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COERCIVITY OF THE COMPUTATION OF SUM OF SQUARES FROM DATA
POINTS: THE CASE OF THE HYPERCUBE

BRUNO DESPRÉS˚

Abstract. The goal of this work is to provide a simple condition on a multivariate polynomial p such that the dual
function λ ÞÑ Gpλq defined in a previous work [5] is coercive (infinite at infinity). It is based on the fact that data points
obtained from tensorization of the roots of the third and fourth kind Chebyshev polynomials possess a strong stability
property, so they are (nearly) optimal. The stability property is fundamentally connecte to the Lebesgue stability constant
of Chebyshev interpolation. It has the consequence that G has a global minimum, which justifies on the hypercube the
gradient descent algorithms proposed in [5]. A corollary is a constructive representation of p as a sum of squares (SOS)
endowed with the Schmüdgen’s Positivstellensatz structure.

Key words. Positive polynomials, sum of squares, convex analysis, positive interpolation.
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1. Introduction. We consider real polynomials p P Prxs “ Prx1, . . . xds which are moreover
positive over a semi-algebraic set K Ă Rd. These polynomials can be written as sum of squares (SOS)
with the Schmüdgen’s (resp. Putinar’s) Positivstellensatz [22] (resp. [20]). A non exhaustive list of
additional references is [19, 15, 18, 13, 23]. For reasons soundly explained in the work of Lasserre and
coauthors [10, 11, 12], there is nowadays a strong impetus to transfer these theoretical characterizations
to practical algorithms, in particular because it is way to construct practical certificates of positivity
[10, 4, 5, 3]. The applications [10] range from finding the global minimum of a function on a subset
of Rn, to pricing exotic options in Mathematical Finance or computing Nash equilibria, or recently to
using such tools in scientific computing [3]. In this work we focus on the justification of the family of
convex algorithms that were proposed in [5] for general semi-algebraic sets K. These algorithms are
based on the construction of a dual function denoted as Gpλq, where by construction G is convex on its
domain. The fonction G is constructed from the values at data points of a given polynomial p that one
tries to write as a SOS. However the proof that G is coercive (that is infinite at infinity) was conditional
in [5], and this condition was not explicitly stated (except in one dimension because it is much simpler).
In particular the choice of the interpolation points at which one collects the polynomial values was
not addressed. Therefore, in some sense, the algorithms proposed in [5] were not fully justified, even
if the numerical results showed their usefulness. The reader interested by calculations of SOS with
these gradient descent algorithms is advised to refer to the above reference where he will find numerical
illustrations and examples.

Our goal is to focus on the case of the hypercube K “ r0, 1sd and to provide a simple condition
on p such that λ ÞÑ Gpλq is coercive (infinite at infinity). It has the consequence that G has a global
minimum, which justifies on the hypercube the gradient descent algorithms proposed in [5]. As a
corollary, it yields a constructive representation of p as a sum of squares (SOS) endowed with the
Schmüdgen’s Positivstellensatz [23, 15] structure.

We need some notations before describing the main result. The subset of polynomials of de-
gree less than or equal to m ě 1 is denoted by Pmrxs, where the (non standard) convention is
that the degree is the maximal univariate degree of the constituting monomials. One has Pmrxs “
Span pPmrx1s ˆ ¨ ¨ ¨ ˆPmrxdsq: for exemple the degree of x2y2 ` x` y is equal to 2. This is mainly for
the simplicity of the notations by tensorization used in this work, and we do not believe it is a fundamen-
tal restriction. Inspired by Schmügden’s Putinar’s Positvstellensatz, we will use the characterization of
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the hypercube

(1.1) K “
 

x P Rd such that gjpxq ě 0 for j P t0, 1ud
(

where gjpxq “ Πd
i“1x

ji
i p1´ xiq

1´ji and j “ pj1, . . . , jdq with ji P t0, 1u for all 1 ď i ď d. The number of
different functions gj and equal to j˚ “ 2d. We will use the alternative notation

(1.2) K “
 

x P Rd such that gjpxq ě 0 for 1 ď j ď j˚
(

.

Another possibility for the characterization of the hypercube is to consider the functions g2j´1pxq “ xj
and g2jpxq “ 1 ´ xj , which makes 2d functions instead of 2d functions (it makes the same number of
functions in dimension d “ 2). However it would required to work under the umbrella of the Putinar’s
Positivstellensatz, which would be a much more ambitious task not considered hereafter. That is why
we will continue with the structure (1.1-1.2). The convex set of non-negative polynomials of maximal
degree n on K is

(1.3) Pm
K,`rxs “ tp P Pmrxs such that ppxq ě 0 for any x P Ku .

Inspired by Schmügden’s Positvstellensatz, we seek a representation of polynomials in P2n`1
K,` rxs (that

is m “ 2n` 1) as

(1.4) p “

j
ÿ̊

j“1

gj

˜

i
ÿ̊

i“1

q2
ij

¸

“

i
ÿ̊

i“1

˜

j
ÿ̊

j“1

gjq
2
ij

¸

“

j
ÿ̊

j“1

i
ÿ̊

i“1

gjq
2
ij

where qij P Pnrxs for all i, j and where the maximal number i˚ of squares is specified later. Of course
all polynomials (1.4) belong to Pm

K,`rxs. An elementary exemple which will have its importance in the
core of this work is the unit constant polynomial epxq :“ 1. It admits the representation (1.4) by taking
i˚ “ 1 and q1jpxq “ 1 for all j. Indeed one has the identity

(1.5)

j
ÿ̊

j“1

gjpxq “
d
ÿ

i“1

ÿ

jiPt0,1u

Πd
i“1x

ji
i p1´ xiq

1´ji “ Πd
i“1 pxi ` p1´ xiqq “ 1d “ 1 “ epxq.

To treat more general polynomials, we consider the canonical basis made of monomials with the multi-
index notation α “ pα1, . . . , αdq P Nd, |α| “ max pα1, . . . , αdq and xα “ xα1

1 . . . xαdd . The polynomials
have the expansion qijpxq “

ř

|α|ďnj
cijα xα and one can store the coefficients in a vector of coefficients

written as cij “ pcijα qα P Rpn`1qd . We gather the coefficients ci1, ci2, ..., ci,j˚ in a single column vector

(called a Cholesky factor) Ui “
`

ci1, ci2, . . . , ci,j˚
˘t
P Rj˚pn`1qd . The Hankel matrix D P Mpn`1qdpRq

is defined as Dpxqα,β “ xαxβ for |α|, |β| ď n. We define the block polynomial-valued symmetric matrix
Bpxq “ Bpxqt PMj˚pn`1qdpRq

(1.6) Bpxq “ diag
´

g1pxqDpxq, , . . . , gjj˚ pxqDpxq
¯

.

This matrix is a block diagonal localizing matrix [10]. The first square diagonal block is g1pxqDpxq
until the last square diagonal block which is gj˚pxqDpxq. The block non diagonal terms are set to zero.
With these notations the right hand side of (1.4) can be written conveniently as

(1.7)

i
ÿ̊

i“1

˜

j
ÿ̊

j“1

gjpxqq
2
ijpxq

¸

“

i
ÿ̊

i“1

xBpxqUi,Uiy .
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Next we follow [5] by introducing unisolvent interpolation points pxrq1ďrďr˚ which help to achieve

further localization. A unisolvent set of points pxrq1ďrďr˚ is such that any polynomial p P PnrXs is

uniquely determined by its values yr “ ppxrq for all r. In the case of the hypercube, the points will
constructed by tensorization and so will naturally be unisolvent. By definition the number of these
points will be equal to r˚ “ dim

`

P2n`1rxs
˘

“ p2n ` 2qd. Note that with our previous notations one
has

r˚ “ p2n` 2qd “ j˚pn` 1qd,

this is why we will use only one notation for r˚ and for j˚pn`1qd even if it can be different quantities in a
more general case. The evaluation of Bpxq at interpolation points is denoted as Br “ Bpxrq PMr˚pRq.
The evaluation of ppxq at interpolation points is denoted as yr “ ppxrq. Let us define the domain

(1.8) D “

#

λ P Rr˚ such that I `

r
ÿ̊

r“1

λrBrą0

+

Ă Rr˚ .

Clearly D ‰ H since it contains at least a small ball centered on λ “ 0.

Definition 1.1. The function λ ÞÑ Gpλq is constructed as follows:

if λ P D we set Gpλq “ tr
”

pI `
řr˚
r“1 λrBrq

´1
ı

`
řr˚
r“1 yrλr;

if λ R D we set Gpλq “ `8.

The value of Gpλq is the sum of the inverse of the eigenvalues of the matrix I `
řr˚
r“1 λrBr, plus

a linear contribution which depends on the value of the polynomial p at data points. This function is
obtained in [5] as a dual formulation of (1.4). Two fundamental and general properties follow.

Lemma 1.2. Assume G has an extremal point in D. Then p has a SOS representation.

Proof. To synthesize the notations, we introduce the matrix valued function λ P Rr˚ ÞÑ Mpλq “
I `

řr˚
r“1 λrBr and the scalar product between real vectors 〈a, b〉 “

řr˚
r“1 arbr. Then G rewrites as

Gpλq “ trpMpλq´1q ` 〈y, λ〉. Using the differential formula dM´1pλq “ ´M´1pλqdMpλqM´1pλq, the
gradient of G against a vector µ “ pµ1, . . . , µr˚q is

(1.9) 〈∇Gpλq, µ〉 “ ´tr

˜

M´1pλq

˜

r
ÿ̊

r“1

µrBr

¸

M´1pλq

¸

` 〈y, µ〉 .

At an extremal point λe P D, one has that the gradient vanishes ∇Gpλeq “ 0. Let us consider such an
extremal point λe and set

(1.10) Ue “Mpλeq
´1 PMr˚pRq.

We also set Ui “ Ueei P Rr˚ where the ei P Rr˚ are the r˚ unit vectors in Rr˚ . The gradient identity
(1.9) yields that 0 “ ´trpUeBrUeq ` yr “ ´

řr˚
i“1 〈BrUi,Ui〉 ` yr. This is directly equivalent to the

SOS formulas (1.4-1.7) since the points pxrq are unisolvent by hypothesis.

Lemma 1.3. G is convex in D.

Proof. For λ P D in the domain (1.8) then Mpλq is symmetric, positive and so is invertible. The
Hessian matrix of G can be evaluated as

〈
∇2Gpλqµ, µ

〉
“ tr

˜

M´1pλq

˜

r
ÿ̊

r“1

µrBr

¸

M´1pλq

˜

r
ÿ̊

r“1

µrBr

¸

M´1pλq

¸

.

Since Mpλq is positive over D, then
〈
∇2Gpλqµ, µ

〉
ě 0 for all µ, therefore G is convex over D.
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The convex function G depends on three ingredients which are the degree m “ 2n` 1, the position
of the interpolation points pxrq1ďrďr˚ and the polynomial p. The minimum of p over K will be denoted

as p´ “ minxPK ppxq ą 0. It is now possible to state the main result of this work.

Theorem 1.4. Take the pxrq1ďrďr˚ obtained by tensorization of the points 1
2

´

1` cos g
2n`1π

¯

P

r0, 1s for 0 ď g ď 2n` 1, that is txru1ďrďr˚ “
!

1
2

´

1` cos g
2n`1π

¯)d

0ďgď2n`1
.

Then these points are nearly optimal, in the sense that there exists a constant Cd ą 0 such that if a

polynomial p P Pm
K,`rxs satisfies the inequality

Cd}p}W2,8pKqp1`logmq2d

m2 ď p´, then G is coercive (infinite
at infinity), has a minimum in D and p admits the SOS representation (1.4) given by (1.10).

Some points are worthwhile to comment. The first point is that even if the result has a flavor of similar
results obtained in real algebraic geometry [20, 15], the proof proposed in this work is a combination
of convex analysis in finite dimension with purely analytical techniques to prove the main stability
inequality. The second point is that the main stability inequality is inherently attached to interpolation
points based on Chebyshev polynomials. More precisely the interpolation are constructed from the
roots of the third and fourth kind Chebyshev polynomials of degree n. The logm term in the Theorem
directly comes from the Lebesgue stability constant of Chebyschev interpolation technique [7]. The
third point is that the condition of the Theorem is non optimal by a factor plogmq2d with respect to
the estimate obtained recently in [13] for an effective version of Schmüdgen’s Positivstellensatz for the
hypercube (this is why the points are said to be nearly optimal). Our interpretation is that it is linked
to the numerical construction of the method with interpolation points xr. It is also non optimal in
dimension d “ 1 because one can prove directly the scaling logm instead of plogmq2, see Remark 6.1.
An illustration is proposed in Figure 1.

Fig. 1. Interpolation points in dimension d “ 2 for m “ 5

The proof is organized as follows. In Section 2, we provide more explanations on the function G.
Section 3 is dedicated a simple inequality that a polynomial p should satisfy so that G is coercive. Then
in Section 4 and 5, we prove the stability estimates required for the inequality of Section 3 to be strict.
The end of the proof of the Theorem is in Section 6, together with additional final remarks. For the
sake of the completeness of this work, the appendix gathers basic facts about Chebyshev polynomials
and Chebyshev interpolation.

2. More properties of the function G. The function G is defined in [5] by a duality argument
which is standard [1, 9, 2, 14, 8]. The strategy explored in this work is to find conditions such that
G is coercive (infinite at infinity). This is a common strategy in convex analysis in finite dimension
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[9], nevertheless it seems original with respect to the literature [1, 9, 2, 14, 8], except [5] from which
this strategy is originated when applied to the calculation of SOS from data points. The proof can be
decomposed in the verification of two separate properties. The first property consists in showing that
Gpλq Ñ `8 when λÑ σ P BD is a point that tends to σ which is on the boundary at finite distance of
the domain. This is the easy part.

Lemma 2.1 (First property). Gpλq Ñ `8 when λÑ σ P BD.

Proof. Since σ P BD then Mpσq ľ 0 is a non negative matrix with a zero eigenvalue. By continuity
of the eigenvalues of Mpλq for λ P D, then at least one eigenvalue tends to zero (being that all eigenvalues
are positive). Since the linear part is bounded for λ in the vicinity of σ, the dominant term in Gpλq is
the sum of the inverse of the eigenvalues, which tends to `8. This is the claim.

To formulate the second property which is the involved part of the proof, we need the cone at
infinity

(2.1) C “

#

δ P Rr˚ such that

r
ÿ̊

r“1

δrBr ľ 0.

+

.

The cone at infinity is the ensemble of directions δ such that Mptδq ą 0 for all t ě 0. This set is closed.
We will also write C˚ “ tδ P C such that δ ‰ 0u.

Definition 2.2 (Second property). It writes as: Gptδq Ñ `8 when tÑ `8 and δ P C˚.

It is a natural and basic fact in convex analysis in finite dimension that a convex function that
satisfies the first and second properties has an extremal point in its domain [21] (an additional require-
ment is that the function is proper and closed, which is evident in our case [21, 9]). So our efforts in
this work are now focused on the establishment of the second property.

Lemma 2.3. The second property is equivalent to: δ P C˚ ùñ 〈y, δ〉 ą 0.

Proof. The proof is in two parts.
ùñ: Assume that Gptδq Ñ `8 where t Ñ `8 and δ P C˚. For t ą 0 and δ P C, then I ă Mptδq so
Mptδq´1 is bounded uniformly with respect to t P r0,8q. That is 0 ă trpMptδq´1q ă I. It yields that
limtÑ`8 t 〈y, δ〉 “ `8 therefore 〈y, δ〉 ą 0.
ðù: The reciprocal part is immediate since t ÞÑ Gptδq is the sum of a non negative part trpMptδq´1q

and of a linear part. Since the linear part tends to infinity for large t, then Gptδq tends to infinity as
well.

If one replaces the strict inequality with a large inequality one obtains a weaker condition.

Definition 2.4 (Third property). It writes as: δ P C ùñ 〈y, δ〉 ě 0.

Lemma 2.5. The third property holds if and only if p P Pmpxq characterized by ppxrq “ yr for
1 ď r ď r˚ admits the representation (1.4).

Proof. As shown by the generalized Farkas lemma [9], proving the third property is equivalent to
proving (1.4). Since it is very classical we will not reproduce the analysis (one can refer for instance to
[5, proof of Proposition 3.4]).

Clearly the second property implies the third one, and there seems to be just a minor difference
between the two ones. In the context of this work, they are actually very different. The second property
immediately yields the existence of a critical point λe which can be calculated with the gradient descent
numerical algorithms detailed in [5]. On the contrary, with the third one, the existence of λe is not
guaranteed (or perhaps λe is a point at infinity): the generalized Farkas lemma that one can invoke is
only an equivalence principle, so it is not of immediate help to prove existence of a critical point.
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3. An interesting inequality. To prove the second property, let us analyze

〈y, δ〉 “
r
ÿ̊

r“1

ppxrqδr where δ P C.

We remind the reader that p´ is the minimum of p over K.

Lemma 3.1. There exists a constant Cd ą 0 such that one has the inequality

(3.1) 〈y, δ〉 ě p´

r
ÿ̊

r“1

δr ´
Cd}p}W 2,8pKq

m2

r
ÿ̊

r“1

|δr|.

Proof. One has the decomposition p “ p´ ` q where q P Pm
K,`rxs. Since q is non negative over K,

it is convenient to perform an approximation with any kind of method which preserves the polynomial
structure and the non negativity. Such a method could be approximation multidimensional Bernstein
polynomials bαpxq “ Πd

j“1
m!

αj !pm´αjq!
xα1
j p1´ xjq

m´α1 where α “ pα1, . . . , αdq and 0 ď αj ď m for all j.

However this is non optimal. Indeed the error is smaller if one uses tensorization of Jackson kernel [7].
Firstly we use a technical idea from the recent work [13][Theorem 8 and Lemma 9] that we detail

in the appendix. We modify a little the proof of [13] because we use the characterization ppxq “
xa2pxq`p1´xqb2pxq of polynomials p P Pr0,1s,`rxs over r0, 1s with a, b polynomials of convenient orders
(instead of ppxq “ a2pxq ` xp1 ´ xqb2pxq as in [13]). It yields that the approximation of q with the
Jackson kernel method is denoted as rq and it is a sum of squares by construction [13]. One obtains

(3.2) δ P D ùñ
r
ÿ̊

r“1

rqpxrqδr ě 0.

Secondly the error estimate of this approximation can be taken in 1D from [7][Theorem 2.2], [25]
or [6][Exemple 2.2]. One uses the standard substitution fptq “ ppcot tq to transfer to algebraic proly-
nomials the approximation properties in L8 norm already proved for trigonometric polynomials. The
multidimensional generalization by tensorization is immediate and detailed in the appendix. One ob-
tains

(3.3) }q ´ rq}L8pKq ď
Cd
m2
}p}W 2,8pKq.

Then, for δ P C, one can write using (3.2) and (3.3)

〈y, δ〉 “ p´
řr˚
r“1 δr `

řr˚
r“1 qpxrqδr

“ p´
řr˚
r“1 δr `

řr˚
r“1pq ´ rqqpxrqδr `

řr˚
r“1 rqpxrqδr

ě p´
řr˚
r“1 δr ´

Cd
m2 }p}W 2,8pKq

řr˚
r“1 |δr|

which is the claim.

Considering the inequality (3.1), our goal is to show firstly that
řr˚
r“1 δr ą 0 for non zero δ ‰ 0,

and secondly that
řr˚
r“1 |δr| is controlled by

řr˚
r“1 δr uniform with respect to δ.

4. Study of
řr˚
r“1 δr. In view of Lemma 2.5 and of the fact that the unit polynomial epxq :“ 1 is a

SOS (1.5), it is immediate that
řr˚
r“1 δr ě 0. This is why our objective hereafter is to show

řr˚
r“1 δr “ 0

is not possible. The proposed proof is by contradiction.

Lemma 4.1. Take δ P C such that
řr˚
r“1 δr “ 0. Then

ř

r δrx
α
r “ 0 for all |α| ď m.
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Proof. The reasoning is performed one step after the other.
‚ By definition of the localizing matrix (1.6) and of the cone at infinity (2.1), any δ P C satisfies

(4.1)
ÿ

r

δrgjpxrqppxrq
2 ě 0 @p P Pnrxs, @j P t0, 1ud.

Next we use particular test polynomials wth the SOS structure (1.4). Taking all qij equal to zero except
one of them equal to one, one gets that ppxq “ gjpxq is a SOS. One gets the inequalities

ř

r δrgjpxrq ě 0
for all j P t0, 1ud. Since

ř

r gjpxq ” 1 as shown in (1.5), one obtains 0 ď
ř

jPt0,1ud
ř

r δrgjpxrq “
ř

r δr “
0, therefore

(4.2)
ÿ

r

δrgjpxrq “ 0, for all j P t0, 1ud.

These equalities are the first step of the reasoning below which is by iteration.
‚ Let make the assumption that

(4.3)
ÿ

r

δrgjpxrqpx
α
r q

2 “ 0 for all |α| ď a

where a ď n´ 2 is a certain value. Note that (4.2) corresponds to a “ 0. Take

(4.4) p “ xαr ` εx
α
r b P Pnrxs

where b is a monomial of degree less or equal to two bpxq “ x2β for |β| ď 1. Then (4.1) and (4.3) in the
limit of small |ε| yields

ř

r δrgjpxrqpx
α
r q

2pxβr q
2 “ 0 for all |α| ď a and all |β| ď 1. This is exactly the

starting assumption (4.3), but now |α| ď a` 1. By iterations, one obtains (4.3) for a “ n´ 1.
‚ Next we modify the previous analysis with (4.4), but now b has the form bpxq “ xβ for |β| ď 1. It yields
ř

r δrgjpxrqpx
α
r q

2xβr “ 0 for all |α| ď n´ 1 and all |β| ď 1. It can be rewritten as
ř

r δrgjpxrqx
α
r “ 0 for

all |α| ď 2n´ 1. Since the functions gj generate by linear combination the monomials xγr for all |γ| ď 1,
one obtains

(4.5)
ÿ

r

δrx
α
r “ 0 for all |α| ď 2n.

This almost the claim since 2n “ m´ 1.
‚ By (4.1), one has the inequalities

ř

r δrgjpxrqpx
α
r q

2 ě 0 for all |α| ď n. Take γ such that |γ| ď
1. It is possible to find a linear combination with non negative weights wjpγq ě 0 such that xγr “
ř

j wjpγqgjpxrq. One gets

(4.6)
ÿ

r

δrx
γ
r px

α
r q

2 ě 0 for all |α| ď n.

It is also possible to find a linear combination with non negative weights zjpγq ě 0 such that 1´ xγr “
ř

j zjpγqgjpxrq. One gets
ř

r δrp1´ xγr qpx
α
r q

2 ě 0 for all |α| ď n. Considering (4.5), one gets

(4.7) ´
ÿ

r

δrx
γ
r px

α
r q

2 ě 0 for all |α| ď n.

Finally (4.6) and (4.7) yield
ř

r δrpxrqx
α
r “ 0 for all |α| ď 2n` 1 which is the claim.

Lemma 4.2. Assume the interpolation points are obtained by tensorization of m ` 1 “ 2n ` 2
one-dimensional points. Take δ P C˚. Then

ř

r δr ą 0.
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Proof. One-dimensional interpolation points are denoted as y0 ă y1 ă ¨ ¨ ¨ ă ym`1. The tensoriza-
tion yield pm` 1qd points

xj “ pyj1 , . . . , yjdq for j P Nd with |j| ď m` 1

which are unisolvent in the hypercube. In particular, if
ř

r δr “ 0, then the result of Lemma 4.1 yields
that δr “ 0 for all 1 ď r ď r˚. This is not possible. So it yields the claim by contradiction.

5. Study of
řr˚
r“1 |δr|. Let us study

(5.1) Apδ, εq “

r
ÿ̊

r“1

δr ´ ε

r
ÿ̊

r“1

|δr|, ε ą 0

where we already know that Apδ, 0q ą 0 for δ P C˚. Since our goal is to compare
řr˚
r“1 |δr| and

řr˚
r“1 δr,

it is natural to seek a bound on ε such that Apδ, εq ě 0.
We will consider tensorized interpolation points for which the Lagrange polynomials lr P Pmrxs are

correctly defined. These Lagrange polynomials are characterized by

(5.2) lrpxsq “ δrs.

Lemma 5.1. One has that Apδ, εq ě 0 for all δ P C if and only if

(5.3) qpxq “ 1´ εzpxq

with zpxq “
řr˚
r“1 lrpxqsignpδrq can be written under the form (1.4).

Proof. Apply Lemma 2.5.

Remark 5.2 (Why Lemma 5.1 is the pivotal point of the strategy of proof). This Lemma offers
the opportunity to establish a connection between the construction of SOS and the stability properties
of Chebyschev polynomials. In particular, in dimension d “ 1, it is evident that if one chooses the
interpolation points to be equal to the Chebyschev interpolation points, then the polynomial z is
bounded by the Lebesgue stability constant Oplogmq of Chebyschev interpolation [7]. Then taking ε
small enough guarantees that q is non negative over K “ r0, 1s, which turns into the fact that q is a
SOS by the Lukacs Theorem [24]. The smallness condition on ε can be written as

(5.4) ε ă
C

1` logm

Another interpretation of the Lemma is that q is the perturbation of the polynomial x ÞÑ 1 with a
corrector term equal to εzpxq. Since 1 is evidently a SOS, it is natural to think that a perturbation
technique could be used to establish directly that q is a SOS. To show that such a connection between
Lemma 5.1 and Chebyschev polynomials holds in any dimension, we will make use of the Chebyshev
polynomials of the third and fourth kind [16, 17, 3].

Definition 5.3. The Chebyshev polynomials of the third kind an P P
nrxs and of the fourth kind

bn P P
nrxs are defined by anpxq “

cospn` 1
2 qθ

cos θ2
and bnpxq “

sinpn` 1
2 qθ

sin θ
2

where x “ 1`cos θ
2 P r0, 1s.

These Chebyshev polynomials have degree equal to n. They satisfy the symmetry identity bnpxq “
anp1´ xq and the identity

(5.5) xanpxq
2 ` p1´ xqbnpxq

2 “ 1.
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The polynomial xanpxq has n distinct roots αk “
1`cos θk

2 where θk “
2k`1
2n`1π for 0 ď k ď n, that is

αkanpαkq “ 0 for 0 ď k ď n. The roots of p1 ´ xqbnpxq are deduced by symmetry. There are denoted
as βl “

1´cos θl
2 where θl “

2l
2n`1π for 0 ď l ď n. These roots pαkq interlace with the roots pβlq and the

ensemble of all roots is

(5.6) tαku0ďkďn
ď

tβlu0ďlďn “

"

1` cos g
2n`1π

2

*

0ďgď2n`1

.

The Lagrange interpolation polynomials based on the αk for 0 ď k ď n are

lkpxq “
Π0ďs‰kďnpx´ αsq

Π0ďs‰kďnpαk ´ αsq

.

Lemma 5.4 (Proof in the appendix). The Lagrange interpolation polynomials write as

lkpxq “ p´1qk
γk sin θk

2 cos
`

n` 1
2

˘

θ cos θ2
p2n` 1q pcos θ ´ cosαkq

, where γk “

"

4 for 0 ď k ď n´ 1,
2 for k “ n.

.

For notational convenience, let us define h0pxq “ x, h1pxq “ 1´ x and

hjpxq “ Πd
i“1an phjipxiqq for |j| ď 1.

If ji “ 0 then an phjipxiqq “ anpxiq. If ji “ 1 then an phjipxiqq “ anp1´ xiq “ bnpxiq.

Lemma 5.5. One has the identity
ř

|j|ď1 gjpxqhjpxq
2 “ 1.

Proof. It is the multiplication of (5.5) for all directions, that is for x “ x1 to x “ xd.

For solving (5.3), we make a perturbation of the identity of Lemma 5.5 and consider the equation

(5.7)
ÿ

|j|ď1

gjpxq phjpxq ` ujpxqq
2
“ qpxq,

where q the given right hand side and the polynomials pujq|j|ď1 P Pnrxs2
d

are the unknowns. The
equation is equivalent to

(5.8)
ÿ

|j|ď1

gjpxqhjpxqujpxq “ ´
ε

2
zpxq ´

1

2

ÿ

|j|ď1

gjpxqujpxq
2.

The structure of this equation is interesting because the polynomials hjpxq oscillate a lot since they are
constructed from Chebyshev polynomials. Usually, too much oscillations in the coefficients is a factor
that deteriorates our ability to solve an equation. In this case, we will see that it is the opposite in the
sense that the oscillations allow us to solve the equation (5.8).

Lemma 5.6. Let consider that the interpolation points pxrq
r˚
r“1 are constructed from the tensoriza-

tion of the 2n` 2 points (5.6). Let b P P2n`1rxs. Then the equation

ÿ

|j|ď1

gjpxqhjpxqujpxq “ bpxq

has a unique solution pujq|j|ď1 P Pnrxs2
d

which satisfies the bound

max
|j|ď1

›

›

?
gjuj

›

›

L8pKq ď Cdplog nqd max
1ďrďr˚

|bpxrq|.
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Proof. Both sides of the equation are polynomials of degree ď 2n` 1, so the equality is equivalent
to point wise equalities at the interpolation points

(5.9)
ÿ

|j|ď1

gjpxrqhjpxrqujpxrq “ bpxrq, 1 ď r ď r˚.

Since xr is build from tensorization of roots of Chebyshev polynomials, many terms vanish on the left
hand side of (5.9). Considering for exemple the points pαi1 , αi2 , . . . , αidq for 0 ď i1, . . . , id ď n, all terms
but one vanish on the left hand side. What remains writes as

p1´αi1qanp1´αi1qˆ¨ ¨ ¨ˆp1´αidqanp1´αidqˆu1pαi1 , . . . , αidq “ bpαi1 , . . . , αidq for 0 ď i1, . . . , id ď n,

that is (the notation is 1 “ p1, . . . , 1q)

u1pαi1 , . . . , αidq “
bpαi1 , . . . , αidq

p1´ αi1qanp1´ αi1q ˆ ¨ ¨ ¨ ˆ p1´ αidqanp1´ αidq
for 0 ď i1, . . . , id ď n.

Since u1 P Pnrxs, one can calculate u1 with tensorization of Lagrange polynomials lk. One gets

u1pxq “
n
ÿ

i1“1

. . .
n
ÿ

id“1

bpαi1 , . . . , αidq li1px1q . . . lidpxdq

p1´ αi1qanp1´ αi1q ˆ ¨ ¨ ¨ ˆ p1´ αidqanp1´ αidq
, x “ px1, . . . , xdq.

It is convenient to rescale this expression as

(5.10)
?

1´ x1 . . .
?

1´ xdu1pxq

“

n
ÿ

i1“1

. . .
n
ÿ

id“1

?
1´ x1li1px1q

p1´ αi1qanp1´ αi1q
ˆ ¨ ¨ ¨ ˆ

?
1´ xdlidpxdq

p1´ αidqanp1´ αidq
ˆ bpαi1 , . . . , αidq

Using (A.6) one gets

ˇ

ˇ

ˇ

ˇ

?
1´ x1li1px1q

p1´ αi1qanp1´ αi1q

ˇ

ˇ

ˇ

ˇ

ˆ ¨ ¨ ¨ ˆ

ˇ

ˇ

ˇ

ˇ

?
1´ xdlidpxdq

p1´ αidqanp1´ αidq

ˇ

ˇ

ˇ

ˇ

ď
C

|i1 ´ l1| ` 1
ˆ ¨ ¨ ¨ ˆ

C

|id ´ ld| ` 1

where θld ď xd ď θld`1 for all 1 ď l ď d. This inequality is used in (5.10) with summation over all
1 ď i1, . . . , id ď n. One gets (with a non optimal manipulations)

ˇ

ˇ

?
1´ x1 . . .

?
1´ xdu1pxq

ˇ

ˇ ď

˜

n
ÿ

i1“1

C

i1 ` 1

¸d

max
1ďrďr˚

|bpxrq| ď rCplog nqd max
1ďrďr˚

|bpxrq|.

It is the claim after summation over the 2d ´ 1 other values of j.

Lemma 5.7. There exists Kd ą 0 such that if ε ă min
`

Kdplog nq´2d, 1
2

˘

, then the equation (5.8)
has a solution.

Proof. This can be proved with a classical fixed point method which writes

(5.11)
ÿ

|j|ď1

gjpxqhjpxqu
k`1
j pxq “ ´

ε

2
zpxq ´

1

2

ÿ

|j|ď1

gjpxqu
k
j pxq

2, k “ 0, 1, 2, . . . ,

where the next iterate on the left hand side is the collection puk`1
j q|j|ď1 P Pnrxs2

d

. The initial value is

taken as udj “ 0 for all |j| ď 1. Note that max1ďrďr˚ |zpxrq| “ 1 by construction. The fixed point is
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convergent as easily shown below.

‚ Let us note wk “ max|j|ď1

›

›

›

?
gju

k
j

›

›

›

L8pKq
. Using the previous Lemma, one has w0 “ 0 and

wk`1 ď
`

Cdplog nqd{2
˘

pε` w2
kq.

Let us consider the quadratic equation z “
`

Cdplog nqd{2
˘

pε`z2q which is equivalent to z2´ bz`ε “ 0
with b “ 2

Cdplognqd
. The discriminant is ∆ “ b2 ´ 4ε. It is positive ∆ ą 0 under the condition of the

Lemma. The smallest root is z´ “
b´
?

∆
2 “ 2ε

b`
?

∆
ď 2ε

b . Now let us assume that zk ă z´ for some

k ě 0, which is already true for k “ 0 since z0 “ 0. Then wk`1 ´ z´ ď
`

Cdplog nqd{2
˘

pw2
k ´ z2

´q ă 0,
therefore the whole sequence is uniformly bounded wk ă z´ for all k.
‚ To show the convergence, we make the difference of two iterates (5.11)

ÿ

|j|ď1

gjpxqhjpxq
´

uk`1
j ´ ukj

¯

pxq “ ´
ÿ

|j|ď1

1

2

b

gjpxq
´

ukj ` u
k´1
j

¯

pxq ˆ
b

gjpxq
´

ukj ´ u
k´1
j

¯

pxq.

The norm of the difference is written as ek “ max|j|ď1

›

›

›

?
gjpu

k`1
j ´ uk`1

j q

›

›

›

L8pKq
. Using the uniform

bound and the previous Lemma, one obtains

ek`1 ď Cdplog nqdz´ek ď Cdplog nqd
2ε

Cdplog nqd
ek ď 2εek.

Since 2ε ă 1 by hypothesis, it establishes the geometric convergence of the sequence which yields a
solution to (5.8).

6. End of the proof and final remarks.

Theorem 1.4. The end of the proof of Theorem 1.4 is obtained by requiring that the right hand

side of (3.1) is positive. Considering (5.1) and 3.1, one sets ε “
Cd}p}W2,8pKq

p´m2 . Then Lemma 5.7 yields

the condition

(6.1) ε “
Cd}p}W 2,8pKq

p´m2
ă min

ˆ

Kdplog nq´2d,
1

2

˙

ă
Qd

p1` logmq2d

One recognizes the condition of the Theorem. Then the functionG is naturally convex in finite dimension
and infinite on the boundary of its domain. It is also infinite at infinity (in the direction of the cone at
infinity). It is a basic fact in convex analysis [21, Theorem 27.1-d) page 265] that such a proper closed
convex function as a minimum in its domain. The rest of the proof is evident.

Remark 6.1. By comparison of (5.4) and (6.1), the estimate of the Theorem is non optimal in
dimension d “ 1.

Remark 6.2. In the definition of G, one can replace the identity matrix with any symmetric positive
matrix. It changes the domain, however is does note change the cone at infinity and this is the main

reason why all results generalize to more general functions G “ tr
”

pA`
řr˚
r“1 λrBrq

´1
ı

`
řr˚
r“1 yrλr

where A ą 0.

Remark 6.3. In this work, the degree of a polynomial is defined as the maximal univariate degree of
its constituting monomials. The main advantage is that it is naturally compatible with the tensorization
techniques used at different parts of the proof. However it is probably not necessary.

Remark 6.4. A fully open problem is the generalization to the Putinar’s Positivstellensatz.
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Appendix A. Technical material on polynomials. The technical material is displayed for the
sake of completeness of this work.

A.1. Proof of (3.2)-(3.3). Let q P Pm
K,`rxs and make the change of variables θ “ pθ1, . . . , θdq P

Td :“ r0, 2πsd with xi “
1`cos θi

2 P r0, 1s for 1 ď i ď d. We consider rpθq “ qpxq which a non negative
trigonometric polynomial defined in the torus Td “ r0, 2πsd in dimension d. By construction it is even
with respect to all variables

rpθ1, θ1, . . . , θdq “ rp˘θ1,˘θ2, . . . ,˘θdq for all pθ1, . . . , θdq P Td.

One will make use of the monovariate Jackson kernel [7] which is

Knpθq “ λm

ˆ

sin rθ{2

sin θ{2

˙4

, r “
”n

2

ı

,

ż 2π

0

Knpθqdθ “ 1.

The Jackson kernel is a non negative trigonometric polynomial

(A.1) Knpθq “
2r´2
ÿ

k“0

ak,n cos kθ “
2r´2
ÿ

k“0

bk,n cosk θ ě 0 for all θ.

The Jackson transformed of r is spθq “
ş

Td
rpµ1, . . . , µdq Πd

i“1Knpθi ´ µiq dµ1 . . . dµd. Since r is even
in all variables, it can be rewritten as

spθq “

ż

r0,πsd
rpµ1, . . . , µdq Πd

i“1 pKnpθi ´ µiq `Knpθi ` µiqq dµ1 . . . dµd.

Thanks to (A.1), the trigonometric polynomial

gµpθq “ Knpθ ´ µq `Knpθ ` µq

can be expanded as finite linear combination of cosine modes wrt θ multiplied by cosine modes wrt µ.
Note r is also finite linear combination of cosine modes wrt µ. We note gµpθq “ Πd

i“1gµipθiq where
θ “ pθ1, . . . , θdq and µ “ pµ1, . . . , µdq, so that one can write

(A.2) spθq “

ż

r0,πsd
rpµqgµpθqdµ.

Here we use an idea that we found in [13]. The idea is to replace the integral with a quadrature formula
with positive weights and with sufficiently many quadrature points so that it is exact for all modes in
the integral (A.2). The result can be expanded as

(A.3) spθq “
ÿ

c

wc rpµcq gµcpθq

with the quadrature points denoted as µc, the weights denoted as wc ą 0 and the function gµcpθq being
the result of the multiplication of (A.3) for all directions. The approximation of q that we consider is
denoted as

rqpxq “ spθq.

Note that rq is the same as the one used in (3.2).
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Lemma A.1. Take 2r ´ 2 “ m. Then rq is correctly defined and rq P Pmrxs.

Proof. With (A.3), then spθq can be expanded a polynomial with respect pcos θ1, . . . , cos θdq “
p2x1 ´ 1, . . . , 2xd ´ 1q so rq is indeed a polynomial. By construction rq is of degree m with respect to all
variables, so its full degree is m (with the definition of the degree made in this work).

Lemma A.2 (Proof of (3.2)). The polynomial rq has the representation (1.4).

Proof. By construction gµpθq is non negative, that is gµpθq ě 0 for all θ and µ. Thn the real
polynomial kµpxq “ gµp2x ´ 1q is non negative for 0 ď x ď 1. The Lukacs Theorem [24] states that
there exists two polynomials aµ, bµ P P

nrxs (where m=2n+1) such that kµpxq “ xaµpxq
2`p1´xqbµpxq

2.
Therefore gµcpθq in (A.3) can be expanded as a multiplication of d such terms (one for each direction
in r0, 1sd) times the coefficient wcrpµcq ě 0. Therefore rq has the representation (1.4).

Next we establish a sharp bound on the difference q´ rq, which results from a sharp bound on r´ s.
The bound is just a natural tensorization of [7, Theorem 2.2 page 204]. However since the author is not
aware of such a result in the literature, the proof is detailed. The tensorization of the identity [7, top
of page 203] shows that one has

spθq “

ż

r0,πsd

¨

˝

ÿ

pα1,...,αdqPt´1,1ud

rpθ1 ` α1µ1, . . . , θd ` αdµdq

˛

‚Πd
i“1Knpµiq dµ

The sum is made of 2d terms. Note that
şπ

0
Knpµqdµ “

1
2 . One gets the error formula

spθq ´ rpθq “

ż

r0,πsd

¨

˝

ÿ

pα1,...,αdqPt´1,1ud

rpθ1 ` α1µ1, . . . , θd ` αdµdq ´ 2drpθ1, . . . , θdq

˛

‚Πd
i“1Knpµiq dµ.

Let us set

Cpµq “ max
θPr0,πsd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

pα1,...,αdqPt´1,1ud

rpθ1 ` α1µ1, . . . , θd ` αdµdq ´ 2drpθ1, . . . , θdq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, µ P r0, πsd,

and

Cipσq “ max
θPr0,πsd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

αiPt1,1u

rpθ1, . . . , θi´1, θi ` αiµ, θi`1, . . . , θdq ´ 2rpθ1, . . . , θdq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, σ P r0, πs.

Lemma A.3. One has Cpµq ď 2d´1 pC1pµ1q ` ¨ ¨ ¨ ` Cdpµdqq.

Proof. The result is proved by iteration on with respect to the dimension parameter d.
‚ For d “ 1, the claim is a triviality.
‚ Assume the property holds for d´ 1 ě 1. One can write

ÿ

pα1,...,αdqPt´1,1ud

`

rpθ1 ` α1µ1, . . . , θd ` αdµdq ´ 2drpθ1, . . . , θdq
˘

“
ÿ

pα2,...,αdqPt´1,1ud´1

prpθ1 ` µ1, θ2 ` α2µ2, . . . q ` rpθ1 ´ µ1, θ2 ` α2µ2, . . . q ´ 2rpθ1, θ2 ` α2µ2, . . . qq

`2
ÿ

pα2,...,αdqPt´1,1ud´1

`

rpθ1, θ2 ` α2µ2, . . . q ´ 2d´1rpθ1, θ2, . . . q
˘
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The absolute value of the first term in the right hand side is bounded by 2d´1C1pµ1q. Using the property
at step d´ 1, the absolute value of the second term is bounded by 2ˆ 2d´2 pC2pµ2q ` ¨ ¨ ¨ ` Cdpµdqq. It
yields the claim.

With evident simplifications, one obtains the bound

}r ´ s}L8pr0,πsdq ď

ż π

0

C1pµqKnpµ1qµ1 ` ¨ ¨ ¨ `

ż π

0

CdpµqKnpµdqµd.

Lemma A.4 (Proof of (3.3)). One has the bound }q ´ rq}L8pKq ď
Cd
m2 }p}W 2,8pKq.

Proof. The error is the sum of d terms which can all be treated with the one-variable bounds
of [7, Chapter 5-Section 2, pages 202 to 204]. The second modulus of continuity [7, Theorem 2.2
204] (evaluated with respect to the trigonometric variable θ P r0, πs) is bounded by }p}W 2,8pKq{n

2 ď

C}p}W 2,8pKq{m
2. It ends the proof.

A.2. Proof of Lemma 5.4. This is a very classical calculation in the theory of Chebyshev inter-
polation. Set T pxq “ cΠn

s“0px´ αsq where the constant c is still to specify. One has

(A.4) lkpxq “
T pxq

px´ αkqT 1pαkq

By elimination of x “ 1`cos θ
2 , one gets T pxq “ dΠn

s“0pcos θ ´ cosαsq for a constant d P R. The right

hand side is a polynomial of degree pn` 1q with respect to cos θ. We note that cos
`

n` 1
2

˘

θ cos θ2 can
also be written as a polynomial of degree pn ` 1q with respect to cos θ with the same roots cosαs. So
one can write T pxq “ cos

`

n` 1
2

˘

θ cos θ2 where the constant c is specified now. It can be rewritten as

T

ˆ

1` cos θ

2

˙

“ cos

ˆ

n`
1

2

˙

θ cos
θ

2
.

By differentiation with respect to θ, one gets

´
sin θ

2
T 1

ˆ

1` cos θ

2

˙

“ ´

ˆ

n`
1

2

˙

sin

ˆ

n`
1

2

˙

θ cos
θ

2
´

1

2
cos

ˆ

n`
1

2

˙

θ sin
θ

2
,

that is

T 1pxq “
p2n` 1q sinpn` 1

2 qθ

2 sin θ
2

`
cospn` 1

2 qθ

2 cos θ2
“

2n` 1

2
bnpxq `

1

2
anpxq.

First case: take x “ αk for 0 ď k ď n ´ 1. One gets that anpαkq “ 0 and that bnpαkq “
sinppn` 1

2 q
2k`1
2n`1πq

sin
θk
2

“
p´1qk

sin
θk
2

. So T 1pαkq “ p´1qk
pn` 1

2 q

sin
θk
2

.

Second case: for k “ n, one has θn “ π and x “ αn “ 0 . The definition 5.3 of an yields that
anp0q “ p´1qnp2n` 1q. So

(A.5) T 1pαnq “ p´1qn
`

n` 1
2

˘

sin θn
2

`
1

2
p´1qnp2n` 1q “ p´1qnp2n` 1q.

Plugging in (A.4) yields

lkpxq “
cos

`

n` 1
2

˘

θ cos θ2
x´ αk

p´1qk
2 sin θk
2n` 1

“
cos

`

n` 1
2

˘

θ cos θ2
cos θ ´ cos θk

p´1qk
4 sin θk
2n` 1

, 0 ď k ď n´ 1.

This is the claim of Lemma 5.4 for 0 ď k ď n´1. For k “ 2, there is an extra factor 2 in the denominator
due to (A.5).
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A.3. Bound on Chebyshev interpolation polynomials. Let 0 ď i ď n and 0 ď x ď 1.

Lemma A.5. There exists a constant C ą 0 (independent of x “ 1`cos θ
2 , n and k) such that

(A.6)

ˇ

ˇ

ˇ

ˇ

?
1´ x lkpxq

p1´ αkqanp1´ αkq

ˇ

ˇ

ˇ

ˇ

ď C
1

|k ´ l| ` 1

where θl ď θ ď θl`1.

Proof. We use the correspondance x “ 1`cos θ
2 “ cos2 θ

2 and αk “
1`cos θk

2 “ cos2 θk
2 . For 0 ď k ď

n´ 1, one has

(A.7)

?
1´ x lkpxq

p1´ αkqanp1´ αkq
“ p´1qk4

sin θ
2

sin
θk
2 cospn` 1

2 qθ cos θ2
p2n`1qpcos θ´cosαkq

sin2 θk
2

cospn` 1
2 qpπ´θkq

cos
π´θk

2

“ 4
sin θ

2 cos
`

n` 1
2

˘

θ cos θ2
p2n` 1q pcos θ ´ cosαkq

.

The structure of the right most term is classical in Chebyshev interpolation techniques [7]. One has
cos θ ´ cosαk “ 2 sin θ`θk

2 sin θk´θ
2 . The concavity of the function θk ÞÑ sin θ`θk

2 yields that

sin
θ ` θk

2
ě min

ˆ

sin
θ

2
, sin

θ ` π

2

˙

“ min

ˆ

sin
θ

2
, cos

θ

2

˙

.

One also has
ˇ

ˇsin θk´θ
2

ˇ

ˇ ě 1
π |θk ´ θ|. So one can write

ˇ

ˇ

ˇ

ˇ

?
1´ x lkpxq

p1´ αkqanp1´ αkq

ˇ

ˇ

ˇ

ˇ

ď
C

p2n` 1q|θk ´ θ|
.

First case: let us assume the condition θl ď θ ď θl`1 together with l ă k ´ 2. Then

p2n` 1q|θk ´ θ| ě p2n` 1q|θk ´ θl`1| “ 2π|k ´ l ´ 1| ě cp|k ´ l| ` 1q where c ą 0,

which yields (A.6).
Second case: one still considers θl ď θ ď θl`1 but now k ` 1 ă l. One gets

p2n` 1q|θk ´ θ| ě p2n` 1q|θk ´ θl| “ 2π|k ´ l| ě cp|k ´ l| ` 1q where c ą 0,

which also yields (A.6).
Third case: the remaining case is θl ď θ ď θl`1 with l “ k or l “ k ´ 1. Going back to (A.7), one
remarks that

ˇ

ˇ

ˇ

ˇ

ˇ

cos
`

n` 1
2

˘

θ

cos θ ´ cosαk

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

cos
`

n` 1
2

˘

θ ´ cos
`

n` 1
2

˘

αk

cos θ ´ cosαk

ˇ

ˇ

ˇ

ˇ

ˇ

ď n`
1

2
.

So
ˇ

ˇ

ˇ

?
1´x lkpxq

p1´αkqanp1´αkq

ˇ

ˇ

ˇ
ď 2 which yields (A.6) because l “ k or l “ k ´ 1.

Finally the constant C in (A.6) is the maximum of the three cases.
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[23] M. Schweighofer, On the complexity of Schmüdgen’s positivstellensatz, J. Complexity, 20 (2004), pp. 529–543.
[24] G. Szego, Orthogonal polynomials, AMS, 1939.
[25] A. Weiß e, G. Wellein, A. Alvermann, and H. Fehske, The kernel polynomial method, Rev. Modern Phys., 78

(2006), pp. 275–306.

16


	Introduction
	More properties of the function G
	An interesting inequality
	Study of r=1r* r 
	Study of r=1r* |r| 
	End of the proof and final remarks
	Appendix A. Technical material on polynomials
	Proof of (3.2)-(3.3)
	Proof of Lemma 5.4
	Bound on Chebyshev interpolation polynomials

	References

