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Abstract

We describe an interpretation of parareal as a two-level additive
Schwarz preconditioner in the time domain. We show that this two-
level preconditioner in time is equivalent to parareal and to multi-
grid reduction in time (MGRIT) with F-relaxation. We also dis-
cuss the case when additional fine or coarse propagation steps are
applied in the preconditioner. This leads to procedures equivalent to
MGRIT with FCF-relaxation and to MGRIT with F(CF)2-relaxation
or overlapping parareal. Numerical results show that these vari-
ants have faster convergence in some cases. In addition, we also
apply a Krylov subspace method, namely GMRES (Generalized Min-
imal Residual), to accelerate the parareal algorithm. Better con-
vergence is obtained, especially for the advection-reaction-diffusion
equation in the case when advection and reaction coefficients are large.

Keywords: Parareal , Two-level additive Schwarz in time preconditioner ,
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1 Introduction

In this paper we focus on parareal, an algorithm introduced by J.L. Lions
et al. [1] in 2001, which allows to exploit parallelism in time for initial value
problems. Over the last two decades, this algorithm has been studied for a
range of applications, going from molecular dynamics simulations [2], unsteady
hydrodynamic simulations [3], kinetic neutron diffusion equation [4, 5], the
Korteveg-deVries-Burgers’ equations [6], Hamiltonian systems [7, 8], to finan-
cial mathematics as the Black-Scholes equations [9–11]. Its stability and
convergence are studied in a series of papers, e.g. [12–15].

Given a time dependent problem, parareal allows parallel in time integra-
tion by relying on a combination between a fine propagator, which gives a very
accurate approximate of the solution, and a coarse propagator, which is less
expensive and gives a coarse approximate of the solution. For this, the time
domain is decomposed into a number of uniform time subdomains. From an
initial solution obtained by sequentially using the coarse propagator, parareal
iteratively corrects it by the difference between the fine solution obtained in
parallel using the fine propagator and the coarse solution obtained from the
previous iteration.

Several different interpretations of parareal exist in the literature. A deriva-
tion of the parareal algorithm as a multiple shooting method is given in [13].
An investigation of the usage of spectral deferred corrections in the framework
of parareal is given in [16, 17]. Coupling parareal in time with Schwarz wave-
form relaxation methods [18, 19] to exploit parallelism in both time and space
are promising directions of research as well. Parareal can also be interpreted as
a multigrid method in time, referred to as MGRIT with F-relaxation [20, 21].
Following this interpretation, several different variants have been investigated,
as MGRIT with FCF-relaxation, MGRIT with F(CF)2-relaxation, e.g. [21, 22],
where F refers to the F-relaxation and C refers to the C-relaxation.

Given that parareal relies on a decomposition of the time domain into
subdomains, in this paper we study the connection between parareal and
domain decomposition methods. Traditionally domain decomposition methods
are used for solving a linear system of equations Ãũ = f̃ , Ã ∈ Rn×n, aris-
ing from the discretization of a PDE by using for example the finite element
method, and they rely on a decomposition of the space domain into subdo-
mains. We consider here the case in which this linear system is solved by using
an iterative method as a Krylov subspace method, preconditioned by M̃−1,

M̃−1Ãũ = M̃−1f̃ ,

where M̃−1 is a domain decomposition method. One-level domain decompo-
sition preconditioners such as additive and multiplicative Schwarz precondi-
tioners are well-known in the literature for domain decomposition in space,
see e.g. [23]. However, their convergence rate deteriorates when the number of
subdomains becomes large because of a lack of global information coupling the
subdomains. In order to obtain a scalable domain decomposition algorithm
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which depends weakly on the number of subdomains, a coarse space can be
used to couple global information of all subdomains. This leads to the idea of
two-level domain decomposition preconditioners. Given a spatial decomposi-
tion of the degrees of freedom of Ã into Ñ subdomains, the restriction of Ã
to a spatial subdomain i, for i = 1, . . . , Ñ , is referred to as Ãi and is obtained
by defining a restriction matrix R̃i together with a prolongation matrix R̃Ti ,
such that Ãi = R̃iÃR̃

T
i . By defining the coarse matrix Ã0 and corresponding

restriction and prolongation matrices R̃0, R̃
T
0 , the two-level additive Schwarz

preconditioner is defined as,

M̃−1
AS2 = R̃T0 Ã

−1
0 R̃0 +

Ñ∑
i=1

R̃Ti Ã
−1
i R̃i,

and the two-level multiplicative Schwarz preconditioner is analogously defined
as

M̃−1
MS2 =

I − (I − R̃T0 Ã−1
0 R̃0Ã)

Ñ∏
i=1

(I − R̃Ti Ã−1
i R̃iÃ)

 Ã−1.

To show the equivalence between parareal and two-level domain decompo-
sition methods, we consider the linear time dependent problem,

du

dt
= f(u) , u(0) = u0, u(t) ∈ Rd, t in (0, T ), (1)

and an algebraic framework in which the solution to (1) can be obtained by
solving with a residual correction scheme the linear system of equations,

AUF = f, (2)

where the time domain (0, T ) was decomposed into N time subdomains, A ∈
R(N+1)d×(N+1)d is bidiagonal and denotes the time-stepping coefficient matrix
with the form,

A :=


I
−φ I

. . .
. . .

−φ I

 .
In this equation I ∈ Rd×d is the identity matrix, φ ∈ Rd×d denotes an arbitrary
stable discretization method in space and time, UF := [u0, . . . , uN ]T denotes
the solution at fine time steps and f := [u0, 0 . . . , 0]T is the right-hand side.
The matrix A includes all the time steps for the whole time domain. If N
and d become large, (2) results in a very large and sparse system. This is
the case where domain decomposition type methods show their advantages.
We consider the problem on a uniform grid, the time steps and space steps
do not change from one to the next so the discretization matrix for each time
step, namely φ, does not change . We show that parareal is equivalent to using
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the preconditioned stationary iteration which computes a new approximate
solution Uk+1

F from UkF ,

Uk+1
F = UkF +M−1

SC(f −AUkF ),

where M−1
SC is a two-level additive Schwarz in time preconditioner defined as,

M−1
SC = (RT0 A

−1
0 R0 + I−RT0 R0)

 N̂∑
i=1

RTi A
−1
i Ri

 . (3)

Remark 1 The preconditioner M−1
SC in (3) is different from the so-called hybrid pre-

conditioner where subdomain preconditioning is applied additively, but the coarse
solve is applied multiplicatively in the second stage, i.e.,

M−1
hybrid = RT0 A

−1
0 R0 + (I−RT0 A−1

0 R0)

 N̂∑
i=1

RTi A
−1
i Ri

 .

A symmetrized version of this preconditioner appears as Phy1 in the standard
reference of Toselli and Widlund (2005) for domain decomposition methods, [24].

We give in section 3 the exact definitions of the subdomain matrices Ai, for
i = 1, . . . , N̂ , the coarse time correction matrix A0, as well as the restriction
and prolongation matrices Ri, R

T
i , for i = 0, . . . , N̂ , where N̂ is the number

of subdomain matrices of A. The matrix I ∈ R(N+1)d×(N+1)d is the identity
matrix. The first term denotes an additive Schwarz preconditioner in time,
which is computed in parallel by using the fine propagators, followed by a
coarse correction in time, based on a coarse propagator, which is computed
sequentially and transfers the information globally between the different time
subdomains.

Furthermore, we show that this two-level additive Schwarz in time pre-
conditioner has the same error propagation as MGRIT with F-relaxation at
coarse time points, discussed in [20, 21, 25]. As expected, this shows that the
three algorithms parareal, MGRIT with F-relaxation, and two-level additive
Schwarz in time preconditioner from (3) are equivalent. We also discuss that
applying additional fine or coarse propagation steps in the two-level additive
Schwarz in time preconditioner is equivalent to MGRIT with FCF-relaxation
and MGRIT with F(CF)2-relaxation or overlapping parareal, discussed in [26].
Faster convergence can be achieved in some cases, but the trade-off is also
important to consider. To improve the convergence, a variant of two-level
domain decomposition method, referred to as SCS2 two-level additive Schwarz
in time preconditioner, provides a good alternative, since it relies on increasing
the number of additive Schwarz in time steps, while keeping only one coarse
correction step, which is performed in sequential. Note that the notations S
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and C used here in the context of two-level additive Schwarz in time precondi-
tioner correspond to the use of fine and coarse propagators. They are different
from F-relaxation and C-relaxation used in MGRIT. Specifically, S and C prop-
agation steps in the two-level additive Schwarz in time preconditioner start
from the same coarse time points and propagate to obtain the approximate
solution at the end of each time subdomain. While F-relaxation propagates
to obtain the approximate solution at fine time points based on the coarse
time points, and C-relaxation propagates to obtain the approximate solution
at coarse time points based on the previous fine time points, for more details
see [25]. We also explore the usage of Krylov subspace methods for solving the
system (2). This gives promising numerical results, especially for solving the
advection-reaction-diffusion equation with large advection and reaction terms.

The paper is organised as follows. Section 2 recalls parareal algorithm
and its formulation as a residual correction scheme. Section 3 introduces an
interpretation of parareal as a two-level additive Schwarz in time precondi-
tioner. Section 4 discusses several variants of this two-level additive Schwarz
in time preconditioner and gives their convergence analysis. Further, theoret-
ical convergence bounds are given in section 5. Several numerical experiments
are presented in section 6, where we consider the Dahlquist problem, the
heat equation, and the advection-reaction-diffusion equation. Conclusions and
perspectives are given in section 7.

2 Parareal algorithm

In this section we describe the parareal algorithm by following its presentation
from e.g. [13]. For the simplicity of the exposition, we consider the scalar linear
time dependent problem,

du

dt
= f(u) , u(0) = u0, u(t) ∈ Rd, t in (0, T ), (4)

The time interval [0, T ] is decomposed into NC uniform time subdomains
[Tn, Tn+1] with n = 0, . . . , NC − 1. Parareal uses two solvers, a fine solver
F(Tn+1, Tn, Un), which gives a very good approximate, and a coarse solver
G(Tn+1, Tn, Un), which gives a coarse approximate of the solution at time Tn+1

starting from the initial solution Un at time Tn. The initial approximate U0
n at

coarse time points is obtained typically by using sequentially the coarse solver,

U0
n+1 = G(Tn+1, Tn, U

0
n), U0

0 = u0.

From this initial solution in time, parareal iteratively computes a new approx-
imate of the solution of equation (4) until some convergence criterion is met.
At each iteration k + 1, k ≥ 0, a new approximate is computed as,

Uk+1
n+1 = G(Tn+1, Tn, U

k+1
n ) + F(Tn+1, Tn, U

k
n)− G(Tn+1, Tn, U

k
n). (5)
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The coarse and the fine solvers can be chosen in various ways. Very often
a higher order approximation is used for the fine solver and a lower order
approximation is used for the coarse solver. The coarse solver can also solve a
different problem, which is simpler to solve than the original one, as long as
it gives an acceptable approximate of the solution. However, the coarse solver
plays an important role in the convergence of the parareal algorithm. It should
be chosen in such a way that it is cheap but accurate enough compared to
the fine one, otherwise parareal algorithm can converge slowly. One simple
approach is to choose the same discretizations in both time and space for both
coarse and fine solvers, but with larger time step ∆t for the coarse solver and
smaller δt for the fine solver. Furthermore, one can also use a coarsened spatial
mesh for the coarse solver, see [27].

2.1 Parareal execution from an algebraic point of view

Consider the time dependent problem from equation (4) for which the time
interval [0, T ] is divided into N uniform time slices [tn, tn+1] with length δt,
for n = 0, . . . , N − 1. On the other hand, [0, T ] is also partitioned into NC
uniform coarse time intervals [Tl, Tl+1] with length ∆T , for l = 0, . . . , NC − 1.
We denote by φ a stable discretization method in time such as forward Euler,
backward Euler, Runge-Kutta or higher order methods, and by φ∆T the coarse
solver for which the same methods are used but with larger time step, or lower
order methods or spatial coarsening, in particular φ∆T approximates the fine
solver φm. Let δt be the fine time step and ∆t = ∆T = mδt be the coarse time
step (we use one coarse time step for the coarse solver on each coarse time
interval), in which m denotes the number of fine time steps on each coarse
time interval. We note that the error propagation and convergence analysis in
sections 3, 4, 5 are based on the assumption that φ and φ∆T can be diagonalized
by the same set of eigenvectors, in cases when when φ and φ∆T have the same
spatial discretization as stated in [25]. Furthermore, the analysis of spatial
discretization can also be found in [28]. Without loss of generality, we consider
in this work the same discretization methods in both time and space for both
coarse and fine solvers, namely the backward Euler in time and centered finite
difference method in space. However discretizations as forward Euler, Runge-
Kutta or higher order methods can also be used in the same framework , we
illustrate this by using Runge-Kutta 4 for the fine solver in section 6.4. In this
paper we focus on the linear constant-coefficient partial differential equations,
in particular the heat equation and the advection-reaction-diffusion equation.
By sequentially applying φ, the linear system of equations obtained has the
form:

AUF :=


I
−φ I

. . .
. . .

−φ I



u0

u1

...
uN

 =


u0

0
...
0

 =: f, (6)
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where A ∈ R(N+1)d×(N+1)d denotes the time-stepping coefficient matrix,
I ∈ Rd×d denotes the identity matrix and φ ∈ Rd×d denotes the discretization
matrix. This system of equations can be solved by using a direct method
in which the solutions ui, i = 0, . . . , N at different time steps are obtained
sequentially. This results in a complexity of N time steps, each time step being
solved by using φ. But instead of just using φ, parareal combines the use of
both coarse and fine solvers to result in a faster algorithm in which the fine
solvers are performed in parallel.

Fig. 1 Two-level temporal mesh and parareal execution.

We describe parareal by considering a simple two-level temporal mesh for
which m = 2, as displayed in figure 1. With this choice, the fine nodes are
defined at all time points {t0, t1, t2, . . . , tN}, while the coarse nodes are defined
at even time points {t0, t2, . . . , tN}. At the initial step k = 0, the initial approx-
imate of the coarse solution is obtained by applying φ∆T sequentially and the
fine solution is obtained by interpolating. Let F(Tn+1, Tn, U

k
n) := φ2Ukn be

the fine propagator and G(Tn+1, Tn, U
k
n) := φ∆TU

k
n be the coarse propagator,

parareal iteration from (5) becomes,

Uk+1
n+1 = φ∆TU

k+1
n + φ2Ukn − φ∆TU

k
n ,

where Ukn corresponds to uk2n which denotes the parareal solution at coarse
time point t2n, n = 0, . . . , N/2 and iteration k. In detail, parareal computes
the approximate solutions at fine time points as follows,

uk+1
i =


u0, if i = 0,

φuki−1, for i = 1, 3, . . . , N − 1,

φ∆Tu
k+1
i−2 + φuk+1

i−1 − φ∆Tu
k
i−2, for i = 2, 4, . . . , N.

(7)

As it can be seen from figure 1, the fine approximate solutions can be com-
puted in parallel based on the coarse approximate solutions from the previous



8

iterations. Generally for arbitrary m ≥ 2, we have similarly,

Uk+1
n+1 = φ∆TU

k+1
n + φmUkn − φ∆TU

k
n . (8)

2.2 Expression of the standard residual correction scheme

As presented in e.g. [26], parareal algorithm can be seen as a preconditioned
residual correction scheme of a reduced system representing only the coarse
time solutions, which is obtained from the original system of equations (6).
For this, a coarse matrix AC represents the time steps of the coarse level (here
we keep every second time point on each time interval), UC represents the
unknown solutions and fC the right-hand side at coarse time points,

ACUC :=


I
−φ2 I

. . .
. . .

−φ2 I
−φ2 I




u0

u2

...
uN−2

uN

 =


u0

0
...
0
0

 =: fC . (9)

This reduced system of equations (9) produces exactly the same solutions
as the original system (6) at coarse time points. A preconditioner M̃ which
approximates the coarse matrix A is obtained by approximating each fine time
integration propagator φ2 by one coarse integration propagator φ∆T ,

M̃ :=


I

−φ∆T I
. . .

. . .

−φ∆T I
−φ∆T I

 .
By using the preconditioned stationary iteration at the coarse level, we obtain
at iteration k,

Uk+1
C = UkC + M̃−1(fC −ACUkC), (10)

which can be written as,

M̃(Uk+1
C − UkC) = fC −ACUkC , (11)

or explicitly written as,
I

−φ∆T I
. . .

. . .

−φ∆T I
−φ∆T I




uk+1

0 − uk0
uk+1

2 − uk2
...

uk+1
N−2 − ukN−2

uk+1
N − ukN

 =


u0 − uk0
φ2uk0 − uk2

...
φ2ukN−4 − ukN−2

φ2ukN−2 − ukN

 . (12)
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It can be easily seen that the solutions uk+1
2i for i = 0, . . . , N/2 obtained by

solving equation (12) are the same as the solutions obtained by parareal in
equation (7).

We consider now solving the system AUF = f from equation (6) at the
fine level. We introduce a matrix MSC and we show that parareal algorithm is
equivalent to solving AUF = f by using a stationary iteration preconditioned
by M−1

SC . The preconditioned stationary iteration for solving AUF = f at the
fine level becomes,

Uk+1
F = UkF +M−1

SC(f −AUkF ), (13)

or equivalently,
MSC(Uk+1

F − UkF ) = f −AUkF , (14)

Note that (14) acts at the fine level, so MSC is different from M̃ in (11). In
other words, MSC has to deal with both unknowns at coarse and fine time
points. The matrix MSC is defined in the following lemma.

Lemma 1 Let F(Tn+1, Tn, u
k
n) := φmukn and G(Tn+1, Tn, u

k
n) := φ∆Tu

k
n denote the

fine and the coarse solvers, respectively. For m ≥ 2, (14) is equivalent to parareal
algorithm with MSC defined as,

MSC :=



I
I
−φ I

. . .

−φ∆T −φ I

 md×md

. . .

I
−φ I

. . .

−φ∆T −φ I



. (15)

Proof For m = 2, (14) becomes,

I
I

−φ∆T −φ I
. . .

I
−φ∆T −φ I





uk+1
0 − uk0
uk+1

1 − uk1
uk+1

2 − uk2
...

uk+1
N−1 − u

k
N−1

uk+1
N − ukN


=



u0 − uk0
φuk0 − uk1
φuk1 − uk2

...

φukN−2 − u
k
N−1

φukN−1 − u
k
N


. (16)

Simplifying (16) gives

uk+1
i =


u0, if i = 0,

φuki−1, for i = 1, 3, . . . , N − 1,

φ∆Tu
k+1
i−2 + φuk+1

i−1 − φ∆Tu
k
i−2, for i = 2, 4, . . . , N.

Generalize for m > 2, for j = 0,m, 2m, . . . , N −m and by induction we have,

uk+1
0 = u0,
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uk+1
j+1 = φukj ,

uk+1
j+2 = φuk+1

j+1 ,

...

uk+1
j+m−1 = φuk+1

j+m−2,

uk+1
j+m = φ∆Tu

k+1
j + φuk+1

j+m−1 − φ∆Tu
k
j = φ∆Tu

k+1
j + φmukj − φ∆Tu

k
j ,

which is identical to (8) and concludes the proof. �

Hence, instead of solving the system equation (6) by using a direct method,
parareal algorithm uses the stationary iteration defined in equation (13) pre-
conditioned by MSC as defined in (15). In addition, Krylov subspace methods
as GMRES can also be used to accelerate the convergence of parareal. In
the numerical experiments section 6.3 we present results obtained by using
GMRES for solving the preconditioned linear system,

M−1
SCAUF = M−1

SCf.

It will be seen that GMRES improves slightly the convergence of parareal and
it allows to solve problems for which parareal has difficulty to converge, as
in the case when the advection and reaction coefficients are large compared
to the diffusion term for the advection-reaction-diffusion problem. However in
general it does not improve drastically the convergence of parareal for our test
problems, and this was also observed in previous works as [29] which studied
the acceleration of waveform relaxation methods.

3 Interpretation of parareal as a two-level
additive Schwarz in time preconditioner

In this section we present an interpretation of parareal as a two-level domain
decomposition method. For this we show that the inverse of the preconditioner
MSC from (15) can be expressed as a first level additive Schwarz preconditioner
that relies on using the fine propagator φm in each time subdomain, followed
by a coarse time correction based on using the coarse propagator φ∆T .

We introduce first some notations. Let A ∈ R(N+1)d×(N+1)d be the time-
stepping matrix as defined in section 2.1. The matrices I ∈ R(N+1)d×(N+1)d

and I ∈ Rd×d are identity matrices. The matrix A is decomposed into NC + 1
non-overlapping subdomains {Ωi}1≤i≤NC+1, where NC = N/m denotes the
number of coarse time intervals. The matrix A is a block matrix, the blocks
being defined as {Aij}1≤i,j≤N+1 ∈ Rd×d. As displayed in equation (6), Aij can
be the φ matrix, the identity or the zero matrix. Let N = {1, . . . , N + 1} be
the set of indices of A, which corresponds to the fine time steps {t0, . . . , tN}.
Let Ni, i ∈ {1, . . . , NC + 1} be the subset of N such that Ni represents the
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subset of indices of subdomain i, we define Ni as,

Ni =

{
{1}, if i = 1,

{m(i− 2) + 2, . . . ,m(i− 1) + 1}, for i = 2, . . . , NC + 1,
(17)

the restriction matrix Ri is defined as,

Ri =

{
I, if i = 1,

I(Ni, :), for i = 2, . . . , NC + 1,
(18)

where I(Ni, :) denotes the submatrix of I formed by the rows whose indices
belong to Ni. The prolongation matrix RTi is the transpose of Ri. The
subdomain matrices {Ai}1≤i≤NC+1 are defined as,

Ai =



I, if i = 1,

RiAR
T
i =


I
−φ I

. . .
. . .

−φ I
−φ I

 , for i = 2, . . . , NC + 1.

For i ≥ 2, Ai = RiAR
T
i is an md×md block matrix. The inverse of Ai can be

computed as,

A−1
i =



I, if i = 1,

I
φ I
φ2 φ I
φ3 φ2 φ I
...

...
. . .

. . .

φm−2 φm−3 . . . φ I
φm−1 φm−2 . . . φ I


, for i = 2, . . . , NC + 1.

The first level additive Schwarz in time preconditioner is
∑NC+1

i=1 RTi A
−1
i Ri as

presented in the introduction section. The second level coarse time correction
is defined as following. Let N0 = {1 + im}0≤i≤NC

be the set of indices cor-
responding to coarse time points and A0 ∈ R(NC+1)d×(NC+1)d be the coarse
matrix that solves the reduced system from equation (6) at every coarse time
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point by using the coarse integration propagator φ∆T ,

A0 =


I

−φ∆T I
. . .

. . .

−φ∆T I
−φ∆T I

 . (19)

The coarse problem at coarse time points in the time domain is obtained by
using a restriction matrix R0 ∈ R(NC+1)d×(N+1)d, defined such that the entries
of R0 are identities at positions corresponding to the coarse time points and 0
elsewhere. In particular, R0 is defined as,

R0 = I(N0, :), (20)

in which N0 = {1, 1+m, 1+2m, . . . , 1+NCm} and the prolongation matrix for
the coarse problem is the transpose of R0. The inverse of A0 can be computed
as,

A−1
0 =



I
φ∆T I
φ2

∆T φ∆T I
φ3

∆T φ2
∆T φ∆T I

...
...

. . .
. . .

φNC−1
∆T φNC−2

∆T . . . φ∆T I
φNC

∆T φNC−1
∆T . . . φ∆T I


.

Lemma 2 The matrix MSC defined in (15) can be factored as,

MSC =

NC+1∑
i=1

RTi AiRi

 (RT0 A0R0 + I−RT0 R0),

and the additive Schwarz in time preconditioner M−1
SC is formed by the product of

the additive Schwarz term
∑NC+1
i=1 RTi A

−1
i Ri and the coarse time correction term

RT0 A
−1
0 R0 + I−RT0 R0,

M−1
SC = (RT0 A

−1
0 R0 + I−RT0 R0)

NC+1∑
i=1

RTi A
−1
i Ri

 . (21)

Proof We have NC+1∑
i=1

RTi AiRi

 (RT0 A0R0 + I−RT0 R0)
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=



I
I
−φ I

. . .

−φ I

 md×md

. . .

I
−φ I

. . .

−φ I





I
I
I

. . .

−φ∆T I

 md×md

. . .

I
I

. . .

−φ∆T I



=



I
I
−φ I

. . .

−φ∆T −φ I

 md×md

. . .

I
−φ I

. . .

−φ∆T −φ I



= MSC .

We observe that the matrix (RT0 A0R0 + I−RT0 R0) can be permuted to a matrix
whose first diagonal block is A0 followed by an identity matrix. Additionally the
term

∑NC+1
i=1 RTi AiRi is a block diagonal matrix. Thus we obtain,

M−1
SC = (RT0 A0R0 + I−RT0 R0)−1

(∑NC+1
i=1 RTi AiRi

)−1

= (RT0 A
−1
0 R0 + I−RT0 R0)

(∑NC+1
i=1 RTi A

−1
i Ri

)
.

�

The preconditioner M−1
SC is applied to a vector at each iteration of the

residual correction scheme (13). The inverses A−1
i and A−1

0 are never formed
explicitly, they are applied to a vector by using a backward solve. We refer
to this preconditioner as the SC two-level additive Schwarz in time precondi-
tioner. It is formed by the additive Schwarz preconditioner

∑NC+1
i=1 RTi A

−1
i Ri,

which corresponds to the use of the fine propagators computed in parallel, fol-
lowed by a coarse time correction RT0 A

−1
0 R0 + I − RT0 R0, which corresponds

to the use of the coarse propagator computed sequentially.

Corollary 1 Solving (6) by using parareal is equivalent to using the residual correction
scheme from equation (13) at the fine level, preconditioned by the SC two-level
additive Schwarz in time preconditioner. Each iteration becomes:

Uk+1
F = UkF + (RT0 A

−1
0 R0 + I−RT0 R0)

NC+1∑
j=1

RTj A
−1
j Rj(f −AUkF ). (22)
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Proof The proof is done by combining lemma 1 and lemma 2. �

Fig. 2 Non-overlapping time subdomains with m = 2. The fine nodes are defined at
all time points {t0, t1, t2, . . . , tN} and the coarse nodes are defined at even time points
{t0, t2, t4, . . . , tN}. The first time subdomain is always defined at {t0}, while following time
subdomains are defined at {tn, tn+1} for n = 1, . . . , N − 1.

We illustrate these results by considering the simple linear time dependent
problem (4) with m = 2, as it can be seen in figure 2. After discretization, the
linear system from equation (6) needs to be solved. We first decompose the
whole time domain into non-overlapping subdomains with indices Ni given
by (17), with the restriction matrices R1 ∈ Rd×(N+1)d, Ri ∈ Rmd×(N+1)d,
and the prolongation matrices RT1 ∈ R(N+1)d×d, RTi ∈ R(N+1)d×md for
i = 2, . . . , NC + 1 satisfy (18) such that their entries are I at positions
corresponding to the ith subdomain and 0 elsewhere, specifically,

R1 =
[
I 0 0 0 . . . 0 0

]
, R2 =

[
0 I 0 0 0 . . . 0
0 0 I 0 0 . . . 0

]
, . . . , RNC+1 =

[
0 0 0 0 . . . I 0
0 0 0 0 . . . 0 I

]
.

The subdomain matrices Ai = RiAR
T
i , for i = 1, . . . , NC + 1, become,

Ai =

 I, for i = 1,[
I 0
−φ I

]
, for i = 2, . . . , NC + 1.

Fig. 3 Coarse time correction defined at even time points {t0, t2, t4, . . . , tN}.

Let N0 = {1, 3, 5, . . . , N + 1} be the set of indices corresponding to coarse
time points {t0, t2, . . . tN} as displayed in figure 3. Let A0 ∈ R(NC+1)d×(NC+1)d

be the coarse matrix as defined in (19) and the restriction matrix R0 ∈
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R(NC+1)d×(N+1)d satisfies (20), namely,

R0 =


I 0 0 0 0 . . . 0
0 0 I 0 0 . . . 0
0 0 0 0 I . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 0 I

 .

The matrix MSC becomes,

MSC =

NC+1∑
i=1

RTi AiRi(R
T
0 A0R0 + I−RT0 R0)

=



I
0 I
−φ I

0 I
−φ I

. . .
. . .

0 I
−φ I





I
0 I

−φ∆T 0 I
0 I

−φ∆T 0 I
. . .

. . .

0 0 I
−φ∆T 0 I



=



I
0 I

−φ∆T −φ I
0 I

−φ∆T −φ I
. . .

. . .

0 0 I
−φ∆T −φ I


. (23)

It can be seen that MSC from (23) is the same as the matrix MSC defined
in lemma 1 in case m = 2, the preconditioner M−1

SC is computed following
lemma 2,

M−1
SC = (RT0 A

−1
0 R0 + I−RT0 R0)

NC+1∑
i=1

RTi A
−1
i Ri,

and then corollary 1 gives the residual correction scheme of the problem (4) at
the fine level (22) with SC two-level additive Schwarz in time preconditioner
M−1
SC which is equivalent to parareal.
It was shown in a series of papers, e.g. [13, 21], that MGRIT with F-

relaxation is equivalent to parareal algorithm. We show now that MGRIT with
F-relaxation is also equivalent to SC two-level additive Schwarz in time pre-
conditioner by computing the error propagation matrix at coarse time points.
The error propagation of (22) is governed by

ek+1 = (I−M−1
SCA)ek, (24)
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where ek := UF − UkF , and UF , U
k
F denote the exact solution and the

approximate solution, respectively. The iteration matrix has the form,

I−M−1
SCA = I− (RT0 A

−1
0 R0 + I−RT0 R0)

NC+1∑
i=1

RTi A
−1
i RiA.

Note that we consider M−1
SC as a two-level additive Schwarz preconditioner

in the time domain and the matrix A is not symmetric. Hence we cannot
exploit the theory of Schwarz-type algorithms for symmetric positive defi-
nite matrices for which the preconditioned system M−1

SCA can be expressed as
sums of orthogonal projection matrices Pi, for i = 1, 2, . . . , NC + 1, for fur-
ther details see [23]. Instead we study the error propagation matrix produced
in the residual correction scheme (22). The following lemma shows that the
error propagation matrix produces exactly the same error after one iteration
at coarse time points as MGRIT with F-relaxation, for which the error is given
in [25, Lemma 3.1].

Remark 2 The error propagation matrix I−M−1
SCA in (24) describes the propagation

of errors of (22) at both coarse and fine levels. In the following sections, e.g., lemma
3, 4, 5 and 6, for the convenience of comparison with parareal and the variants,
we only consider the error propagation matrices at the coarse level. We also remark
that φ and φ∆T commute due to the assumption that they can be diagonalized by
the same set of eigenvectors.

Lemma 3 Let UF be the exact solution of (6), UkF be an approximate solution from

(13), ek := UF − UkF and denote by ekj the error at iteration k and time tj with
j = 1, 2, . . . , N . The error at coarse time points generated at iteration k + 1 of (13)
with SC two-level additive Schwarz in time preconditioner defined in (21) satisfies:

ek+1
0 = 0,

ek+1
hm =

h−1∑
r=0

φh−1−r
∆T (φm − φ∆T )ekrm, h = 1, 2, . . . , NC .

(25)

Proof We denote by ekC,SC and ek+1
C,SC the errors at coarse time points at iteration

k and k + 1 respectively and by ESC := I−M−1
SCA the error propagation matrix at

coarse time points for SC two-level additive Schwarz in time preconditioner. The
error propagation from equation (24) at coarse time points yields,

ek+1
C,SC = ESCe

k
C,SC , (26)
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note that φ and φ∆T commute, so (26) can also be written as,

ek+1
0

ek+1
m

ek+1
2m

ek+1
3m

.

.

.

ek+1
NCm


=



0 0 0 . . . 0 0
φm − φ∆T 0 0 . . . 0 0

φ∆T (φm − φ∆T ) φm − φ∆T 0 . . . 0 0
φ2

∆T (φm − φ∆T ) φ∆T (φm − φ∆T ) φm − φ∆T . . . 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

φ
NC−1

∆T (φm − φ∆T ) φ
NC−2

∆T (φm − φ∆T ) φ
NC−3

∆T (φm − φ∆T ) . . . φm − φ∆T 0





ek0
ekm
ek2m
ek3m

.

.

.

ekNCm


.

Equation (25) follows. �

4 Variants of SC two-level additive Schwarz in
time preconditioner and convergence analysis

In this section we study several variants of SC two-level additive Schwarz
in time preconditioner and discuss their equivalence with MGRIT with
FCF-relaxation, MGRIT with F(CF)2-relaxation or overlapping parareal. In
addition, we derive a method, referred to as SCS2 two-level additive Schwarz
in time preconditioner, and discuss its suitability for exploiting parallel
computing.

We first describe the SCS variant of SC two-level additive Schwarz in time
preconditioner. It is obtained by first applying SC two-level additive Schwarz
in time preconditioner, that is one fine solve followed by one coarse solve,
and then adding one more fine solve. In detail, one iteration of the residual
correction scheme is performed as follows:

U
k+ 1

2

F = UkF + (RT0 A
−1
0 R0 + I−RT0 R0)

NC+1∑
j=1

RTj A
−1
j Rj(f −AUkF ),

Uk+1
F = U

k+ 1
2

F +

NC+1∑
j=1

RTj A
−1
j Rj(f −AU

k+ 1
2

F ).

The error propagation matrix is defined as,[
I−

NC+1∑
j=1

RTj A
−1
j RjA

][
I− (RT0 A

−1
0 R0 + I−RT0 R0)

NC+1∑
j=1

RTj A
−1
j RjA

]
.

The following lemma gives the error propagation of the SCS variant of SC
two-level additive Schwarz in time preconditioner. It can be seen that the error
propagation matrix produces exactly the same error at coarse time points after
one iteration as MGRIT with FCF-relaxation. The result for MGRIT with
FCF-relaxation is described in [25, Lemma 3.2].

Lemma 4 Let UF be the exact solution of (4), UkF be an approximate solution from

(13), ek := UF − UkF and denote by ekj the error at iteration k and time tj with
j = 1, 2, . . . , N . The error at coarse time points generated at iteration k + 1 of
the residual correction scheme from equation (13) preconditioned by SCS two-level
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additive Schwarz in time preconditioner satisfies:

ek+1
0 = 0,

ek+1
m = 0,

ek+1
hm =

h−2∑
r=0

φh−2−r
∆T (φm − φ∆T )φmekrm, h = 2, 3, . . . , NC .

(27)

Proof We denote by ekC,SCS and ek+1
C,SCS the errors at coarse time points at itera-

tion k and k + 1 respectively and by ESCS the error propagation matrix at coarse
time points for SCS two-level additive Schwarz in time preconditioner. We have the
relation,

ek+1
C,SCS = ESCSe

k
C,SCS , (28)

in which ESCS =

0 0 0 0 . . . 0 0
0 0 0 0 . . . 0 0

(φm − φ∆T )φm 0 0 0 . . . 0 0
φ∆T (φm − φ∆T )φm (φm − φ∆T )φm 0 0 . . . 0 0
φ2

∆T (φm − φ∆T )φm φ∆T (φm − φ∆T )φm (φm − φ∆T )φm 0 . . . 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

φ
NC−2

∆T (φm − φ∆T )φm φ
NC−3

∆T (φm − φ∆T )φm φ
NC−4

∆T (φm − φ∆T )φm . . . (φm − φ∆T )φm 0 0


.

The relations in equation (27) follow. �

The SCS2 variant of SC two-level additive Schwarz in time preconditioner
is obtained by adding one more fine solve based on additive Schwarz as follows:

U
k+ 1

3

F = UkF + (RT0 A
−1
0 R0 + I−RT0 R0)

NC+1∑
j=1

RTj A
−1
j Rj(f −AUkF ),

U
k+ 1

2

F = U
k+ 1

3

F +

NC+1∑
j=1

RTj A
−1
j Rj(f −AU

k+ 1
3

F ),

Uk+1
F = U

k+ 1
2

F +

NC+1∑
j=1

RTj A
−1
j Rj(f −AU

k+ 1
2

F ).

The error propagation matrix is defined as,[
I−

NC+1∑
j=1

RTj A
−1
j RjA

]2 [
I− (RT0 A

−1
0 R0 + I−RT0 R0)

NC+1∑
j=1

RTj A
−1
j RjA

]
.

Lemma 5 Let UF be the exact solution of (4), UkF be an approximate solution from

(13), ek := UF − UkF and denote by ekj the error at iteration k and time tj with
j = 1, 2, . . . , N . The error at coarse time points generated at iteration k + 1 of the
residual correction scheme from equation (13) with SCS2 two-level additive Schwarz
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in time preconditioner satisfies:

ek+1
0 = 0,

ek+1
m = 0,

ek+1
2m = 0,

ek+1
hm =

h−3∑
r=0

φh−3−r
∆T (φm − φ∆T )φ2mekrm, h = 3, 4, . . . , NC .

(29)

Proof Let ekC,SCS2 and ek+1
C,SCS2 be the errors at coarse time points at iteration k

and k + 1 respectively and let ESCS2 be the error propagation matrix at coarse
time points for SCS2 two-level additive Schwarz in time preconditioner. We have the
relation,

ek+1
C,SCS2 = ESCS2ekC,SCS2 , (30)

in which ESCS2 =

0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0

(φm − φ∆T )φ2m 0 0 0 . . . 0 0 0
φ∆T (φm − φ∆T )φ2m (φm − φ∆T )φ2m 0 0 . . . 0 0 0
φ2

∆T (φm − φ∆T )φ2m φ∆T (φm − φ∆T )φ2m (φm − φ∆T )φ2m 0 . . . 0 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

φ
NC−3

∆T (φm − φ∆T )φ2m φ
NC−4

∆T (φm − φ∆T )φ2m φ
NC−5

∆T (φm − φ∆T )φ2m . . . (φm − φ∆T )φ2m 0 0 0


.

Equation (29) follows. �

A variant known in the literature as MGRIT with F(CF)ν-relaxation or
overlapping parareal has been shown to converge at most after k = [N/(ν+1)]
iterations [26, Theorem 5]. For the case ν = 2, in the framework of domain
decomposition, this variant is referred to as S(CS)2 two-level additive Schwarz
in time preconditioner and it is obtained as follows:

U
k+ 1

3

F = UkF + (RT0 A
−1
0 R0 + I−RT0 R0)

NC+1∑
j=1

RTj A
−1
j Rj(f −AUkF ),

U
k+ 1

2

F = U
k+ 1

3

F + (RT0 A
−1
0 R0 + I−RT0 R0)

NC+1∑
j=1

RTj A
−1
j Rj(f −AU

k+ 1
3

F ),

Uk+1
F = U

k+ 1
2

F +

NC+1∑
j=1

RTj A
−1
j Rj(f −AU

k+ 1
2

F ).

The error propagation matrix is defined as,[
I−

NC+1∑
j=1

RTj A
−1
j RjA

][
I− (RT0 A

−1
0 R0 + I−RT0 R0)

NC+1∑
j=1

RTj A
−1
j RjA

]2

.

For completeness we give in the following lemma the error of this variant.
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Lemma 6 Let UF be the exact solution of (4), UkF be an approximate solution from

(13), ek := UF − UkF and denote by ekj the error at iteration k and time tj with
j = 1, 2, . . . , N . The error at coarse time points generated at iteration k + 1 of (13)
with S(CS)2 two-level additive Schwarz in time preconditioner satisfies:

ek+1
0 = 0,

ek+1
m = 0,

ek+1
2m = 0,

ek+1
hm =

h−3∑
r=0

(h− 2− r)φh−3−r
∆T (φm − φ∆T )2φmekrm, h = 3, 4, . . . , NC .

(31)

Proof We denote by ekC,S(CS)2 and ek+1
C,S(CS)2 the errors at coarse time points at

iteration k and k + 1 respectively and by ES(CS)2 the error propagation matrix at

coarse time points for S(CS)2 two-level additive Schwarz in time preconditioner. We
obtain the relation,

ek+1
C,S(CS)2 = ES(CS)2ekC,S(CS)2 , (32)

in which ES(CS)2 =

0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
Φ 0 0 0 . . . 0 0 0

2φ∆T Φ Φ 0 0 . . . 0 0 0
3φ2

∆T Φ φ∆T Φ Φ 0 . . . 0 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

(NC − 2)φ
NC−3

∆T Φ (NC − 3)φ
NC−4

∆T Φ (NC − 4)φ
NC−5

∆T Φ . . . Φ 0 0 0


from which equation (31) follows, where Φ := (φm − φ∆T )2φm. �

These different variants have different costs in a parallel environment.
Given that the fine solve phase based on additive Schwarz is done in parallel
and the coarse solve phase has to be done in sequential, the coarse solve is the
major limiting factor. For that reason, the advantage becomes more notice-
able when they use more fine solve phases based on additive Schwarz and one
coarse solve phase which is done in sequential. The impact of additional fine
or coarse solve phases in the preconditioner to the error convergence as well as
the computational costs will be discussed in more detail in the next section.

5 Convergence estimate

In this section we estimate the convergence of SC two-level additive Schwarz
in time preconditioner and its variants by computing the norms of the error
propagation matrices. The convergence is estimated based on an eigenvalue
analysis for which the coarse and the fine propagators must have the same
eigenvectors. As the assumption in section 2 that φ and φ∆T have the same
eigenvectors, there exists a unitary matrix X, e.g., X∗X = XX∗ = I such
that φ and φ∆T can be diagonalized as,
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Λ = X∗φX = diag(λ1, λ2, . . . , λd),

Λ∆T = X∗φ∆TX = diag(µ1, µ2, . . . , µd),
with |λi| < 1 and |µi| < 1 for i = 1, 2, . . . , d since φ and φ∆T are stable

time-stepping methods.
The matrix ESC defined in equation (26) is the error propagation matrix

corresponding to SC two-level additive Schwarz in time preconditioner, each
element of this matrix is a block matrix of dimension d × d. The error prop-
agation matrices ESCS , ESCS2 , ES(CS)2 corresponding to the variants of SC
two-level additive Schwarz in time preconditioner are defined in (28), (30),
(32). Let ESC = Y BY ∗, where Y ∈ RNCd×NCd is a block diagonal matrix,
Y = BlockDiag(X,X, . . . ,X) and B has the form

B =



0 0 0 . . . 0 0
Λm − Λ∆T 0 0 . . . 0 0

Λ∆T (Λm − Λ∆T ) Λm − Λ∆T 0 . . . 0 0
Λ2

∆T (Λm − Λ∆T ) Λ∆T (Λm − Λ∆T ) Λm − Λ∆T . . . 0 0
...

...
...

. . .
...

...

ΛNC−1
∆T (Λm − Λ∆T ) ΛNC−2

∆T (Λm − Λ∆T ) ΛNC−3
∆T (Λm − Λ∆T ) . . . Λm − Λ∆T 0


.

We then have,

||B||1 = ||B||∞ = max
1≤j≤d

NC−1∑
i=0

|µij(λmj − µj)|. (33)

On the other hand, we also have,
||ESC ||2 = ||Y BY ∗||2 = ||B||2 ≤

√
|B||1||B||∞

= max
1≤j≤d

NC−1∑
i=0

|µij(λmj − µj)|

≤ max
1≤j≤d

NC−1∑
i=0

|µij ||λmj − µj |

= max
1≤j≤d

{
|λmj − µj |

NC−1∑
i=0

|µij |

}

= max
1≤j≤d

{
|λmj − µj |

1− |µj |NC

1− |µj |

}
. (34)

Similarly we have,

||ESCS ||2 ≤ max
1≤j≤d

{
|λmj − µj |

1− |µj |NC−1

1− |µj |
|λj |m

}
, (35)

||ESCS2 ||2 ≤ max
1≤j≤d

{
|λmj − µj |

1− |µj |NC−2

1− |µj |
|λj |2m

}
, (36)

||ES(CS)2 ||2 ≤ max
1≤j≤d

Cj , (37)
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in which

Cj = (λmj − µj)2 1− (NC − 1)|µj |NC−2 + (NC − 2)|µj |NC−1

(1− |µj |)2
|λj |m. (38)

The 2-norm of the errors is estimated in the following theorem.

Theorem 1 Let φ and φ∆T be simultaneously diagonalizable by the same unitary
matrix X and be stable time-stepping methods with eigenvalues λi and µi respectively
, e.g., |λi| < 1 and |µi| < 1 for i = 1, . . . , d. The error at coarse time points generated
at iteration k + 1 of (13) satisfy:

||ek+1
C,SC ||2 ≤ max

1≤j≤d

{
|λmj − µj |

1− |µj |NC

1− |µj |

}
||ekC,SC ||2, (39)

||ek+1
C,SCS ||2 ≤ max

1≤j≤d

{
|λmj − µj |

1− |µj |NC−1

1− |µj |
|λj |m

}
||ekC,SCS ||2, (40)

||ek+1
C,SCS2 ||2 ≤ max

1≤j≤d

{
|λmj − µj |

1− |µj |NC−2

1− |µj |
|λj |2m

}
||ekC,SCS2 ||2, (41)

||ek+1
C,S(CS)2 ||2 ≤ max

1≤j≤d
Cj ||ekC,S(CS)2 ||2, (42)

where Cj is defined in (38).

Proof Combining (33)-(34), (35), (36) and (37) leads to the desired results. �

The convergence bounds for SC from (39) and SCS from (40) are already
given in the context of MGRIT with F-relaxation and with FCF-relaxation,
see [25], in which the authors estimate the convergence by using the eigenvector
expansion of the error to compute the error norm for each eigenmode. In this
paper, we estimate the convergence of SC two-level additive Schwarz in time
preconditioner and its variants by computing directly the norms of the error
propagation matrices generated at iteration k + 1 of the residual correction
scheme from equation (13). The theoretical convergence bounds we obtained
for SC and SCS two-level additive Schwarz in time preconditioner are exactly
the same with those for MGRIT with F-relaxation and with FCF-relaxation.
This once again confirms the equivalence between parareal, MGRIT with F-
relaxation and SC two-level additive Schwarz in time preconditioner.

As the work presented in [25], those estimates have a removable singularity
that is when |µj | tends to 1. They are also shown to be bounded independently
of NC in many applications. Furthermore, the nominator 1 − |µj |NC can be
replaced by 1 since the estimates hold for all NC .
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As mentioned in the end of the previous section, these variants have differ-
ent computational costs for implementation. To make this clear, we follow our
setting in section 2, to recall the speedup of parareal algorithm from [30] as,

S(NC) =
NCmτf

NCτC +K(NCτC +mτf )
, (43)

in which the numerator describes the runtime for the fine propagator over
NC coarse time intervals while the denominator shows the runtime of parareal
algorithm with NC processors and K iterations, and τC , τf denote the compu-
tational cost of one step of the coarse and fine propagator. Depending on the
number of coarse and fine propagator phases in the preconditioner, we then
have different speedup of the variants, more precisely,

SSCS(NC) =
NCmτf

NCτC +K(NCτC + 2mτf )
, (44)

SSCS2(NC) =
NCmτf

NCτC +K(NCτC + 3mτf )
, (45)

SS(CS)2(NC) =
NCmτf

NCτC +K(2NCτC + 3mτf )
. (46)

It is obvious that the speedup becomes less efficient as the number of coarse
or fine propagator phases increases. However those fine propagator phases are
totally performed in parallel, this is a very important characteristic that we
can exploit. By adding one or two additional fine propagation steps in the
preconditioner, the convergence of parareal from (39) can be reduced by a
factor of |λj |m or |λj |2m as it can be seen in (40), (41), especially in the case
when the eigenvalues are very small and the number of fine time step per time
slice m is very large.

We provide now the estimation of the computational cost of parareal with
GMRES acceleration. In this case we consider only scalar and 1D problems
and we denote τCd, τfd the computational cost of one step of the coarse and
fine propagators to account for the linear cost in d, where d denotes the spatial
dimension of φ. The operation count is presented in table 1 and the total

Operation Cost
Initial coarse propagation NCτCd

kth GMRES step (for k = 1, . . . ,K)
1. Multiplication by A O(md)
2. Parareal preconditioner application NCτCd+mτfd
3. Orthogonalization O(k(NC +md))
4. Residual estimation O(k)

Total cost after K iterations K(NCτCd+mτfd) +O(K2(NC +md))
Least squares solve O(K2)

Solution reconstruction O(Kmd)

Table 1 Operation count for parareal with GMRES acceleration.
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cost can be computed as,

PParareal+GMRES(NC ,K) = NCτCd+Kd(NCτC+mτf )+O(K2(NC+md)+Kmd),

where we have subsumed the least squares solve cost into the O(K2(NC+md))
term since (NC +md)� 1. The normalized cost over sequential time-stepping
can thus be computed as,

SParareal+GMRES(NC ,K) =
NCτC +K(NCτC +mτf ) +O(K2(NC/d+m) +Km)

NCmτf
,

(47)

where we cancelled d in both the numerator and denominator. Formula (47)
will be used for the plots in section 6.3 and 6.4.

6 Numerical results

In this section we first discuss results that show the equivalence between
parareal and SC two-level additive Schwarz in time preconditioner for three
different problems, Dahlquist problem, heat equation, and advection-reaction-
diffusion equation. Numerical experiments investigate the behavior of the
convergence rates on short and long time intervals when NC and m vary. We
then discuss the convergence of different variants of two-level domain decompo-
sition preconditioners in time. A comparison between parareal or SC two-level
additive Schwarz in time preconditioner and parareal with GMRES acceler-
ation is also conducted. The three linear test cases considered here are the
Dahlquist problem with a0 = −1,u0 = 1,

du

dt
= a0u, u(0) = u0, t ∈ [0, T ], (48)

the heat equation with a∗ = 3, L = 1,∆x = 0.1, the exact solution uexact =
x(L− x)2 exp(−2t),

∂u
∂t = a∗ ∂

2u
∂x2 + f in (0, L)× (0, T ),

u(x, 0) = u0(x) x ∈ (0, L),
u(0, t) = u(L, t) = 0 t ∈ (0, T ),

(49)

and the advection-reaction-diffusion equation with a = 1, b = 1, c = 1, L =
1,∆x = 0.1, the exact solution uexact = sin(2πx) exp(−2t),

∂u
∂t = a∂

2u
∂x2 − b∂u∂x + cu+ f in (0, L)× (0, T ),

u(x, 0) = u0(x) x ∈ (0, L),
u(0, t) = u(L, t) = 0 t ∈ (0, T ),

(50)

in which the unknowns u(x, t) in (49) and (50) are considered in (0, L) ×
(0, T ) ⊂ Rd×R, where d is the space dimension. The source term is denoted by
f and is chosen to obtain the desired exact solution. For simplicity we consider
the Dirichlet boundary condition, however the periodic boundary condition is
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also used in 6.4. Note that the same discretization methods are used for both
coarse and fine solvers, namely centered finite difference in space and backward
Euler in time except the end of section 6.4 in which Runge-Kutta 4 is used for
the fine solver.

6.1 Equivalence between parareal and SC two-level
additive Schwarz in time preconditioner

In order to study the short time interval behavior, we use NC = 20, T = 1,
while for the long time interval behavior, we use NC = 100, T = 100. With time
steps ∆t = T/NC , δt = ∆t/m, for m = 20, d = 1 for Dahlquist problem, d = 10
for the heat and advection-reaction-diffusion equations, the 2-norm (spectral
norm) of the error between the approximate solution and the fine sequential
solution (obtained by sequentially using the fine solver) is displayed in figure
4 for the three test cases. We observe that the convergence curves of parareal
and SC two-level additive Schwarz in time preconditioner are almost the same,
except for the last iterations, when this may happen because of round-off
errors. The bound for SC two-level additive Schwarz in time preconditioner
derived in equation (39) is sharp, in particular for long time intervals.

For the Dahlquist problem, the errors of parareal and SC two-level additive
Schwarz in time preconditioner are in superlinear convergence regime on short
time intervals and in linear convergence regime on long time intervals. This
behavior is also outlined in [13]. In particular on short time intervals they
reach 10−13 after 5 iterations while with the same number of iterations, the
attained error is 10−4 on long time interval.

For the heat equation, a convergence to 10−16 is observed for short time
interval after 18 iterations. For long time interval, both parareal and SC two-
level additive Schwarz in time preconditioner converge to an error of 10−17

after 10 iterations.
For the advection-reaction-diffusion equation, in particular for short time

interval, both parareal and SC two-level additive Schwarz in time precondi-
tioner converge to an error of 10−14 after 18 iterations. For long time interval,
both parareal and SC two-level additive Schwarz in time preconditioner
converge to an error of 10−16 after 15 iterations.

In addition to this section, numerical tests are performed for the case when
m� NC , specifically, we set NC = 20 and m = 500. The results are displayed
in figure 5. We observe that the results are almost the same with the case
when m = 20 in figure 4 for short time interval. On long time interval, a linear
convergence with the same rate is obtained for both parareal and SC two-level
additive Schwarz preconditioner.

6.2 Comparison between variants of SC two-level
additive Schwarz in time preconditioner

Numerical experiments are performed to study the convergence of several
variants of the SC two-level additive Schwarz in time preconditioner that
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Fig. 4 Error between approximate solution and fine sequential solution with m = 20 for
Dahlquist problem (top), heat equation (middle) and advection-reaction-diffusion equation
(bottom), T = 1, NC = 20 (first column), and T = 100, NC = 100 (second column).

use additional coarse or fine propagation steps. Similarly to the previous
section, we use d = 1 for Dahlquist problem, d = 10 for the heat and
advection-reaction-diffusion equations, the short time interval behavior uses
NC = 20 and T = 1, and the long time interval behavior uses NC = 100
and T = 100. Figures 6, 8, and 10 display the error, in 2-norm, between
the approximate solution and the fine sequential solution, with time steps
∆t = T/NC , δt = ∆t/m, and m ∈ {2, 20}, for the Dahlquist problem, heat
equation, and advection-reaction-diffusion equation, respectively.

For the Dahlquist problem, figure 6, on short time interval the improvement
of SCS, SCS2 is not very important compared to SC two-level additive Schwarz
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Fig. 5 Error between approximate solution and fine sequential solution with m = 500 for
Dahlquist problem (left), heat equation (right) and advection-reaction-diffusion equation
(bottom), T = 1, NC = 20.

in time preconditioner except the S(CS)2 which converges faster than the oth-
ers. However on long time interval, the improvement becomes more important.
In particular for m = 2, SC two-level additive Schwarz in time preconditioner
converges to an error of 10−10 after 9 iterations, while SCS and SCS2 converge
in 7 and 5 iterations respectively, and S(CS)2 converges in just 4 iterations to
an error of 10−10. For m = 20, after 9 iterations SC two-level additive Schwarz
in time preconditioner converges to an error of 10−6, while SCS, S(CS)2, and
SCS2 converge to much smaller errors, 10−10 and 10−14, respectively.

Additionally in this part we present in figure 7, a comparison of the differ-
ent methods in terms of their computational costs for the Dahlquist problem
(when communication costs are neglected). For this purpose, the convergence is
presented as a function of computational cost in which the x-axis corresponds
to the computational cost normalized by the cost of sequential time-stepping,
i.e., the inverse of the formulas (43), (44), (45), (46). We choose τC = τf = 8
since the same integrator is used and we solve a tridiagonal system of dimen-
sion d with the computational cost 8d. For short time interval, SC converges
to the error of 10−15 with the cheapest cost compared to the others, while
SCS2 is the most expensive method. On the contrary, on long time interval
T = 100, NC = 100, SCS2 converges with the lowest cost and SC is the most
expensive method. Specifically, when m = 20, SCS2 converges to the error of
10−14 with a cheaper cost compared to the cost of sequential time-stepping.

For the heat problem, figure 8, on short time interval SCS, SCS2 and S(CS)2

converge faster than SC two-level additive Schwarz in time preconditioner. In
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Fig. 6 Error between approximate solution and fine sequential solution for Dahlquist prob-
lem with m = 2 (first column) and m = 20 (second column), T = 1, NC = 20 (first row),
and T = 100, NC = 100 (second row).

particular for m = 2, SC converges to an error around 10−16 after 13 iterations,
while SCS, SCS2, and S(CS)2 need 9, 6, and 5 iterations, respectively. For
m = 20, the improvement becomes more important, specifically it takes 18
iterations for SC two-level additive Schwarz in time preconditioner to converge
to an error of 10−16, while SCS reaches this error in 10 iterations, and both
SCS2 and S(CS)2 require only 7 iterations. We also observe that SCS2 has a
convergence rate close to S(CS)2. On long time interval, both SCS, SCS2 have
a convergence rate close to the one of S(CS)2, and SCS2 converges faster than
the other variants. In particular for m = 2, SC two-level additive Schwarz in
time preconditioner converges to an error of 10−17 after 10 iterations, while
it takes 4 iterations for SCS and 3 iterations for both SCS2 and S(CS)2 to
converge to the same error. For m = 20, SCS2 converges to an error around
10−17 after one iteration, SCS and S(CS)2 converge to the same error in 2
iterations, while SC two-level additive Schwarz in time preconditioner requires
10 iterations.

Similarly to the previous test case, a comparison of the different methods
in terms of their computational costs for the heat problem is displayed in
figure 9. Specifically, SCS2 always converges with the lowest cost compared to
the others. SCS and S(CS)2 are slightly higher and SC is the most expensive
method.

For the advection-reaction-diffusion problem, figure 10, the convergence
behavior is similar to the heat equation for m = 2. For short time interval
and m = 20, SC two-level additive Schwarz in time preconditioner converges
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Fig. 7 Computational cost comparison of the error between approximate solution and fine
sequential solution for Dahlquist problem with m = 2 (first column) and m = 20 (second
column), T = 1, NC = 20 (first row), and T = 100, NC = 100 (second row).

to an error of 10−14 in 18 iterations, while SCS, SCS2, and S(CS)2 converge
to the same error in 9, 7, and 6 iterations, respectively. On long time interval
and m = 20, it takes 15 iterations for SC two-level additive Schwarz in time
preconditioner to converge to an error of 10−16, while SCS, S(CS)2, and SCS2

reach the same error in 4, 3, and 2 iterations, respectively.
As the previous test case, a comparison of the different methods in terms

of their computational costs for the advection-reaction-diffusion problem is
displayed in figure 11. We observe that SCS2 always converges with the lowest
cost compared to the others, except for the short time interval with m = 20 in
which SCS is slightly lower. S(CS)2 is slightly higher compared to SCS2 and
SCS while SC is the most expensive method.

In summary, the SC two-level additive Schwarz in time preconditioner with
no additional coarse or fine propagation steps has a slower convergence than
the other variants for all our test cases. This indicates that the usage of addi-
tional coarse or fine propagation steps leads to a more efficient preconditioner.
The S(CS)2 variant, corresponding to overlapping parareal or MGRIT with
F(CF)2-relaxation, converges faster than the other variants in case of short
time interval simulation. The SCS2 variant converges faster than SCS for all
our test cases. It is close to the convergence rate of S(CS)2 for short time inter-
val simulation, and it is even faster than S(CS)2 for the heat equation (49)
and the advection-reaction-diffusion equation (50) on long time interval. It is
efficient when m increases, for example for m = 20, it reaches an error of 10−17

after one iteration. For the computational cost comparison, SCS2 becomes the



30

0 2 4 6 8 10 12 14 16 18 20

Iteration

10-15

10-10

10-5
E

rr
o
r

T=1

SC two-level additive Schwarz

SCS two-level additive Schwarz

SCS
2
 two-level additive Schwarz

S(CS)
2
 two-level additive Schwarz

0 2 4 6 8 10 12 14 16 18 20

Iteration

10-15

10-10

10-5

E
rr

o
r

T=1

SC two-level additive Schwarz

SCS two-level additive Schwarz

SCS
2
 two-level additive Schwarz

S(CS)
2
 two-level additive Schwarz

0 2 4 6 8 10 12 14 16 18 20

Iteration

10-15

10-10

10-5

E
rr

o
r

T=100

SC two-level additive Schwarz

SCS two-level additive Schwarz

SCS
2
 two-level additive Schwarz

S(CS)
2
 two-level additive Schwarz

0 2 4 6 8 10 12 14 16 18 20

Iteration

10-15

10-10

10-5

E
rr

o
r

T=100

SC two-level additive Schwarz

SCS two-level additive Schwarz

SCS
2
 two-level additive Schwarz

S(CS)
2
 two-level additive Schwarz

Fig. 8 Error between approximate solution and fine sequential solution for heat equation
with m = 2 (first column) and m = 20 (second column), T = 1, NC = 20 (first row), and
T = 100, NC = 100 (second row).

best candidate since it converges with the cheapest cost for almost cases of the
three problems, especially on long time intervals.

Furthermore, in this part we perform numerical experiments for the case
when m� NC , specifically, NC = 20 and m = 500. The results are displayed
in figure 12. For the Dahlquist test, S(CS)2 reaches the error 10−15 after 3 iter-
ations while SC, SCS and SCS2 converge to the errors of 10−13, 10−14, 10−15

after 5 iterations, respectively. For the heat problem, S(CS)2 and SCS2 con-
verge nearly with the same rate to the error of 10−15 after 6 iterations
while SC and SCS reach the same error after 17 and 9 iterations. For the
advection-reaction-diffusion equation, we observe that S(CS)2, SCS2, SCS and
SC converge to the error of 10−15 after 6, 7, 9 and 18 iterations, respectively.
In summary, the behavior of all methods in this case is quite similar with the
case when m = 20 in which S(CS)2 and SCS2 have more advantage compared
to SCS and SC.

A comparison of the different methods in terms of their computational
costs for the three problems on short time interval is displayed in figure 13.
For Dahlquist test, SC is the fastest, S(CS)2, SCS are slightly slower and
SCS2 is the most expensive. For the heat and the advection-reaction-diffusion
problems, the behaviors are the same and all methods converge nearly with
the same computational cost, the difference is not very significant. Especially
for the heat problem, figure 12, SCS2 and S(CS)2 converge after 6 iterations
while SC converges after 17 iterations to the error of 10−15 nearly with the
same computational cost. For long time interval T = 100, NC = 20, figure 14,
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Fig. 9 Computational cost comparison of the error between approximate solution and fine
sequential solution for heat equation with m = 2 (first column) and m = 20 (second column),
T = 1, NC = 20 (first row), and T = 100, NC = 100 (second row).

SCS2 converges with the lowest computational cost, SCS, S(CS)2 are slightly
slower and SC is the most expensive for Dahlquist test. For the heat and the
advection-reaction-diffusion problems, the behaviors are similar. Specifically,
SCS converges with the cheapest computational cost, SCS2, S(CS)2 converge
with the same computational costs and SC is the most expensive method.

6.3 Parareal with GMRES acceleration

In this section we discuss the results obtained by parareal with GMRES
acceleration. The tolerance for GMRES is set to 10−16. For Dahlquist prob-
lem, the 2-norm of the error between the approximate solution and the fine
sequential solution and of the relative residual are displayed in figure 15 for
NC = 20, T = 1, and for NC = 100, T = 100. In both tests, ∆t = T/NC , δt =
∆t/m,m ∈ {5, 20}, d = 1 for Dahlquist problem, d = 10 for the heat and
advection-reaction-diffusion equations. On short time interval, we observe that
GMRES slightly improves the convergence of parareal. On long time interval,
the improvement become more noticeable. Specifically, for m = 20, parareal
with GMRES acceleration converges to an error of 10−15 while parareal only
converges to an error of 10−11, after 16 iterations. For the relative residual,
parareal with GMRES acceleration converges to 10−15 after 20 iterations, while
parareal converges to 10−11 after the same numbers of iterations. Since the
convergence behavior of the error and the relative residual are similar for the
heat equation and the advection-reaction-diffusion equation, we present only
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Fig. 10 Error between approximate solution and fine sequential solution for advection-
reaction-diffusion equation with m = 2 (first column) and m = 20 (second column), T =
1, NC = 20 (first row), and T = 100, NC = 100 (second row).

the convergence results for the latter equation. They are displayed in figure 16
for short and long time intervals. On short time interval, we observe that the
convergence rate of parareal with GMRES acceleration is slightly improved for
both the error and the relative residual. Parareal with GMRES acceleration
allows to reach the same error as parareal, while requiring 2 iterations less. For
example for m = 20, parareal with GMRES acceleration converges to an error
of 10−14 after 16 iterations, while parareal converges to the same error after
18 iterations. On long time interval, the improvement is even less important.

It can be seen that GMRES improves slightly the convergence of parareal
for the three test cases as mentioned in the end of section 2.2. In addition to this
part, a comparison of the two methods in terms of their computational costs
for Dahlquist problem and advection-reaction-diffusion equation is displayed
in figure 17, on short time intervals. Specifically, for Dahlquist problem, the
difference is not very large at the beginning. It becomes more noticeable when
the costs increase, and the computational cost of plain parareal is 0.7 time
less than the one of parareal with GMRES acceleration, to obtain the error
of 10−15. For advection-reaction-diffusion equation, the same behaviors are
observed for the two curves and the computational cost of plain parareal is
0.5 time less than the one of parareal with GMRES acceleration, to obtain the
error of 10−14.
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Fig. 11 Computational cost comparison of the error between approximate solution and fine
sequential solution for advection-reaction-diffusion equation with m = 2 (first column) and
m = 20 (second column), T = 1, NC = 20 (first row), and T = 100, NC = 100 (second row).

6.4 Impact of GMRES acceleration for the
advection-reaction-diffusion equation with different
coefficients

We study in this section the convergence of parareal with GMRES acceleration
for the advection-reaction-diffusion equation with different coefficients than at
the beginning of section 6. We consider the following setting: L = 1, T = 1,
a = 0.01, b = 0.5, c = 100, NC = 20,∆x ∈ {0.2, 0.05}, ∆t = T/NC , δt =
∆t/m,m = 2. The exact solution is uexact = sin(2πx) exp(−2t). The 2-norm of
the error between the approximate solution and the fine sequential solution and
of the relative residual are displayed in figure 18. We observe that both parareal
and parareal with GMRES acceleration converge within 20 iterations. However
the error and relative residual of parareal seem to stagnate (∆x ∈ {0.2, 0.05})
and even increase (∆x = 0.05), while those of parareal with GMRES accel-
eration always decrease. Specifically, for ∆x = 0.2, parareal converges slowly
within the first 5 iterations, then stagnates, and continues to converge after
16 iterations. Hence GMRES acceleration provides a more robust approach on
short time interval T = 1. However, on long time interval T = 100, both meth-
ods converge with the same rate. As the previous section, a comparison of the
two methods in terms of their computational costs is displayed in figure 19.
For ∆x = 0.2, the computational cost of parareal with GMRES acceleration is
even less than the computational cost of the plain parareal at the beginning.
However, to achieve the error of 10−15, the computational cost of parareal
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Fig. 12 Error between approximate solution and fine sequential solution with m = 500
for Dahlquist problem (left), heat equation (right) and advection-reaction-diffusion equation
(bottom), T = 1, NC = 20.

with GMRES acceleration is 1.7 times higher than the one of plain parareal.
For ∆x = 0.05, while parareal stagnates and even blows up at the beginning,
parareal with GMRES acceleration still converges. Particularly, with almost
the same computational cost, parareal with GMRES acceleration reaches an
error less than 10−4 while the plain parareal only reaches an error of 10−3.
Moreover, with a 1.2 times higher computational cost, parareal with GMRES
acceleration achieves an error of 10−15, while the plain paraeal only reaches
an error of 10−13.

In this section we also present numerical experiments for the advection-
reaction-diffusion equation in two cases, diffusion dominated and advection
dominated. For both cases, we consider the advection-reaction-diffusion
equation (50) with the periodic boundary condition{

u(0, t) = u(L−∆x, t),
u(L, t) = u(∆x, t),

with L = 1, T = 1, NC = 20,∆x = 0.1,∆t = T/NC , δt = ∆t/m,m = 5 and
the exact solution uexact = sin(2π(x − bt)) exp(−2t). For the advective case,
we consider a = 0.0005, b = 1, c = 1, and for the diffusive case, we consider
a = 1, b = 0.0005, c = 1. The 2-norm of the error between the approximate
solution and the fine sequential solution and of the relative residual are dis-
played in figure 20. We observe that parareal with GMRES acceleration always
converges faster than the plain parareal in both cases. In particular for the
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Fig. 13 Computational cost comparison of the error between approximate solution and
fine sequential solution with m = 500 for Dahlquist problem (left), heat equation (right)
and advection-reaction-diffusion equation (bottom), T = 1, NC = 20.

advective case, parareal converges to the error of 10−14 after 17 iterations while
parareal with GMRES acceleration reaches the same error after 15 iterations.
For the diffusive case, we observe that both parareal and parareal with GMRES
acceleration converge with a slower rate than the advective case. In particu-
lar parareal with GMRES acceleration needs 16 iterations to converge to the
error of 10−14 while parareal needs 18 iterations to reach the same error. It
can be seen that GMRES again improves slightly the convergence of parareal
as the numerical results in section 6.3. A comparison of the two methods in
terms of their computational costs is also displayed in figure 21. We observe
that the computational costs in the advective case are lower than the ones
in the diffusive case. For the advective case, the difference is not significant
at the beginning. However, to achieve the error of 10−14, the computational
cost of parareal with GMRES acceleration is slightly higher. For the diffusive
case, the difference is slightly larger with a small advantage for parareal with
GMRES acceleration at the beginning. Nevertheless, as the advective case, the
computational cost of parareal with GMRES acceleration is 1.3 times higher
to reach the error of 10−14 .

Additionally in the end of this section, we show the convergence behaviors
of parareal and parareal with GMRES acceleration with a different method
for the fine propagator. In particular, we keep using backward Euler in time
for the coarse propagator but Runge-Kutta 4 for the fine propagator. For the
discretization in space, we keep the same centered finite difference method for
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Fig. 14 Computational cost comparison of the error between approximate solution and
fine sequential solution with m = 500 for Dahlquist problem (left), heat equation (right)
and advection-reaction-diffusion equation (bottom), T = 100, NC = 20.

both coarse and fine propagators. Following the same setting with the peri-
odic boundary condition, the convergence results are displayed in figure 22.
Specifically, for the advective case, a convergence to the error of 10−13 is
obtained for parareal after 15 iterations while parareal with GMRES accel-
eration reaches the same error after 12 iterations. For the diffusive case, a
slower convergence rate than the advective case is observed for both parareal
and parareal with GMRES acceleration. Specifically, it takes 15 iterations
for parareal while parareal with GMRES acceleration needs 13 iterations to
converge to the error of 10−14. We also observe that parareal with GMRES
acceleration slightly improves the convergence in both cases as the previous
results in figure 20. Moreover, with the more accurate discretization for the
fine propagator Runge-Kutta 4, the convergence curves are slightly faster than
the ones using backward Euler in figure 20. Specifically, in the diffusive case,
parareal with GMRES acceleration converges to the error of 10−14 after 13
iterations while it needs 16 iterations to reach the same error in case of using
backward Euler for the fine propagator as it can be seen in figure 20. We also
give in figure 23 a comparison of the two methods in terms of their computa-
tional costs. It can be seen that the computational costs of both plain parareal
and parareal with GMRES acceleration are slightly higher than the ones in the
previous test case in figure 21 for the avective case. Specifically, the difference
is not very significant at the beginning, however to reach an error of 10−14, the
computational cost of parareal with GMRES acceleration is 1.4 times higher
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Fig. 15 Error between approximate solution and fine sequential solution (first column) and
relative residual (second column) in 2-norm for Dahlquist problem, T = 1, NC = 20 (first
row), T = 100, NC = 100 (second row) with m = 20 in both cases.

than the one of plain parareal. For the diffusive case, the same observation is
obtained as the previous test case in figure 21.

We observe from numerical experiments in this section that GMRES accel-
eration is helpful at the beginning when the overhead is cheap, and becomes
less helpful as the orthogonalization cost increases. One potential choice is to
exploit a restart strategy after a few iterations.

7 Conclusions and perspectives.

In this paper, we propose an interpretation of parareal algorithm based on
a domain decomposition strategy, that we refer to as SC two-level additive
Schwarz in time preconditioner. This preconditioner in time is equivalent to
MGRIT with F-relaxation. We study variants of this preconditioner and show
that additional fine or coarse propagation steps lead to MGRIT with FCF-
relaxation, MGRIT with F(CF)2-relaxation or overlapping parareal. We also
find that SCS2 two-level additive Schwarz in time preconditioner converges
faster than MGRIT with F(CF)2-relaxation or overlapping parareal on long
time interval and with a large number of subdomains. The efficiency of the
variants as well as their computational costs have been shown in numerical
experiments, especially on long time intervals. Theoretical convergence bounds
are verified and numerical results show that they are sharp especially for
long time intervals. We also propose using Krylov subspace method, especially
GMRES, to accelerate the parareal algorithm. We find that for a specific case
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Fig. 16 Error between approximate solution and fine sequential solution (first column)
and relative residual (second column) in 2-norm for advection-reaction-diffusion equation,
T = 1, NC = 20,m = 20 (first row), and T = 100, NC = 100,m = 5 (second row).
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Fig. 17 Computational cost comparison of the error between approximate solution and
fine sequential solution in 2-norm for Dahlquist problem (left), advection-reaction-diffusion
equation (right) , T = 1, NC = 20 with m = 20.

of the advection-reaction-diffusion equation in which the advection and reac-
tion coefficients are large compared to the diffusion term, the error of parareal
stagnates or even increases for the first iterations, while GMRES provides a
faster decrease of the error. This phenomena as well as the convergence analysis
of parareal with GMRES acceleration will be studied in our future work.
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Fig. 18 Error between approximate solution and fine sequential solution (first column)
and relative residual (second column) in 2-norm for advection-reaction-diffusion equation
with the Dirichlet boundary condition, T = 1, NC = 20, m = 2, ∆x = 0.2 (first row), and
∆x = 0.05 (second row), with backward Euler for both propagators.
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Fig. 19 Computational cost comparison of the error between approximate solution and
fine sequential solution in 2-norm for advection-reaction-diffusion equation , T = 1, NC =
20,m = 2, with ∆x = 0.2 (left) and ∆x = 0.05 (right).
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Fig. 20 Error between approximate solution and fine sequential solution (first column) and
relative residual (second column) in 2-norm for advection-reaction-diffusion equation with
the periodic boundary condition, T = 1, NC = 20,m = 5 for advective case (first row), and
for diffusive case (second row), with backward Euler for both propagators.
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Fig. 21 Computational cost comparison of the error between approximate solution and
fine sequential solution in 2-norm for advection-reaction-diffusion equation with the periodic
boundary condition, T = 1, NC = 20,m = 5 for advective case (left) and for diffusive case
(right), with backward Euler for both propagators.
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Fig. 22 Error between approximate solution and fine sequential solution (first column) and
relative residual (second column) in 2-norm for advection-reaction-diffusion equation with
the periodic boundary condition, T = 1, NC = 20,m = 5 for advective case (first row),
and for diffusive case (second row), with backward Euler for the coarse propagator and
Runge-Kutta 4 for the fine propagator.
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Fig. 23 Computational cost comparison of the error between approximate solution and
fine sequential solution in 2-norm for advection-reaction-diffusion equation with the periodic
boundary condition, T = 1, NC = 20,m = 5 for advective case (left) and for diffusive
case (right),with backward Euler for the coarse propagator and Runge-Kutta 4 for the fine
propagator.
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