent by hypothesis.

Lemma 1.3. G is convex in D.
Proof. For λ P D in the domain (1.8) then M pλq is symmetric, positive and so is invertible. The Hessian matrix of G can be evaluated as

∇ 2 Gpλqµ, µ " tr ˜M ´1pλq ˜rÿ r"1 µ r B r ¸M ´1pλq ˜rÿ r"1 µ r B r ¸M ´1pλq ¸.
Since M pλq is positive over D, then ∇ 2 Gpλqµ, µ ě 0 for all µ, therefore G is convex over D.

The convex function G depends on three ingredients which are the degree m " 2n `1, the position of the interpolation points px r q 1ďrďr˚a nd the polynomial p. The minimum of p over K will be denoted as p ´" min xPK ppxq ą 0. It is now possible to state the main result of this work.

Theorem 1.4. Take the px r q 1ďrďr˚o btained by tensorization of the points 1 2 ´1 `cos g 2n`1 π ¯P r0, 1s for 0 ď g ď 2n `1, that is tx r u 1ďrďr˚"

! 1 2 ´1 `cos g 2n`1 π ¯)d 0ďgď2n`1
.

Then these points are nearly optimal, in the sense that there exists a constant C d ą 0 such that if a polynomial p P P m K,`r xs satisfies the inequality

C d }p} W 2,8 pKq p1`log mq 2d m 2 ď p
´, then G is coercive (infinite at infinity), has a minimum in D and p admits the SOS representation (1.4) given by (1.10).

Some points are worthwhile to comment. The first point is that even if the result has a flavor of similar results obtained in real algebraic geometry [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF][START_REF] Marshall | Positive polynomials and sums of squares[END_REF], the proof proposed in this work is a combination of convex analysis in finite dimension with purely analytical techniques to prove the main stability inequality. The second point is that the main stability inequality is inherently attached to interpolation points based on Chebyshev polynomials. More precisely the interpolation are constructed from the roots of the third and fourth kind Chebyshev polynomials of degree n. The log m term in the Theorem directly comes from the Lebesgue stability constant of Chebyschev interpolation technique [START_REF] Devore | Constructive approximation[END_REF]. The third point is that the condition of the Theorem is non optimal by a factor plog mq 2d with respect to the estimate obtained recently in [START_REF] Laurent | An effective version of schmüdgen's positivstellensatz for the hypercube[END_REF] for an effective version of Schmüdgen's Positivstellensatz for the hypercube (this is why the points are said to be nearly optimal). Our interpretation is that it is linked to the numerical construction of the method with interpolation points x r . It is also non optimal in dimension d " 1 because one can prove directly the scaling log m instead of plog mq 2 , see Remark 6.1. An illustration is proposed in Figure 1. The proof is organized as follows. In Section 2, we provide more explanations on the function G. Section 3 is dedicated a simple inequality that a polynomial p should satisfy so that G is coercive. Then in Section 4 and 5, we prove the stability estimates required for the inequality of Section 3 to be strict. The end of the proof of the Theorem is in Section 6, together with additional final remarks. For the sake of the completeness of this work, the appendix gathers basic facts about Chebyshev polynomials and Chebyshev interpolation.

More properties of the function G.

The function G is defined in [START_REF] Després | Computation of sum of squares polynomials from data points[END_REF] by a duality argument which is standard [START_REF] Boyd | Convex optimization[END_REF][START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms[END_REF][START_REF] Burer | A nonlinear programming algorithm for solving semidefinite programs via lowrank factorization[END_REF][START_REF] Malick | A dual approach to semidefinite least-squares prob[END_REF][START_REF] Henrion | Projection methods for conic feasibility problems: applications to polynomial sum-ofsquares decompositions[END_REF]. The strategy explored in this work is to find conditions such that G is coercive (infinite at infinity). This is a common strategy in convex analysis in finite dimension [START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms[END_REF], nevertheless it seems original with respect to the literature [START_REF] Boyd | Convex optimization[END_REF][START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms[END_REF][START_REF] Burer | A nonlinear programming algorithm for solving semidefinite programs via lowrank factorization[END_REF][START_REF] Malick | A dual approach to semidefinite least-squares prob[END_REF][START_REF] Henrion | Projection methods for conic feasibility problems: applications to polynomial sum-ofsquares decompositions[END_REF], except [START_REF] Després | Computation of sum of squares polynomials from data points[END_REF] from which this strategy is originated when applied to the calculation of SOS from data points. The proof can be decomposed in the verification of two separate properties. The first property consists in showing that Gpλq Ñ `8 when λ Ñ σ P BD is a point that tends to σ which is on the boundary at finite distance of the domain. This is the easy part.

Lemma 2.1 (First property). Gpλq Ñ `8 when λ Ñ σ P BD. Proof. Since σ P BD then M pσq ľ 0 is a non negative matrix with a zero eigenvalue. By continuity of the eigenvalues of M pλq for λ P D, then at least one eigenvalue tends to zero (being that all eigenvalues are positive). Since the linear part is bounded for λ in the vicinity of σ, the dominant term in Gpλq is the sum of the inverse of the eigenvalues, which tends to `8. This is the claim.

To formulate the second property which is the involved part of the proof, we need the cone at infinity (2.1)

C "

# δ P R r˚s uch that rÿ r"1 δ r B r ľ 0. + .
The cone at infinity is the ensemble of directions δ such that M ptδq ą 0 for all t ě 0. This set is closed. We will also write C ˚" tδ P C such that δ ‰ 0u. It is a natural and basic fact in convex analysis in finite dimension that a convex function that satisfies the first and second properties has an extremal point in its domain [START_REF] Rockafellar | Convex analysis[END_REF] (an additional requirement is that the function is proper and closed, which is evident in our case [START_REF] Rockafellar | Convex analysis[END_REF][START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms[END_REF]). So our efforts in this work are now focused on the establishment of the second property.

Lemma 2.3. The second property is equivalent to: δ P C ˚ùñ y, δ ą 0. Proof. The proof is in two parts. ùñ: Assume that Gptδq Ñ `8 where t Ñ `8 and δ P C ˚. For t ą 0 and δ P C, then I ă M ptδq so M ptδq ´1 is bounded uniformly with respect to t P r0, 8q. That is 0 ă trpM ptδq ´1q ă I. It yields that lim tÑ`8 t y, δ " `8 therefore y, δ ą 0. ðù: The reciprocal part is immediate since t Þ Ñ Gptδq is the sum of a non negative part trpM ptδq ´1q and of a linear part. Since the linear part tends to infinity for large t, then Gptδq tends to infinity as well.

If one replaces the strict inequality with a large inequality one obtains a weaker condition. Definition 2.4 (Third property). It writes as: δ P C ùñ y, δ ě 0.

Lemma 2.5. The third property holds if and only if p P P m pxq characterized by ppx r q " y r for 1 ď r ď r ˚admits the representation (1.4).

Proof. As shown by the generalized Farkas lemma [START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms[END_REF], proving the third property is equivalent to proving (1.4). Since it is very classical we will not reproduce the analysis (one can refer for instance to [5, proof of Proposition 3.4]).

Clearly the second property implies the third one, and there seems to be just a minor difference between the two ones. In the context of this work, they are actually very different. The second property immediately yields the existence of a critical point λ e which can be calculated with the gradient descent numerical algorithms detailed in [START_REF] Després | Computation of sum of squares polynomials from data points[END_REF]. On the contrary, with the third one, the existence of λ e is not guaranteed (or perhaps λ e is a point at infinity): the generalized Farkas lemma that one can invoke is only an equivalence principle, so it is not of immediate help to prove existence of a critical point.

3. An interesting inequality. To prove the second property, let us analyze y, δ " rÿ r"1 ppx r qδ r where δ P C.

We remind the reader that p ´is the minimum of p over K. Proof. One has the decomposition p " p ´`q where q P P m K,`r xs. Since q is non negative over K, it is convenient to perform an approximation with any kind of method which preserves the polynomial structure and the non negativity. Such a method could be approximation multidimensional Bernstein polynomials b α pxq " Π d j"1 m! αj !pm´αj q! x α1 j p1 ´xj q m´α1 where α " pα 1 , . . . , α d q and 0 ď α j ď m for all j. However this is non optimal. Indeed the error is smaller if one uses tensorization of Jackson kernel [START_REF] Devore | Constructive approximation[END_REF].

Firstly we use a technical idea from the recent work [START_REF] Laurent | An effective version of schmüdgen's positivstellensatz for the hypercube[END_REF][Theorem 8 and Lemma 9] that we detail in the appendix. We modify a little the proof of [START_REF] Laurent | An effective version of schmüdgen's positivstellensatz for the hypercube[END_REF] because we use the characterization ppxq " xa 2 pxq `p1 ´xqb 2 pxq of polynomials p P P r0,1s,`r xs over r0, 1s with a, b polynomials of convenient orders (instead of ppxq " a 2 pxq `xp1 ´xqb 2 pxq as in [START_REF] Laurent | An effective version of schmüdgen's positivstellensatz for the hypercube[END_REF]). It yields that the approximation of q with the Jackson kernel method is denoted as r q and it is a sum of squares by construction [START_REF] Laurent | An effective version of schmüdgen's positivstellensatz for the hypercube[END_REF]. One obtains

(3.2) δ P D ùñ rÿ r"1 r qpx r qδ r ě 0.
Secondly the error estimate of this approximation can be taken in 1D from [START_REF] Devore | Constructive approximation[END_REF][Theorem 2.2], [START_REF] Weiß E | The kernel polynomial method[END_REF] or [START_REF] Despres | Uncertainty propagation; intrusive kinetic formulations of scalar conservation laws[END_REF][Exemple 2.2]. One uses the standard substitution f ptq " ppcot tq to transfer to algebraic prolynomials the approximation properties in L 8 norm already proved for trigonometric polynomials. The multidimensional generalization by tensorization is immediate and detailed in the appendix. One obtains

(3.3) }q ´r q} L 8 pKq ď C d m 2 }p} W 2,8 pKq .
Then, for δ P C, one can write using (3.2) and (3.3)

y, δ " p ´řrr "1 δ r `řrr "1 qpx r qδ r " p ´řrr "1 δ r `řrr "1 pq ´r qqpx r qδ r `řrr "1 r qpx r qδ r ě p ´řrr "1 δ r ´Cd m 2 }p} W 2,8 pKq ř rr "1 |δ r |
which is the claim.

Considering the inequality (3.1), our goal is to show firstly that ř rr "1 δ r ą 0 for non zero δ ‰ 0, and secondly that ř rr "1 |δ r | is controlled by ř rr "1 δ r uniform with respect to δ. 4. Study of ř rr "1 δ r . In view of Lemma 2.5 and of the fact that the unit polynomial epxq :" 1 is a SOS (1.5), it is immediate that ř rr "1 δ r ě 0. This is why our objective hereafter is to show ř rr "1 δ r " 0 is not possible. The proposed proof is by contradiction. Proof. The reasoning is performed one step after the other. ' By definition of the localizing matrix (1.6) and of the cone at infinity (2.1), any δ P C satisfies (4.1) ÿ r δ r g j px r qppx r q 2 ě 0 @p P P n rxs, @j P t0, 1u d .

Next we use particular test polynomials wth the SOS structure (1.4). Taking all q ij equal to zero except one of them equal to one, one gets that ppxq " g j pxq is a SOS. One gets the inequalities ř r δ r g j px r q ě 0 for all j P t0, 1u d . Since ř r g j pxq " 1 as shown in (1.5), one obtains 0 ď ř jPt0,1u d ř r δ r g j px r q " ř r δ r " 0, therefore (4.2) ÿ r δ r g j px r q " 0, for all j P t0, 1u d .

These equalities are the first step of the reasoning below which is by iteration. ' Let make the assumption that (4.3) ÿ r δ r g j px r qpx α r q 2 " 0 for all |α| ď a where a ď n ´2 is a certain value. Note that (4.2) corresponds to a " 0. Take (4.4) p " x α r `εx α r b P P n rxs where b is a monomial of degree less or equal to two bpxq " x 2β for |β| ď 1. Then (4.1) and (4.3) in the limit of small |ε| yields ř r δ r g j px r qpx α r q 2 px β r q 2 " 0 for all |α| ď a and all |β| ď 1. This is exactly the starting assumption (4.3), but now |α| ď a `1. By iterations, one obtains (4.3) for a " n ´1. ' Next we modify the previous analysis with (4.4), but now b has the form bpxq " x β for |β| ď 1. It yields ř r δ r g j px r qpx α r q 2 x β r " 0 for all |α| ď n ´1 and all |β| ď 1. It can be rewritten as ř r δ r g j px r qx α r " 0 for all |α| ď 2n ´1. Since the functions g j generate by linear combination the monomials x γ r for all |γ| ď 1, one obtains This almost the claim since 2n " m ´1. ' By (4.1), one has the inequalities ř r δ r g j px r qpx α r q 2 ě 0 for all |α| ď n. Take γ such that |γ| ď 1. It is possible to find a linear combination with non negative weights w j pγq ě 0 such that x γ r " ř j w j pγqg j px r q. One gets (4.6) ÿ r δ r x γ r px α r q 2 ě 0 for all |α| ď n.

It is also possible to find a linear combination with non negative weights z j pγq ě 0 such that 1 ´xγ r " ř j z j pγqg j px r q. One gets ř r δ r p1 ´xγ r qpx α r q 2 ě 0 for all |α| ď n. Considering (4.5), one gets (4.7) ´ÿ r δ r x γ r px α r q 2 ě 0 for all |α| ď n.

Finally (4.6) and (4.7) yield ř r δ r px r qx α r " 0 for all |α| ď 2n `1 which is the claim. Lemma 4.2. Assume the interpolation points are obtained by tensorization of m `1 " 2n `2 one-dimensional points. Take δ P C ˚. Then ř r δ r ą 0.

Proof. One-dimensional interpolation points are denoted as y 0 ă y 1 ă ¨¨¨ă y m`1 . The tensorization yield pm `1q d points x j " py j1 , . . . , y j d q for j P N d with |j| ď m `1 which are unisolvent in the hypercube. In particular, if ř r δ r " 0, then the result of Lemma 4.1 yields that δ r " 0 for all 1 ď r ď r ˚. This is not possible. So it yields the claim by contradiction. where we already know that Apδ, 0q ą 0 for δ P C ˚. Since our goal is to compare ř rr "1 |δ r | and ř rr "1 δ r , it is natural to seek a bound on ε such that Apδ, εq ě 0.

We will consider tensorized interpolation points for which the Lagrange polynomials l r P P m rxs are correctly defined. These Lagrange polynomials are characterized by (5.2) l r px s q " δ rs .

Lemma 5.1. One has that Apδ, εq ě 0 for all δ P C if and only if

(5.3) qpxq " 1 ´εzpxq with zpxq " ř rr "1 l r pxqsignpδ r q can be written under the form (1.4). Proof. Apply Lemma 2.5.

Remark 5.2 (Why Lemma 5.1 is the pivotal point of the strategy of proof). This Lemma offers the opportunity to establish a connection between the construction of SOS and the stability properties of Chebyschev polynomials. In particular, in dimension d " 1, it is evident that if one chooses the interpolation points to be equal to the Chebyschev interpolation points, then the polynomial z is bounded by the Lebesgue stability constant Oplog mq of Chebyschev interpolation [START_REF] Devore | Constructive approximation[END_REF]. Then taking ε small enough guarantees that q is non negative over K " r0, 1s, which turns into the fact that q is a SOS by the Lukacs Theorem [START_REF] Szego | Orthogonal polynomials[END_REF]. The smallness condition on ε can be written as

(5.4) ε ă C 1 `log m
Another interpretation of the Lemma is that q is the perturbation of the polynomial x Þ Ñ 1 with a corrector term equal to εzpxq. Since 1 is evidently a SOS, it is natural to think that a perturbation technique could be used to establish directly that q is a SOS. To show that such a connection between Lemma 5.1 and Chebyschev polynomials holds in any dimension, we will make use of the Chebyshev polynomials of the third and fourth kind [START_REF] Mason | Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms[END_REF][START_REF] Mason | Near-minimax complex approximation by four kinds of Chebyshev polynomial expansion[END_REF][START_REF] Charles | Algorithms for positive polynomial approximation[END_REF]. These Chebyshev polynomials have degree equal to n. They satisfy the symmetry identity b n pxq " a n p1 ´xq and the identity (5.5) xa n pxq 2 `p1 ´xqb n pxq 2 " 1.

The polynomial xa n pxq has n distinct roots α k " 1`cos θ k 2 where θ k " 2k`1 2n`1 π for 0 ď k ď n, that is α k a n pα k q " 0 for 0 ď k ď n. The roots of p1 ´xqb n pxq are deduced by symmetry. There are denoted as β l " 1´cos θ l 2 where θ l " 2l 2n`1 π for 0 ď l ď n. These roots pα k q interlace with the roots pβ l q and the ensemble of all roots is (5.6)

tα k u 0ďkďn ď tβ l u 0ďlďn " " 1 `cos g 2n`1 π 2 * 0ďgď2n`1 .
The Lagrange interpolation polynomials based on the α k for 0 ď k ď n are l k pxq " Π 0ďs‰kďn px ´αs q Π 0ďs‰kďn pα k ´αs q .

Lemma 5.4 (Proof in the appendix). The Lagrange interpolation polynomials write as

l k pxq " p´1q k γ k sin θ k 2 cos `n `1 2 ˘θ cos θ 2 p2n `1q pcos θ ´cos α k q , where γ k " " 4 for 0 ď k ď n ´1, 2 for k " n. .
For notational convenience, let us define h 0 pxq " x, h 1 pxq " 1 ´x and

h j pxq " Π d i"1 a n ph ji px i qq for |j| ď 1.
If j i " 0 then a n ph ji px i qq " a n px i q. If j i " 1 then a n ph ji px i qq " a n p1 ´xi q " b n px i q.

Lemma 5.5. One has the identity ř |j|ď1 g j pxqh j pxq 2 " 1. Proof. It is the multiplication of (5.5) for all directions, that is for x " x 1 to x " x d .

For solving (5.3), we make a perturbation of the identity of Lemma 5.5 and consider the equation where q the given right hand side and the polynomials pu j q |j|ď1 P P n rxs 2 d are the unknowns. The equation is equivalent to (5.8)

ÿ |j|ď1 g j pxqh j pxqu j pxq " ´ε 2 zpxq ´1 2 ÿ |j|ď1 g j pxqu j pxq 2 .
The structure of this equation is interesting because the polynomials h j pxq oscillate a lot since they are constructed from Chebyshev polynomials. Usually, too much oscillations in the coefficients is a factor that deteriorates our ability to solve an equation. In this case, we will see that it is the opposite in the sense that the oscillations allow us to solve the equation (5.8).

Lemma 5.6. Let consider that the interpolation points px r q rr "1 are constructed from the tensorization of the 2n `2 points (5.6). Let b P P 2n`1 rxs. Then the equation ÿ |j|ď1 g j pxqh j pxqu j pxq " bpxq has a unique solution pu j q |j|ď1 P P n rxs 2 d which satisfies the bound

max |j|ď1 › › ? g j u j › › L 8 pKq ď C d plog nq d max 1ďrďr˚| bpx r q|.
Proof. Both sides of the equation are polynomials of degree ď 2n `1, so the equality is equivalent to point wise equalities at the interpolation points (5.9) ÿ |j|ď1 g j px r qh j px r qu j px r q " bpx r q, 1 ď r ď r ˚.

Since x r is build from tensorization of roots of Chebyshev polynomials, many terms vanish on the left hand side of (5.9). Considering for exemple the points pα i1 , α i2 , . . . , α i d q for 0 ď i 1 , . . . , i d ď n, all terms but one vanish on the left hand side. What remains writes as

p1´α i1 qa n p1´α i1 qˆ¨¨¨ˆp1´α i d qa n p1´α i d qˆu 1 pα i1 , . . . , α i d q " bpα i1 , . . . , α i d q for 0 ď i 1 , . . . , i d ď n,
that is (the notation is 1 " p1, . . . , 1q) u 1 pα i1 , . . . , α i d q " bpα i1 , . . . , α i d q p1 ´αi1 qa n p1 ´αi1 q ˆ¨¨¨ˆp1 ´αi d qa n p1 ´αi d q for 0 ď i 1 , . . . , i d ď n.

Since u 1 P P n rxs, one can calculate u 1 with tensorization of Lagrange polynomials l k . One gets

u 1 pxq " n ÿ i1"1 . . . n ÿ i d "1
bpα i1 , . . . , α i d q l i1 px 1 q . . . l i d px d q p1 ´αi1 qa n p1 ´αi1 q ˆ¨¨¨ˆp1 ´αi d qa n p1 ´αi d q , x " px 1 , . . . , x d q.

It is convenient to rescale this expression as

(5.10) ? 1 ´x1 . . . ? 1 ´xd u 1 pxq " n ÿ i1"1 . . . n ÿ i d "1 ? 1 ´x1 l i1 px 1 q p1 ´αi1 qa n p1 ´αi1 q ˆ¨¨¨ˆ? 1 ´xd l i d px d q p1 ´αi d qa n p1 ´αi d q ˆbpα i1 , . . . , α i d q
Using (A.6) one gets ˇˇˇ? 1 ´x1 l i1 px 1 q p1 ´αi1 qa n p1 ´αi1 q

ˇˇˇˆ¨¨¨ˆˇˇˇ? 1 ´xd l i d px d q p1 ´αi d qa n p1 ´αi d q ˇˇˇď C |i 1 ´l1 | `1 ˆ¨¨¨ˆC |i d ´ld | `1
where θ l d ď x d ď θ l d `1 for all 1 ď l ď d. This inequality is used in (5.10) with summation over all 1 ď i 1 , . . . , i d ď n. One gets (with a non optimal manipulations) ˇˇ?

1 ´x1 . . . ? 1 ´xd u 1 pxq ˇˇď ˜n ÿ i1"1 C i 1 `1 ¸d max 1ďrďr˚| bpx r q| ď r Cplog nq d max 1ďrďr˚| bpx r q|.
It is the claim after summation over the 2 d ´1 other values of j.

Lemma 5.7. There exists K d ą 0 such that if ε ă min `Kd plog nq ´2d , 1 2 ˘, then the equation (5.8) has a solution.

Proof. This can be proved with a classical fixed point method which writes (5.11)

ÿ |j|ď1 g j pxqh j pxqu k`1 j pxq " ´ε 2 zpxq ´1 2 ÿ |j|ď1 g j pxqu k j pxq 2 , k " 0, 1, 2, . . . ,
where the next iterate on the left hand side is the collection pu k`1 j q |j|ď1 P P n rxs 2 d . The initial value is taken as u d j " 0 for all |j| ď 1. Note that max 1ďrďr˚| zpx r q| " 1 by construction. The fixed point is convergent as easily shown below.

' Let us note w k " max |j|ď1 › › › ? g j u k j › › › L 8 pKq
. Using the previous Lemma, one has w 0 " 0 and

w k`1 ď `Cd plog nq d {2 ˘pε `w2 k q.
Let us consider the quadratic equation z " `Cd plog nq d {2 ˘pε `z2 q which is equivalent to z 2 ´bz `ε " 0 with b " Since 2ε ă 1 by hypothesis, it establishes the geometric convergence of the sequence which yields a solution to (5.8).

6. End of the proof and final remarks. . Then Lemma 5.7 yields the condition (6.1) ε " C d }p} W 2,8 pKq p ´m2 ă min ˆKd plog nq ´2d , 1 2

˙ă Q d p1 `log mq 2d
One recognizes the condition of the Theorem. Then the function G is naturally convex in finite dimension and infinite on the boundary of its domain. It is also infinite at infinity (in the direction of the cone at infinity). It is a basic fact in convex analysis [START_REF] Rockafellar | Convex analysis[END_REF] page 265] that such a proper closed convex function as a minimum in its domain. The rest of the proof is evident. Remark 6.1. By comparison of (5.4) and (6.1), the estimate of the Theorem is non optimal in dimension d " 1. Remark 6.2. In the definition of G, one can replace the identity matrix with any symmetric positive matrix. It changes the domain, however is does note change the cone at infinity and this is the main reason why all results generalize to more general functions G " tr " pA `řrr "1 λ r B r q ´1ı `řrr "1 y r λ r where A ą 0. Remark 6.3. In this work, the degree of a polynomial is defined as the maximal univariate degree of its constituting monomials. The main advantage is that it is naturally compatible with the tensorization techniques used at different parts of the proof. However it is probably not necessary. Lemma A.1. Take 2r ´2 " m. Then r q is correctly defined and r q P P m rxs.

Proof. With (A.3), then spθq can be expanded a polynomial with respect pcos θ 1 , . . . , cos θ d q " p2x 1 ´1, . . . , 2x d ´1q so r q is indeed a polynomial. By construction r q is of degree m with respect to all variables, so its full degree is m (with the definition of the degree made in this work).

Lemma A.2 (Proof of (3.2)). The polynomial r q has the representation (1.4).

Proof. By construction g µ pθq is non negative, that is g µ pθq ě 0 for all θ and µ. Thn the real polynomial k µ pxq " g µ p2x ´1q is non negative for 0 ď x ď 1. The Lukacs Theorem [START_REF] Szego | Orthogonal polynomials[END_REF] states that there exists two polynomials a µ , b µ P P n rxs (where m=2n+1) such that k µ pxq " xa µ pxq 2 `p1´xqb µ pxq 2 . Therefore g µc pθq in (A.3) can be expanded as a multiplication of d such terms (one for each direction in r0, 1s d ) times the coefficient w c rpµ c q ě 0. Therefore r q has the representation (1.4).

Next we establish a sharp bound on the difference q ´r q, which results from a sharp bound on r ´s. 

d i"1 K n pµ i q dµ
The sum is made of 2 d terms. Note that ş π 0 K n pµqdµ " 

`α1 µ 1 , . . . , θ d `αd µ d q ´2d rpθ 1 , . . . , θ d q " ÿ pα2,...,α d qPt´1,1u d´1 prpθ 1 `µ1 , θ 2 `α2 µ 2 , . . . q `rpθ 1 ´µ1 , θ 2 `α2 µ 2 , . . . q ´2rpθ 1 , θ 2 `α2 µ 2 , . . . qq `2 ÿ pα2,...,α d qPt´1,1u d´1 `rpθ 1 , θ 2 `α2 µ 2 , . . . q ´2d´1 rpθ 1 , θ 2 , . . . q
The absolute value of the first term in the right hand side is bounded by 2 d´1 C 1 pµ 1 q. Using the property at step d ´1, the absolute value of the second term is bounded by 2 ˆ2d´2 pC 2 pµ 2 q `¨¨¨`C d pµ d qq. It yields the claim.

With evident simplifications, one obtains the bound }r ´s} L 8 pr0,πs d q ď ż π 0 C 1 pµqK n pµ 1 qµ 1 `¨¨¨`ż A.2. Proof of Lemma 5.4. This is a very classical calculation in the theory of Chebyshev interpolation. Set T pxq " cΠ n s"0 px ´αs q where the constant c is still to specify. One has (A.4) l k pxq " T pxq px ´αk qT 1 pα k q By elimination of x " 1`cos θ 2 , one gets T pxq " dΠ n s"0 pcos θ ´cos α s q for a constant d P R. The right hand side is a polynomial of degree pn `1q with respect to cos θ. We note that cos `n `1 2 ˘θ cos θ 2 can also be written as a polynomial of degree pn `1q with respect to cos θ with the same roots cos α s . So one can write T pxq " cos `n `1 2 ˘θ cos θ 2 where the constant c is specified now. It can be rewritten as First case: take x " α k for 0 ď k ď n ´1. One gets that a n pα k q " 0 and that b n pα k q " sinppn`1 2 q 2k`1 2n`1 πq sin θ k 2 " p´1q k sin θ k 2 . So T 1 pα k q " p´1q k pn`1 2 q sin θ k 2 . Second case: for k " n, one has θ n " π and x " α n " 0 . The definition 5.3 of a n yields that a n p0q " p´1q n p2n `1q. So (A.5) T 1 pα n q " p´1q n `n `1 2 sin θn 2

`1 2 p´1q n p2n `1q " p´1q n p2n `1q.

Plugging in (A.4) yields l k pxq " cos `n `1 2 ˘θ cos θ This is the claim of Lemma 5.4 for 0 ď k ď n´1. For k " 2, there is an extra factor 2 in the denominator due to (A.5).

ˇˇˇ? 1 ´x l k pxq p1 ´αk qa n p1 ´αk q ˇˇˇď C p2n `1q|θ k ´θ| .

First case: let us assume the condition θ l ď θ ď θ l`1 together with l ă k ´2. Then p2n `1q|θ k ´θ| ě p2n `1q|θ k ´θl`1 | " 2π|k ´l ´1| ě cp|k ´l| `1q where c ą 0, which yields (A.6).

Second case: one still considers θ l ď θ ď θ l`1 but now k `1 ă l. One gets p2n `1q|θ k ´θ| ě p2n `1q|θ k ´θl | " 2π|k ´l| ě cp|k ´l| `1q where c ą 0, which also yields (A.6).

Third case: the remaining case is θ l ď θ ď θ l`1 with l " k or l " k ´1. Going back to (A.7), one remarks that ˇˇˇˇc os `n `1 2 ˘θ cos θ ´cos α k ˇˇˇˇ" ˇˇˇˇc os `n `1 2 ˘θ ´cos `n `1 2 ˘αk cos θ ´cos α k ˇˇˇˇď n `1 2 .

So ˇˇ?

1´x l k pxq p1´α k qanp1´α k q ˇˇď 2 which yields (A.6) because l " k or l " k ´1. Finally the constant C in (A.6) is the maximum of the three cases.
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 221 d plog nq d . The discriminant is ∆ " b 2 ´4ε. It is positive ∆ ą 0 under the condition of the Lemma. The smallest root is z ´" b´?∆ 2ε b`?∆ ď 2ε b . Now let us assume that z k ă z ´for some k ě 0, which is already true for k " 0 since z 0 " 0. Then w k`1 ´z´ď `Cd plog nq d {2 ˘pw 2 k ´z2 ´q ă 0, therefore the whole sequence is uniformly bounded w k ă z ´for all k. ' To show the convergence, we make the difference of two iterates (5.11) ÿ |j|ď1 g j pxqh j pxq ´uk`1 The norm of the difference is written as e k " max |j|ď1 › › › ? g j pu k`Using the uniform bound and the previous Lemma, one obtains e k`1 ď C d plog nq d z ´ek ď C d plog nq d 2ε C d plog nq d e k ď 2εe k .
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 0 d pµqK n pµ d qµ d . Lemma A.4 (Proof of (3.3)). One has the bound }q ´r q} L 8 pKq ď C d m 2 }p} W 2,8 pKq . Proof. The error is the sum of d terms which can all be treated with the one-variable bounds of [7, Chapter 5-Section 2, pages 202 to 204]. The second modulus of continuity [7, Theorem 2.2 204] (evaluated with respect to the trigonometric variable θ P r0, πs) is bounded by }p} W 2,8 pKq {n 2 ď C}p} W 2,8 pKq {m 2 . It ends the proof.

2 x ´αk p´1q k 2 sin θ k 2n ` 1 "cos `n `1 2 ˘θ cos θ 2 cos θ ´cos θ k p´1q k 4 sin θ k 2n ` 1 ,

 2121 0 ď k ď n ´1.

  The bound is just a natural tensorization of [7, Theorem 2.2 page 204]. However since the author is not aware of such a result in the literature, the proof is detailed. The tensorization of the identity [7, top of page 203] shows that one has ¨ÿ pα1,...,α d qPt´1,1u d rpθ 1 `α1 µ 1 , . . . , θ d `αd µ d q 'Π

	ż
	spθq "
	r0,πs d

  One has Cpµq ď 2 d´1 pC 1 pµ 1 q `¨¨¨`C d pµ d qq.Proof. The result is proved by iteration on with respect to the dimension parameter d. ' For d " 1, the claim is a triviality. ' Assume the property holds for d ´1 ě 1. One can write

				1 2 . One gets the error formula
	ż		
	spθq ´rpθq "		
	r0,πs Let us set		
	Cpµq " max θPr0,πs d	ˇˇˇˇˇÿ pα1,...,α d qPt´1,1u ˇˇˇˇˇ,	µ P r0, πs d ,
	and		
			ˇˇˇˇˇÿ
	C i pσq " max θPr0,πs d	αiPt1,1u
			ÿ	`rpθ 1
	pα1,...,α d qPt´1,1u d

d ¨ÿ pα1,...,α d qPt´1,1u d rpθ 1 `α1 µ 1 , . . . , θ d `αd µ d q ´2d rpθ 1 , . . . , θ d q 'Π d i"1 K n pµ i q dµ. d

rpθ 1 `α1 µ 1 , . . . , θ d `αd µ d q ´2d rpθ 1 , . . . , θ d q rpθ 1 , . . . , θ i´1 , θ i `αi µ, θ i`1 , . . . , θ d q ´2rpθ 1 , . . . , θ d q ˇˇˇˇˇ, σ P r0, πs.

Lemma A.3.
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Appendix A. Technical material on polynomials. The technical material is displayed for the sake of completeness of this work.

A.1. Proof of (3.2)- (3.3). Let q P P m K,`r xs and make the change of variables θ " pθ 1 , . . . , θ d q P T d :" r0, 2πs d with x i " 1`cos θi 2 P r0, 1s for 1 ď i ď d. We consider rpθq " qpxq which a non negative trigonometric polynomial defined in the torus T d " r0, 2πs d in dimension d. By construction it is even with respect to all variables rpθ 1 , θ 1 , . . . , θ d q " rp˘θ 1 , ˘θ2 , . . . , ˘θd q for all pθ 1 , . . . , θ d q P T d .

One will make use of the monovariate Jackson kernel [START_REF] Devore | Constructive approximation[END_REF] which is

The Jackson kernel is a non negative trigonometric polynomial

The Jackson transformed of r is spθq "

Since r is even in all variables, it can be rewritten as

Thanks to (A.1), the trigonometric polynomial g µ pθq " K n pθ ´µq `Kn pθ `µq can be expanded as finite linear combination of cosine modes wrt θ multiplied by cosine modes wrt µ. Note r is also finite linear combination of cosine modes wrt µ. We note g µ pθq " Π d i"1 g µi pθ i q where θ " pθ 1 , . . . , θ d q and µ " pµ 1 , . . . , µ d q, so that one can write

Here we use an idea that we found in [START_REF] Laurent | An effective version of schmüdgen's positivstellensatz for the hypercube[END_REF]. The idea is to replace the integral with a quadrature formula with positive weights and with sufficiently many quadrature points so that it is exact for all modes in the integral (A.2). The result can be expanded as

with the quadrature points denoted as µ c , the weights denoted as w c ą 0 and the function g µc pθq being the result of the multiplication of (A.3) for all directions. The approximation of q that we consider is denoted as r qpxq " spθq.

Note that r q is the same as the one used in (3.2).

A.3. Bound on Chebyshev interpolation polynomials. Let 0 ď i ď n and 0 ď x ď 1.

Lemma A.5. There exists a constant C ą 0 (independent of x " 1`cos θ

2

, n and k) such that (A.6) ˇˇˇ? 1 ´x l k pxq p1 ´αk qa n p1 ´αk q ˇˇˇď C 1 |k ´l| `1

where θ l ď θ ď θ l`1 .

Proof. We use the correspondance x " 1`cos θ 2 " cos 2 θ 2 and α k " 1`cos θ k