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COERCIVITY OF THE COMPUTATION OF SUM OF SQUARES FROM DATA
POINTS: THE CASE OF THE HYPERCUBE

BRUNO DESPRES*

Abstract. The goal of this work is to provide a simple condition on a multivariate polynomial p such that the dual
function A — G(A) defined in a previous work [5] is coercive (infinite at infinity). It is based on the fact that data points
obtained from tensorization of the roots of the third and fourth kind Chebyshev polynomials possess a strong stability
property, so they are (nearly) optimal. The stability property is fundamentally connecte to the Lebesgue stability constant
of Chebyshev interpolation. It has the consequence that G has a global minimum, which justifies on the hypercube the
gradient descent algorithms proposed in [5]. A corollary is a constructive representation of p as a sum of squares (SOS)
endowed with the Schmiidgen’s Positivstellensatz structure.

Key words. Positive polynomials, sum of squares, convex analysis, positive interpolation.

AMS subject classifications. 90C30, 65K05, 90C25

1. Introduction. We consider real polynomials p € P[x]| = P[x1,...x4] which are moreover
positive over a semi-algebraic set K c R?. These polynomials can be written as sum of squares (SOS)
with the Schmiidgen’s (resp. Putinar’s) Positivstellensatz [22] (resp. [20]). A non exhaustive list of
additional references is [19, 15, 18, 13, 23]. For reasons soundly explained in the work of Lasserre and
coauthors [10, 11, 12], there is nowadays a strong impetus to transfer these theoretical characterizations
to practical algorithms, in particular because it is way to construct practical certificates of positivity
[10, 4, 5, 3]. The applications [10] range from finding the global minimum of a function on a subset
of R™, to pricing exotic options in Mathematical Finance or computing Nash equilibria, or recently to
using such tools in scientific computing [3]. In this work we focus on the justification of the family of
convex algorithms that were proposed in [5] for general semi-algebraic sets K. These algorithms are
based on the construction of a dual function denoted as G(\), where by construction G is convex on its
domain. The fonction G is constructed from the values at data points of a given polynomial p that one
tries to write as a SOS. However the proof that G is coercive (that is infinite at infinity) was conditional
in [5], and this condition was not explicitly stated (except in one dimension because it is much simpler).
In particular the choice of the interpolation points at which one collects the polynomial values was
not addressed. Therefore, in some sense, the algorithms proposed in [5] were not fully justified, even
if the numerical results showed their usefulness. The reader interested by calculations of SOS with
these gradient descent algorithms is advised to refer to the above reference where he will find numerical
illustrations and examples.

Our goal is to focus on the case of the hypercube K = [0,1]¢ and to provide a simple condition
on p such that A — G(A) is coercive (infinite at infinity). It has the consequence that G has a global
minimum, which justifies on the hypercube the gradient descent algorithms proposed in [5]. As a
corollary, it yields a constructive representation of p as a sum of squares (SOS) endowed with the
Schmiidgen’s Positivstellensatz [23, 15] structure.

We need some notations before describing the main result. The subset of polynomials of de-
gree less than or equal to m > 1 is denoted by P™[x], where the (non standard) convention is
that the degree is the maximal univariate degree of the constituting monomials. One has P™[x] =
Span (P™[x1] x -+ x P™[z4]): for exemple the degree of 2%y? + x + y is equal to 2. This is mainly for
the simplicity of the notations by tensorization used in this work, and we do not believe it is a fundamen-
tal restriction. Inspired by Schmiigden’s Putinar’s Positvstellensatz, we will use the characterization of
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the hypercube
(1.1) K = {x € R? such that gj(x) > 0 for j € {0,1}}

where g;(x) = 1L 13:J1(1 — )t and j = (j1,...,7q4) with j; € {0,1} for all 1 < i < d. The number of
different functlons g; and equal to jy = 2¢. We will use the alternative notatlon

(1.2) K= {x € R? such that gi(x)=0for1<j< j*}.

Another possibility for the characterization of the hypercube is to consider the functions go;_1(x) = z;
and g2j(x) = 1 — x;, which makes 2d functions instead of 2¢ functions (it makes the same number of
functions in dimension d = 2). However it would required to work under the umbrella of the Putinar’s
Positivstellensatz, which would be a much more ambitious task not considered hereafter. That is why
we will continue with the structure (1.1-1.2). The convex set of non-negative polynomials of maximal
degree n on K is

(1.3) Py | [x] = {p € P™[x] such that p(x) > 0 for any x € K} .

Inspired by Schmiigden’s Positvstellensatz, we seek a representation of polynomials in Pf("il[x] (that
ism=2n+1) as

Jx ix ix [ Jx% Jx  ix
(1.4) pP=>.9 <Z tﬁj> =] (Z gﬂ%) =3 > g
j=1 1=1 i=1 \j=1 j=1li=1

where ¢;; € P"[x] for all ¢, j and where the maximal number i, of squares is specified later. Of course
all polynomials (1.4) belong to Pf | [x]. An elementary exemple which will have its importance in the
core of this work is the unit constant polynomial e(x) := 1. It admits the representation (1.4) by taking
iy = 1 and ¢1;(x) = 1 for all j. Indeed one has the identity

(1.5) Z*gj 2 DTl (1= a) T =T (4 (1= 2)) = 19 = 1 = e(x).

i=13,€{0,1}

To treat more general polynomials, we consider the canonical basis made of monomials with the multi-
index notation o = (v, ..., aq) € N9, \04| = max (a1,...,0q) and x* = 27" ... 25?. The polynomials
have the expansion ¢;;(x) = Zlal <n, Ca “x® and one can store the coefficients in a vector of coefficients
written as ¢ = (¢¥), € RM+D* We gather the coefficients cil, ¢i2, ..., ¢ in a single column vector
(called a Cholesky factor) U; = (c™, ¢, ... ci’j*)t Ri*(n+1)*  The Hankel matrix D € M (nt+1)e (R)

is defined as D(x).5 = x“x? for |al, || < n. We define the block polynomial-valued symmetric matrix
B(X) = B(X)t € MJ*(nJrl) (R)

(1.6) B(x) = diag (91 (x)D(x),.. g5, () D(x)) .

This matrix is a block diagonal localizing matrix [10]. The first square diagonal block is g1 (x)D(x)
until the last square diagonal block which is g;, (x)D(x). The block non diagonal terms are set to zero.
With these notations the right hand side of (1.4) can be written conveniently as

(1.7) i(zgj x)q; (x ) Z<B )U;, U,

i=1 \j=1
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Next we follow [5] by introducing unisolvent interpolation points (x;),,,, Which help to achieve
further localization. A unisolvent set of points (x,), <rs is such that any polynomial p € P"[X] is
uniquely determined by its values y, = p(x,) for all r. In the case of the hypercube, the points will
constructed by tensorization and so will naturally be unisolvent. By definition the number of these
points will be equal to ry = dim (P?"*![x]) = (2n + 2)%. Note that with our previous notations one
has

re = (2n + 2)4 = ju(n + 1),

this is why we will use only one notation for r and for j,(n+1)? even if it can be different quantities in a
more general case. The evaluation of B(x) at interpolation points is denoted as B, = B(x,) € M, (R).
The evaluation of p(x) at interpolation points is denoted as y, = p(x,.). Let us define the domain

T
(1.8) D= {/\ € R"™* such that I + Z )\TBT>O} c R™,
r=1
Clearly D # (J since it contains at least a small ball centered on A = 0.
DEFINITION 1.1. The function A\ — G(X) is constructed as follows:
if A€ D we set G(\) = tr [(I + 30k, )\,.BT)_l] + 3 YA
if A ¢ D we set G(\) = +o0.

The value of G()) is the sum of the inverse of the eigenvalues of the matrix I + Y, *, A, B,, plus
a linear contribution which depends on the value of the polynomial p at data points. This function is
obtained in [5] as a dual formulation of (1.4). Two fundamental and general properties follow.

LEMMA 1.2. Assume G has an extremal point in D. Then p has a SOS representation.

Proof. To synthesize the notations, we introduce the matrix valued function A € R™ — M(X\) =
I+ 7% \B, and the scalar product between real vectors (a,b) = >, *, a,b.. Then G rewrites as
G(A\) = tr(M(N)™1) + (y, ). Using the differential formula dM~1(\) = =M ~1(X\)dM (A\)M~1(\), the
gradient of G against a vector pn = (1, ..., firy ) is

(19) (VGO p) = —tn (Ml(A) (2 u,.Br> Ml(A)) oy
r=1

At an extremal point A, € D, one has that the gradient vanishes VG()A.) = 0. Let us consider such an
extremal point A\, and set

(1.10) Ue=M(A) ' e M, (R).

We also set U; = U.e; € R"* where the e; € R™ are the r, unit vectors in R™. The gradient identity
(1.9) yields that 0 = —tr(U.B,U.) + yr = — 2. %, (B, U;, U;) + y,. This is directly equivalent to the
SOS formulas (1.4-1.7) since the points (x,) are unisolvent by hypothesis. 0

LEMMA 1.3. G is convex in D.

Proof. For X\ € D in the domain (1.8) then M(\) is symmetric, positive and so is invertible. The
Hessian matrix of G can be evaluated as

(V2G(N) s ) = t (M‘%A) <Z m&) M=\ (Z MTBT> M‘%A)) :

Since M ()\) is positive over D, then <V2G()\),u, u> > 0 for all u, therefore G is convex over D. 0
3



The convex function G depends on three ingredients which are the degree m = 2n + 1, the position
of the interpolation points (x,), ., <rs and the polynomial p. The minimum of p over K will be denoted
as p— = minyeg p(x) > 0. It is now possible to state the main result of this work.

THEOREM 1.4. Tuke the (X);<,<,, oblained by tensorization of the points z (1 + cos ﬁﬂw) €

d
. _ 1 J
[0,1] for 0 < g <2n+ 1, that is {x,},<,<,, = {5 (1 + cos ﬁﬂ) }o<g<2n+1'

Then these points are nearly optimal, in the sense that there exists a constant Cq > 0 such that if a

o gy (1+1 2d
polynomial p € PR | [x] satisfies the inequality Calplwz. UK)( tlogm) < p—, then G is coercive (infinite

at infinity), has a minimum in D and p admits the SOS representatzon (1.4) given by (1.10).

Some points are worthwhile to comment. The first point is that even if the result has a flavor of similar
results obtained in real algebraic geometry [20, 15], the proof proposed in this work is a combination
of convex analysis in finite dimension with purely analytical techniques to prove the main stability
inequality. The second point is that the main stability inequality is inherently attached to interpolation
points based on Chebyshev polynomials. More precisely the interpolation are constructed from the
roots of the third and fourth kind Chebyshev polynomials of degree n. The log m term in the Theorem
directly comes from the Lebesgue stability constant of Chebyschev interpolation technique [7]. The
third point is that the condition of the Theorem is non optimal by a factor (logm)?? with respect to
the estimate obtained recently in [13] for an effective version of Schmiidgen’s Positivstellensatz for the
hypercube (this is why the points are said to be nearly optimal). Our interpretation is that it is linked
to the numerical construction of the method with interpolation points x,.. It is also non optimal in
dimension d = 1 because one can prove directly the scaling logm instead of (logm)?, see Remark 6.1.
An illustration is proposed in Figure 1.

Fic. 1. Interpolation points in dimension d =2 for m =5

The proof is organized as follows. In Section 2, we provide more explanations on the function G.
Section 3 is dedicated a simple inequality that a polynomial p should satisfy so that G is coercive. Then
in Section 4 and 5, we prove the stability estimates required for the inequality of Section 3 to be strict.
The end of the proof of the Theorem is in Section 6, together with additional final remarks. For the
sake of the completeness of this work, the appendix gathers basic facts about Chebyshev polynomials
and Chebyshev interpolation.

2. More properties of the function G. The function G is defined in [5] by a duality argument
which is standard [1, 9, 2, 14, 8]. The strategy explored in this work is to find conditions such that
G is coercive (infinite at infinity). This is a common strategy in convex analysis in finite dimension
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[9], nevertheless it seems original with respect to the literature [1, 9, 2, 14, 8], except [5] from which
this strategy is originated when applied to the calculation of SOS from data points. The proof can be
decomposed in the verification of two separate properties. The first property consists in showing that
G(A\) = +00 when A — o € dD is a point that tends to o which is on the boundary at finite distance of
the domain. This is the easy part.

LEMMA 2.1 (First property). G(A) — +00 when A — o € dD.

Proof. Since ¢ € 0D then M (o) > 0 is a non negative matrix with a zero eigenvalue. By continuity
of the eigenvalues of M (\) for A € D, then at least one eigenvalue tends to zero (being that all eigenvalues
are positive). Since the linear part is bounded for A in the vicinity of o, the dominant term in G(A) is
the sum of the inverse of the eigenvalues, which tends to +oo0. This is the claim. ]

To formulate the second property which is the involved part of the proof, we need the cone at
infinity

7%
(2.1) C= {5 € R"™* such that Y 6,B, > o.} .

r=1

The cone at infinity is the ensemble of directions ¢ such that M (t0) > 0 for all ¢ > 0. This set is closed.
We will also write C* = {0 € C such that ¢ # 0}.

DEFINITION 2.2 (Second property). It writes as: G(t6) — +00 when t — +00 and § € C*.

It is a natural and basic fact in convex analysis in finite dimension that a convex function that
satisfies the first and second properties has an extremal point in its domain [21] (an additional require-
ment is that the function is proper and closed, which is evident in our case [21, 9]). So our efforts in
this work are now focused on the establishment of the second property.

LEMMA 2.3. The second property is equivalent to: § € C* = (y,d) > 0.

Proof. The proof is in two parts.
=: Assume that G(t6) — +o where t - +0o0 and § € C*. For t > 0 and § € C, then I < M (td) so
M (t5)~! is bounded uniformly with respect to t € [0,00). That is 0 < tr(M(¢td)~!) < I. It yields that
lims—, 1o t {y, ) = +00 therefore (y,d) > 0.
«=: The reciprocal part is immediate since t — G(¢§) is the sum of a non negative part tr(M (t5)~1)
and of a linear part. Since the linear part tends to infinity for large ¢, then G(td) tends to infinity as
well. O

If one replaces the strict inequality with a large inequality one obtains a weaker condition.
DEFINITION 2.4 (Third property). It writes as: 6 € C = (y,d) = 0.

LEMMA 2.5. The third property holds if and only if p € P™(x) characterized by p(x,) = y, for
1 < r < ry admits the representation (1.4).

Proof. As shown by the generalized Farkas lemma [9], proving the third property is equivalent to
proving (1.4). Since it is very classical we will not reproduce the analysis (one can refer for instance to
[5, proof of Proposition 3.4]). 0

Clearly the second property implies the third one, and there seems to be just a minor difference
between the two ones. In the context of this work, they are actually very different. The second property
immediately yields the existence of a critical point A\, which can be calculated with the gradient descent
numerical algorithms detailed in [5]. On the contrary, with the third one, the existence of A, is not
guaranteed (or perhaps . is a point at infinity): the generalized Farkas lemma that one can invoke is
only an equivalence principle, so it is not of immediate help to prove existence of a critical point.
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3. An interesting inequality. To prove the second property, let us analyze
%
(y,0) = Z p(x,)d, where § € C.
r=1

We remind the reader that p_ is the minimum of p over K.

LEMMA 3.1. There exists a constant Cgq > 0 such that one has the inequality

S Calplwz=x) &
(3.1) (y,0) = p- Z or — — Z |67
r=1 r=1

Proof. One has the decomposition p = p_ + ¢ where g € Py’ +[x]. Since ¢ is non negative over K,
it is convenient to perform an approximation with any kind of method which preserves the polynomial
structure and the non negativity. Such a method could be approximation multidimensional Bernstein

polynomials b, (x) = I1% L,J;]al(l — ;)" where o = (a1, ..., aq) and 0 < o; < m for all j.

Jj=la;!(m—qaj

However this is non optimal. (Indee)d the error is smaller if one uses tensorization of Jackson kernel [7].

Firstly we use a technical idea from the recent work [13][Theorem 8 and Lemma 9] that we detail

in the appendix. We modify a little the proof of [13] because we use the characterization p(z) =

xa® () + (1—x)b?(x) of polynomials p € Pg 17,1 [x] over [0, 1] with a, b polynomials of convenient orders

(instead of p(x) = a?(x) + z(1 — x)b?(z) as in [13]). It yields that the approximation of ¢ with the
Jackson kernel method is denoted as ¢ and it is a sum of squares by construction [13]. One obtains

Tk
(3.2) §eD = > §(x,)d, > 0.

r=1

Secondly the error estimate of this approximation can be taken in 1D from [7][Theorem 2.2], [25]
or [6][Exemple 2.2]. One uses the standard substitution f(t) = p(cott) to transfer to algebraic proly-
nomials the approximation properties in L* norm already proved for trigonometric polynomials. The
multidimensional generalization by tensorization is immediate and detailed in the appendix. One ob-
tains

~ Cy
(3.3) lg = qll=@x) < WHPHWM(K)-

Then, for § € C, one can write using (3.2) and (3.3)

(v,0) = p-2,5 00+ 3,25, q(x,)0, o
= p- Zri1 o + %;ril(q - (D(Xr)fsr + Zril Q(XT)(ST
> podnE 0 — 5lplwee ) 20 100
which is the claim. O

Considering the inequality (3.1), our goal is to show firstly that Y *, 4, > 0 for non zero § # 0,
and secondly that > * |d,| is controlled by >, *, 6, uniform with respect to 4.

4. Study of >'*  §,. In view of Lemma 2.5 and of the fact that the unit polynomial e(x) := 1 is a
SOS (1.5), it is immediate that Y} *, &, > 0. This is why our objective hereafter is to show > *, 4, = 0
is not possible. The proposed proof is by contradiction.

LEMMA 4.1. Take 6 € C such that Y %, 6, =0. Then Y, 6,x% =0 for all |a| < m.
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Proof. The reasoning is performed one step after the other.
e By definition of the localizing matrix (1.6) and of the cone at infinity (2.1), any ¢ € C satisfies

(4.1) D 100g5(x,)p(x,)° = 0 Vpe P [x], Vje{0,1}%

Next we use particular test polynomials wth the SOS structure (1.4). Taking all g;; equal to zero except
one of them equal to one, one gets that p(x) = gj(x) is a SOS. One gets the inequalities ) d,gj(x;) = 0
for all j € {0,1}4. Since Y, gj(x) = 1 as shown in (1.5), one obtains 0 < Djefo,134 2 0rgj(Xr) = 25, 6 =
0, therefore

(4.2) > 6rg5(x,) = 0, for all j € {0, 1},

These equalities are the first step of the reasoning below which is by iteration.
e Let make the assumption that

(4.3) D 16ngi(x)(x2)? = 0 for all |a| < a

where a < n — 2 is a certain value. Note that (4.2) corresponds to a = 0. Take
(4.4) p =Xy + exib e P"[x]

where b is a monomial of degree less or equal to two b(x) = x2# for |3| < 1. Then (4.1) and (4.3) in the
limit of small |e| yields Y 6,g;(x,)(x%)2(x2)? = 0 for all |a| < a and all |3] < 1. This is exactly the
starting assumption (4.3), but now |a| < a + 1. By iterations, one obtains (4.3) for a = n — 1.

e Next we modify the previous analysis with (4.4), but now b has the form b(x) = x for |3| < 1. It yields
> 60g5(%,)(x2)?x2 = 0 for all |o| < n—1 and all |3 < 1. It can be rewritten as Y, 6,gj(x,)x2 = 0 for
all |a| < 2n—1. Since the functions g; generate by linear combination the monomials x) for all |y| < 1,
one obtains

(4.5) Zérxﬁ‘ =0 for all |a] < 2n.
This almost the claim since 2n = m — 1.
e By (4.1), one has the inequalities Y 6,g;j(x,)(x2)? = 0 for all |a| < n. Take 7 such that |y| <
1. It is possible to find a linear combination with non negative weights w;(y) = 0 such that x) =
2 wi(7)g5(xr). One gets
(4.6) Z:(STX;Y(X;J‘)2 > 0 for all |a| < n.
It is also possible to find a linear combination with non negative weights z;(v) > 0 such that 1 —x) =
252 (7)gi(x7). One gets >3, 0,(1 — x7)(x2)? = 0 for all |a| < n. Considering (4.5), one gets
(4.7) - Z(STX;’(X;?)2 > 0 for all |a] < n.
™
Finally (4.6) and (4.7) yield ), 6,(x,)x2 = 0 for all |a| < 2n 4 1 which is the claim. |

LEMMA 4.2. Assume the interpolation points are obtained by tensorization of m + 1 = 2n + 2
one-dimensional points. Take 6 € C*. Then ), 6, > 0.

7



Proof. One-dimensional interpolation points are denoted as yg < y1 < -+ < Ym+1. LThe tensoriza-
tion yield (m + 1)% points

Xj = (Yj,» - - - Yj,) for j € N with |j| <m +1

which are unisolvent in the hypercube. In particular, if > &, = 0, then the result of Lemma 4.1 yields
that 6, = 0 for all 1 < r < ry. This is not possible. So it yields the claim by contradiction. ]

5. Study of >'* |§,|. Let us study

T T
(5.1) A(d,e) = 25,.—52 [0r], >0
r=1 r=1

where we already know that A(d,0) > 0 for § € C*. Since our goal is to compare Y *, |4, and Y *, §,,

it is natural to seek a bound on e such that A(d,e) = 0.
We will consider tensorized interpolation points for which the Lagrange polynomials [, € P™[x] are
correctly defined. These Lagrange polynomials are characterized by

(5.2) I (xs) = bps.
LEMMA 5.1. One has that A(d,¢) = 0 for all § € C if and only if
(5.3) q(x) =1—ez(x)

with z(x) = >, 1.(x)sign(8,) can be written under the form (1.4).
Proof. Apply Lemma 2.5. ]

Remark 5.2 (Why Lemma 5.1 is the pivotal point of the strategy of proof). This Lemma offers
the opportunity to establish a connection between the construction of SOS and the stability properties
of Chebyschev polynomials. In particular, in dimension d = 1, it is evident that if one chooses the
interpolation points to be equal to the Chebyschev interpolation points, then the polynomial z is
bounded by the Lebesgue stability constant O(logm) of Chebyschev interpolation [7]. Then taking e
small enough guarantees that ¢ is non negative over K = [0, 1], which turns into the fact that ¢ is a
SOS by the Lukacs Theorem [24]. The smallness condition on & can be written as

C

5.4 -
(54) c 1+ logm

Another interpretation of the Lemma is that ¢ is the perturbation of the polynomial x — 1 with a
corrector term equal to €z(x). Since 1 is evidently a SOS, it is natural to think that a perturbation
technique could be used to establish directly that ¢ is a SOS. To show that such a connection between
Lemma 5.1 and Chebyschev polynomials holds in any dimension, we will make use of the Chebyshev
polynomials of the third and fourth kind [16, 17, 3].

DEFINITION 5.3. The Chebyshev polynomials of the third kind a,, € P™[x] and of the fourth kind

s(n+ 1 sin(n+2 .
b, € P"[x] are defined by a,(z) = % and by (x) = % where x = 1+% € [0, 1].

These Chebyshev polynomials have degree equal to n. They satisfy the symmetry identity b, (z) =
an(1 — z) and the identity

(5.5) zan,(2)? + (1 —2)b,(2)* = 1.
8



The polynomial za,(z) has n distinct roots oy, = 1+ where §), = gfbﬁﬂ for 0 < k < n, that is

agan(ax) = 0 for 0 < k < n. The roots of (1 — x)b,(x) are deduced by symmetry. There are denoted
as B = =929 where 0 = 52 for 0 < ! < n. These roots (o) interlace with the roots (3) and the

| 2n+1
ensemble of all roots is

._ g
1+ cos prw il

(5.6) {akosk<n U {Bitosicn = { 5

}O<g<2n+1

The Lagrange interpolation polynomials based on the ay for 0 < k < n are

lk ({E) _ HOSs#kSn(fE - as)
HOés;&kén (Oék - as)

LEMMA 5.4 (Proof in the appendix). The Lagrange interpolation polynomials write as

k%sin%cos(n+%)0cosg 4 for0<k<n-—1,

2 h _
(2n + 1) (cosf —cosay) ’ WRETe T 2 fork=n.

le(z) = (1)

For notational convenience, let us define ho(z) = z, hi(z) =1 — z and
hy() = T ya, (g, (@) for fj < 1.

If j; = 0 then a, (h;,(z;)) = an(x;). If j; = 1 then a, (hs,(z;)) = an(l — x;) = by ().

LEMMA 5.5. One has the identity 35 <, g;(x)h; (x)2 =1.
Proof. Tt is the multiplication of (5.5) for all directions, that is for x = 21 to z = 4. |

For solving (5.3), we make a perturbation of the identity of Lemma 5.5 and consider the equation

(5.7) >, 9i(x) (hy() + uj(x))* = a(x),

lil<1

where ¢ the given right hand side and the polynomials (u;)<1 € P"[X]Qd are the unknowns. The
equation is equivalent to

(55) ) a5y (x) =~ 2(x) — 5 ) g5

lils1 lil<1

The structure of this equation is interesting because the polynomials h;(x) oscillate a lot since they are
constructed from Chebyshev polynomials. Usually, too much oscillations in the coefficients is a factor
that deteriorates our ability to solve an equation. In this case, we will see that it is the opposite in the
sense that the oscillations allow us to solve the equation (5.8).

LEMMA 5.6. Let consider that the interpolation points (x,).%, are constructed from the tensoriza-
tion of the 2n + 2 points (5.6). Let b e P?"T1[x]. Then the equation

D g5(x)hy(x)u;(x) = b(x)

lil<1
has a unique solution (u;) ;<1 € P"[x]gd which satisfies the bound

max Hmuj HLOO(]K) < Cy(logn)? ax (%)

lil<1 STSTH

9



Proof. Both sides of the equation are polynomials of degree < 2n + 1, so the equality is equivalent
to point wise equalities at the interpolation points

(5.9) Z 5 (%) by (%7 )u (x5) = b(x7), I<r<ry

lil<1

Since x,- is build from tensorization of roots of Chebyshev polynomials, many terms vanish on the left
hand side of (5.9). Considering for exemple the points (o, , iy, - . ., @4, ) for 0 < iq,...,iq < n, all terms
but one vanish on the left hand side. What remains writes as

(I—ai)an(l—ay) x - x (1=, )an(l—ay,) Xug(ag, ooy aqy) = by, ... ) for 0 <iq,...,ig < n,
that is (the notation is 1 = (1,...,1))

b(ozil,...,ozid)
(1 - ail)a’n(l - ail) X X (1 - aid)an(l - aid)

ul(ail,...,aid): for 0 < iq,...,iq < n.

Since u; € P™[x], one can calculate u; with tensorization of Lagrange polynomials [;. One gets

w = 3 Y gt bWl )
i1=1 ig=1 /s (21 iq)%n iq
It is convenient to rescale this expression as
(5.10) V1—xz1...V/1—24u1(x)
— Z:: Z:: a“)ﬂcﬁ;a(%;“) X oee X = Lid)ﬂ;ilg(xd;id) X by, iy)
Using (A.6) one gets
V1 —a1li, (1) V1—wali,(a) c c

X < — X oor X ———
’(1 — i )an (1 —ay) ’(1 —a;)an(l —ay,) liv — 11|+ 1 lig — la] +1

where 6;, < x4 < 0;,41 for all 1 < I < d. This inequality is used in (5.10) with summation over all
1<41,...,%g <n. One gets (with a non optimal manipulations)

I<r<ryg 1<r<ryg

n d
WI=2y.. V1= zqui(x)] < (Z ilil> max |b(x,)| < C(logn)? max |b(x,)|.

It is the claim after summation over the 2% — 1 other values of j. ]

LEMMA 5.7. There exists K4 > 0 such that if e < min (K4(logn)=2%,3), then the equation (5.8)

has a solution.

1
)
Proof. This can be proved with a classical fixed point method which writes

(5.11) DGk x)uf T (x) = —s2(x) - 5 ). g(Ouf(x)?,  k=0,1,2,...,

lil<1 lil<1

where the next iterate on the left hand side is the collection (UJ{CH)ljlsl e pn [X]Qd. The initial value is
taken as u}’l = 0 for all [j| < 1. Note that maxi<,<r, |2(x,)| = 1 by construction. The fixed point is
10



convergent as easily shown below.
e Let us note wy = maxjj<; H1 /gjuf“H . Using the previous Lemma, one has wy = 0 and
Tl (k)

wit1 < (Calogn)?/2) (e + wp).

Let us consider the quadratic equation z = ( (logn d/2) (e + 22) which is equivalent to z° —bz +¢& = 0
with b = m. The discriminant is A = b — 4e. It is positive A > 0 under the condition of the

Lemma. The smallest root is z_ = b*;/Z = b+2\E/K < 275 Now let us assume that z;, < z_ for some

k = 0, which is already true for k = 0 since 2z = 0. Then wg41 — 2 < (Cy(logn)?/2) (wi — 22) < 0,
therefore the whole sequence is uniformly bounded wj < z_ for all k.
e To show the convergence, we make the difference of two iterates (5.11)

> a0ms0) (™ —ub) () = — 3 Sfas0) (o + ) (0 5y fay0) () (0.

ljl<1 lil<1
The norm of the difference is written as e, = max)j<; H, /0 (u;€+1 - ufH)H ' Using the uniform
L*(K
bound and the previous Lemma, one obtains
< Cullogn)®s_ex < Cyllogn)!——2 <2
e < ogn)“z_e ogn)’ —————e < 2¢cey.
k+1 g kS g Cu(logn)d k k

Since 2e < 1 by hypothesis, it establishes the geometric convergence of the sequence which yields a
solution to (5.8). |

6. End of the proof and final remarks.

Theorem 1.4. The end of the proof of Theorem 1.4 is obtained by requiring that the right hand
side of (3.1) is positive. Considering (5.1) and 3.1, one sets € = %

the condition

Then Lemma 5.7 yields

C 0 1
- 7d‘|pr22 &) < min (Kd(log n) =24, ) < Qu
p_m (

6.1 _we
(6.1) 2 1+ logm)2d

One recognizes the condition of the Theorem. Then the function G is naturally convex in finite dimension
and infinite on the boundary of its domain. It is also infinite at infinity (in the direction of the cone at
infinity). It is a basic fact in convex analysis [21, Theorem 27.1-d) page 265] that such a proper closed
convex function as a minimum in its domain. The rest of the proof is evident. ]

Remark 6.1. By comparison of (5.4) and (6.1), the estimate of the Theorem is non optimal in
dimension d = 1.

Remark 6.2. In the definition of G, one can replace the identity matrix with any symmetric positive
matrix. It changes the domain, however is does note change the cone at infinity and this is the main
reason why all results generalize to more general functions G = tr [(A + 305 NB) ] + D0 YAy
where A > 0.

Remark 6.3. In this work, the degree of a polynomial is defined as the maximal univariate degree of
its constituting monomials. The main advantage is that it is naturally compatible with the tensorization
techniques used at different parts of the proof. However it is probably not necessary.

Remark 6.4. A fully open problem is the generalization to the Putinar’s Positivstellensatz.
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Appendix A. Technical material on polynomials. The technical material is displayed for the
sake of completeness of this work.

A.1. Proof of (3.2)-(3.3). Let ¢ € P, [x] and make the change of variables 8 = (01,...,04) €
Ty := [0,27]¢ with x; = HCTOSH" € [0,1] for 1 < i < d. We consider 7(0) = ¢(x) which a non negative
trigonometric polynomial defined in the torus Ty = [0,27]? in dimension d. By construction it is even
with respect to all variables

7"(91,01, .. .,Qd) = r(i@l, ieg, ey i9d> for all (91, .. -79d) € Td.

One will make use of the monovariate Jackson kernel 7] which is

sinrg/2\* n m
K (0) = A < o/ ) o= [5] Ea(0)d0 = 1.

The Jackson kernel is a non negative trigonometric polynomial

2r—2 2r—2
(A1) K,(0) = 2 ag,n coskd = 2 bi.n cos® 0 = 0 for all 6.
k=0 k=0

The Jackson transformed of r is s(0) = STd (s ey pta) O Ko (0; — i) dpa - .. dpg. Since r is even
in all variables, it can be rewritten as

s(0) = f[ y gy pa) Ty (K (0; — ) + K (6; + 1)) dpa - . - dpsa.
0,m

Thanks to (A.1), the trigonometric polynomial
9u(0) = K, (0 — p) + K, (0 + 1)

can be expanded as finite linear combination of cosine modes wrt § multiplied by cosine modes wrt .
Note r is also finite linear combination of cosine modes wrt p. We note g, (0) = I1¢_,g,,(0;) where
6 = (61,...,04) and pp = (p1,...,1q), so that one can write

(A.2) 5(6) - f[ O

Here we use an idea that we found in [13]. The idea is to replace the integral with a quadrature formula
with positive weights and with sufficiently many quadrature points so that it is exact for all modes in
the integral (A.2). The result can be expanded as

(A.3) s(0) = we (k) 8y ()

with the quadrature points denoted as p., the weights denoted as w. > 0 and the function g, (@) being
the result of the multiplication of (A.3) for all directions. The approximation of ¢ that we consider is
denoted as

Note that ¢ is the same as the one used in (3.2).
12



LEMMA A.l. Take 2r — 2 = m. Then ¢ is correctly defined and q € P™[x].

Proof. With (A.3), then s(6) can be expanded a polynomial with respect (cosfy,...,cosy) =
(2x1 —1,...,2z4 — 1) so q is indeed a polynomial. By construction ¢ is of degree m with respect to all
variables, so its full degree is m (with the definition of the degree made in this work). 0

LEMMA A.2 (Proof of (3.2)). The polynomial § has the representation (1.4).

Proof. By construction g, (#) is non negative, that is g,(f) > 0 for all § and p. Thn the real
polynomial k,(x) = g,(2z — 1) is non negative for 0 < z < 1. The Lukacs Theorem [24] states that
there exists two polynomials a,,, b, € P"[z] (where m=2n+1) such that k,(z) = za,(x)*+ (1—z)b,(z)>.
Therefore g,,. () in (A.3) can be expanded as a multiplication of d such terms (one for each direction

in [0,1]%) times the coefficient w.r(p.) = 0. Therefore § has the representation (1.4). |

Next we establish a sharp bound on the difference g — ¢, which results from a sharp bound on r — s.
The bound is just a natural tensorization of [7, Theorem 2.2 page 204]. However since the author is not
aware of such a result in the literature, the proof is detailed. The tensorization of the identity [7, top
of page 203] shows that one has

5(0) = f Z (01 + o, .., 00+ capa) | K (1) dpe
.71\ (ay,...,0q)e{—1,1}4

The sum is made of 2% terms. Note that Sg K, (u)du = % One gets the error formula

s(0) —r(0) = f 2 r(01 + arpr, ..., 00 + agug) — 2d7”(017 -5 0a) Hg=1K"(/“) dp.
[0,7]¢ (a1, ag)e{—1,1}4
Let us set
C(p) = max Z r(0y + aipa, ..., g + capig) — 2% (61, ., 0q)|, pe[0,7]
0e[0,7]4
(a1y..,aq)e{—1,1}4
and

Ci(O') = 9611[105?7)‘-(](1 a‘ez{lll}T(el,...,eihei +Oéi/1479i+17--~79d) —27“(917...,95;) , OE€ [0,71’].

LEMMA A.3. One has C(p) < 2971 (Cy(p1) + -+ + Ca(a))-

Proof. The result is proved by iteration on with respect to the dimension parameter d.
e For d = 1, the claim is a triviality.
e Assume the property holds for d — 1 > 1. One can write

Z (r(01 + a1, ..., 04 + capa) — 2%7(01, ..., 04))

(a1,...,aq)e{—1,1}4

= Z (r(01 + p1,02 + aopa,...) +7(01 — p1,02 + aspa,...) — 2r(b1, 02 + o, ...))

(2, ,0a)€{=1,1}471

+2 Z (r(91,92—|—a2,u2,...)—Qd_lr(el,eg,...))
(a2,‘..,ad)€{71,1}d*1
13



The absolute value of the first term in the right hand side is bounded by 24=1Cy (1 ). Using the property
at step d — 1, the absolute value of the second term is bounded by 2 x 2972 (Cy(u2) + - -+ + Ca(pq)). Tt
yields the claim. ]

With evident simplifications, one obtains the bound

Ir = 8o qonge) < f Co (W) K (s + - + f Calw) K n () ta-

LEMMA A.4 (Proof of (3.3)). One has the bound ||qg — Gl|p»x) < %Hprz,w(K).

Proof. The error is the sum of d terms which can all be treated with the one-variable bounds
of [7, Chapter 5-Section 2, pages 202 to 204]. The second modulus of continuity [7, Theorem 2.2
204] (evaluated with respect to the trigonometric variable § € [0,7]) is bounded by [p|wz.=w)/n* <
Clplw2=x)/m?. It ends the proof. O

A.2. Proof of Lemma 5.4. This is a very classical calculation in the theory of Chebyshev inter-
polation. Set T'(x) = cII}_,(x — as) where the constant c is still to specify. One has

T(x)

(A4) le(z) = (@ — )T (an)

By elimination of z = 5% one gets T'(z) = dII"_,(cosf — cosa) for a constant d € R. The right

hand side is a polynomial of degree (n + 1) with respect to cosf. We note that cos (n + %) 9005% can

also be written as a polynomial of degree (n + 1) with respect to cos with the same roots cos as. So
one can write T'(z) = cos (n + 3) 9(:05% where the constant c is specified now. It can be rewritten as

T M = cos n+1 Gcose.
2 2 2

By differentiation with respect to 6, one gets

_sin9T, 1+ cosé = — n+1 sin n—i—1 Hcosg—lcos n—i—1 Hsing
2 2 - 2 2 2 2 2 2’

that is

In+1)sin(n+3)0 cos(n+31)0 2m+1 1
T’(J;) = ( ) - (0 2) + ( 02) == bn () + san(z).
2sin 5 2cos 5 2 2

First case: take x = o for 0 < k < n — 1. One gets that a,(ax) = 0 and that b,(ax) =

sin((n+L)2E+l o _ n+ =
(D 5sm) — L0 S0 77(ay,) = (—1)- U2,
2 2

|| ok

Second case: for k = n, one has 0, = m and z = o, = 0. The definition 5.3 of a, yields that
an(0) = (=1)*(2n + 1). So

(A.5) T (o) = (—=1)"

Plugging in (A.4) yields

i 4sin 0y,
2n+1’

cos (n+ %)9005% _1)k231n0k _cos (n—&-%)ﬁcosg 3

= 0<k<n-1.
T — oy 2n + 1 cosf — cos O "

1)

This is the claim of Lemma 5.4 for 0 < k < n—1. For k = 2, there is an extra factor 2 in the denominator
due to (A.5).

lk(x) =
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A.3. Bound on Chebyshev interpolation polynomials. Let 0 <i<nand 0 <z < 1.

LEMMA A.5. There exists a constant C' > 0 (independent of x = 1+C72°59, n and k) such that

V1—2x i (x) - 1
(1—ap)an(l—ag)| k=1l +1

(A.6)

where 0; < 0 < 0141

Proof. We use the correspondance x = 1+°72059 = cos? Q and ap = % = cos? %’“. For 0 <k <
n — 1, one has
Ok o
Gsm COS(TL+ )Gcos .
(A7) V1—x lg(x) _ (—1)’“ na (2n2+1)(cow cowk)2 _ SlngCOS (n + %) Qcosg
' (1 —ag)an(l — ag) gip? i ©os(nt3)(m=61) (2n + 1) (cos @ — cos )

2 Oy
CcOoSs 5

The structure of the right most term is classical in Chebyshev interpolation techniques [7]. One has
cos ) — cos oy, = 2sin “t2% sin %0 The concavity of the function 6 — sin £ yields that

9+9k > min sing Sine—HT = min smecosg
2 2’ 2 B 272

1165 — 6]. So one can write

‘ V1= li(x)
(1 - ak)an(l - Oék)

sin

One also has |sin Or— 9’

c
< .
2n + 1)|0) — 0]

First case: let us assume the condition 6; < 0 < ;11 together with [ < k — 2. Then
Cn+1)]0,—0]=C2Cn+1)|0p — 01| =27k =1 -1 = c(lk = 1]+ 1) where ¢ > 0,

which yields (A.6).
Second case: one still considers 6; < 0 < 6,1 but now k£ + 1 <. One gets

@Cn+1)|0r —0| = 2n+1)|0, — 0] =27k — 1] = c(|Jk — 1| + 1) where ¢ > 0,

which also yields (A.6).
Third case: the remaining case is §; < 0 < ;41 with [ = k or [ = k — 1. Going back to (A.7), one
remarks that

cos(nJr%)G cos(n+%)97cos(n+%)a .
cosf —cosay | cos B — cos ay, s
So | o anantizar) m < 2 which yields (A.6) because { =k or [ =k — 1.
Finally the constant C in (A.6) is the maximum of the three cases. O

REFERENCES

[1] S. BoyD AND L. VANDENBERGHE, Convez optimization, Cambridge University Press, Cambridge, 2004.

[2] S. BURER AND R. D. C. MONTEIRO, A nonlinear programming algorithm for solving semidefinite programs via low-
rank factorization, Math. Program., 95 (2003), pp. 329-357. Computational semidefinite and second order cone
programming: the state of the art.

15



(10]
(11]
(12]
(13]

[14]
(15]

[16]

(17)
(18]
19]

[20]
21]
[22]
23]
[24]
[25]

F. CHARLES, M. CAMPOS-PINTO, AND B. DESPRES, Algorithms for positive polynomial approximation, Siam J.
Numer. Analysis, 57 (2017), pp. 148-172.

M. Davis AND D. PApP, Dual certificates and efficient rational sum-of-squares decompositions for polynomial opti-
mization over compact sets, SIAM J. Numer. Anal., 32 (2022).

B. DESPRES AND M. HERDA, Computation of sum of squares polynomials from data points, SIAM J. Numer. Anal.,
58 (2020), pp. 1719-1743.

B. DESPRES AND B. PERTHAME, Uncertainty propagation; intrusive kinetic formulations of scalar conservation laws,
SIAM/ASA J. Uncertain. Quantif., 4 (2016), pp. 980-1013.

R. A. DEVORE AND G. G. LORENTZ, Constructive approzrimation, vol. 303 of Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1993.

D. HENRION AND J. MALICK, Projection methods for conic feasibility problems: applications to polynomial sum-of-
squares decompositions, Optimization Methods & Software, 26 (2011), pp. 23-46.

J.-B. HIRIART-URRUTY AND C. LEMARECHAL, Convex analysis and minimization algorithms. I, vol. 305 of Funda-
mental Principles of Mathematical Sciences, Springer-Verlag, 1993.

J. B. LASSERRE, Moments, positive polynomials and their applications, vol. 1 of Imperial College Press Optimization
Series, Imperial College Press, London, 2010.

J. B. LASSERRE, An introduction to polynomial and semi-algebraic optimization, Cambridge Texts in Applied Math-
ematics, Cambridge University Press, Cambridge, 2015.

J. B. LASSERRE AND T. NETZER, Sos approximations of nonnegative polynomials via simple high degree perturbation,
Math. Z., 256, (2007), pp. 99-112.

M. LAURENT AND L. SLOT, An effective version of schmiidgen’s positivstellensatz for the hypercube, Optimization
Letters, (2022).

J. MALICK, A dual approach to semidefinite least-squares prob., SIAM J. Mat. Anal. Appl., 26 (2004), pp. 272-284.

M. MARSHALL, Positive polynomials and sums of squares, vol. 146 of Mathematical Surveys and Monographs,
American Mathematical Society, Providence, RI, 2008.

J. C. MASON, Chebyshev polynomials of the second, third and fourth kinds in approzimation, indefinite integration,
and integral transforms, in Proceedings of the Seventh Spanish Symposium on Orthogonal Polynomials and
Applications (VII SPOA) (Granada, 1991), vol. 49, 1993, pp. 169-178.

J. C. MaAsSoN AND G. H. ELLIOTT, Near-minimax complex approzimation by four kinds of Chebyshev polynomial
expansion, vol. 46, 1993, pp. 291-300. Computational complex analysis.

J. NIE AND M. SCHWEIGHOFER, On the complexity of Putinar’s Positivstellensatz, J. Complex., 23 (2007), pp. 135
150.

V. POWERS AND T. WORMANN, An algorithm for sums of squares of real polynomials, J. Pure Appl. Algebra, 127
(1998), pp. 99-104.

M. PUTINAR, Positive polynomials on compact semi-algebraic sets, Ind. Univ. Math. J., 42 (1993), pp. 969-984.

R. T. ROCKAFELLAR, Convex analysis (2nd edition), Princeton university press, 1972.

K. SCHMUDGEN, The K-moment problem for compact semi-algebraic sets, Math. Ann., 289 (1991), pp. 203-206.

M. SCHWEIGHOFER, On the complexity of Schmiidgen’s positivstellensatz, J. Complexity, 20 (2004), pp. 529-543.

G. SZEGO, Orthogonal polynomials, AMS, 1939.

A. WEIss E, G. WELLEIN, A. ALVERMANN, AND H. FEHSKE, The kernel polynomial method, Rev. Modern Phys., 78
(2006), pp. 275-306.

16



	Introduction
	More properties of the function G
	An interesting inequality
	Study of r=1r* r 
	Study of r=1r* |r| 
	End of the proof and final remarks
	Appendix A. Technical material on polynomials
	Proof of (3.2)-(3.3)
	Proof of Lemma 5.4
	Bound on Chebyshev interpolation polynomials

	References

