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ABSTRACT 

Somatic mutations can disrupt splicing regulatory elements and have dramatic effects on cancer 

genes, yet the functional consequences of mutations located in extended splice regions is difficult to 

predict. Here, we use a deep neural network (SpliceAI) to characterize the landscape of splice-altering 

mutations in cancer. In our in-house series of 401 liver cancers, SpliceAI uncovers 1,244 cryptic splice 

mutations, located outside essential splice sites, that validate at a high rate (66%) in matched RNA-

seq data. We then extend the analysis to a large pan-cancer cohort of 17,714 tumors, 

revealing >100,000 cryptic splice mutations. Taking into account these mutations increases the power 
of driver gene discovery, revealing 126 new candidate driver genes. It also reveals new driver 

mutations in known cancer genes, doubling the frequency of splice alterations in tumor suppressor 

genes. Mutational signature analysis suggests mutational processes that could give rise preferentially 

to splice mutations in each cancer type, with an enrichment of signatures related to clock-like 

processes and DNA repair deficiency. Altogether, this work sheds light on the causes and impact of 

cryptic splice mutations in cancer, and highlights the power of deep learning approaches to better 

annotate the functional consequences of mutations in oncology. 

 
INTRODUCTION 
RNA splicing is a key process in biology where non-coding regions of RNA (introns) are removed and 

exons joined together, to generate the mature messenger RNA (mRNA) that will be translated (1). In 

eukaryotes, alternative splicing occurs in ~95% of multi-exonic genes and generates a diversity of 

protein isoforms from a single gene (2). This process provides evolutionary flexibility and may have 
contributed to the development of multicellular organisms (3). In humans, splicing involves a series of 

reactions catalyzed by a large ribonucleoprotein complex called the spliceosome, which recognizes 

key regulatory sequences on the pre-mRNA. The two bases at each extremity of the intron constitute 

the canonical donor (GU) and acceptor (AG) splice sites. Other cis-regulatory elements include the 

polypyrimidine tract and the branch point located around 30 nucleotides upstream the acceptor site, as 

well as exonic and intronic splicing enhancers and silencers (4). Yet, these sequences are less 

evolutionary conserved than the essential splice sites. RNA splicing is thus carefully regulated, and 
alterations of the splice machinery components or cis-regulatory sequences underlie many diseases 



 

 

(5–7). In cancer, core spliceosome components including SF3B1, SRSF2 or U2AF1 are recurrently 

altered in both hematological and solid tumors (8, 9). In addition, splice mutations are a frequent 

mechanism leading to the inactivation of tumor suppressor genes, and have been reported in 13% of 

genes in the Cancer Gene Census (9, 10). Mutations affecting essential splice sites lead to various 

degrees of intron retention or exon skipping and are thus annotated as damaging in cancer genomics 

projects (11). In contrast, the functional consequences of mutations in extended splice regions is 
difficult to predict because other regulatory elements largely involve degenerate sequence features 

(12). Several computational methods have been developed to automatically detect splice sites in DNA 

sequences and to predict the splicing impact of mutations. One of the earliest tools for detecting splice 

sites in eukaryotic mRNA was a decision tree via maximal dependence decomposition (13). This idea 

was enhanced in GeneSplicer by Markov models that capture additional dependencies among 

neighboring bases in splice regions (14). Other methods were introduced to model splice sites with 

Bayes networks (15) or pairwise correlations (16). Yeo and Burge proposed the MaxEntScan 

framework modeling sequence motifs based on the maximum entropy principle (17). This tool was 
shown to outperform previous probabilistic models and is used by variant annotation tools like the 

Variant Effect Predictor (VEP) (18). Neural networks were introduced to identify splice sites in 

NNSplice (19). More recently, a 32-layer deep residual neural network (SpliceAI) was developed to 

predict whether each position in a pre-mRNA transcript is a splice donor, acceptor or neither (20). In 

contrast to previous methods that only consider tens of bases around exon-intron boundaries, SpliceAI 

uses 10,000 nucleotide sequences as input, allowing to capture long-range determinants of splicing. 

This tool largely outperformed previous methods in terms of both specificity and validation rate (20) 
and was successfully used to unravel pathogenic cryptic splice mutations in patients with rare genetic 

diseases. 

 

Here, we use a large series of liver tumors with matched whole genome/exome sequencing and RNA 

sequencing data to benchmark SpliceAI in a cancer setting. We then apply this tool to uncover cryptic 

splice mutations in a large pan-cancer series totaling >17,000 tumors. We show that SpliceAI 

outperforms previous widely used tools, and reveals numerous cryptic splice mutations that enhance 

the landscape of cancer driver genes and mutations. 

 
MATERIAL AND METHODS 
Datasets 

We used an in-house series of 401 liver cancers with matched RNA-seq and DNA variants identified 

by whole exome (WES, n=275) or whole genome (WGS, n=126) sequencing to benchmark the 

performance of SpliceAI. Initial bioinformatic analyses (alignment and variant calling) were already 

performed in previous studies (21–27) and we directly used processed data in this study. We then 
analyzed a large pan-cancer series comprising 17,714 tumor samples across 25 cancer types from 

the ICGC-PCAWG (n=2,699 WGS) (28), Hartwig Medical Foundation (n=4,818 WGS) (29) and TCGA 

(n=10,197 WES) (30) projects. Somatic mutations were downloaded directly from the online 

repositories of each project. 



 

 

 

Predicting splice-affecting mutations with SpliceAI 

We used SpliceAI (v1.3.1) to predict the splicing impact of almost 300 million somatic mutations. This 

computation-intensive task was performed on the Jean Zay supercomputer, the world’s 10th most 

powerful supercomputer, with a computing power reaching 28 petaflops. Computations were heavily 

performed on a GPU V100 allocation which allowed to shrink the computation time down to 0.003 
seconds. For comparison, the run time on a personal computer's CPU was 1.2s per variant, so the 

analysis of 300 million mutations would take  4,167 days. SpliceAI returns 4 delta scores (DS) for each 

type of splicing abnormality (donor loss/gain, acceptor loss/gain). We retrieved for each mutation the 

strongest DS, the corresponding splicing consequence and its position relative to the mutation. 

Mutations with a DS ≥ 0.5 were considered to have a significant impact on splicing, as suggested in 

the original publication (20). 

 

Validation of splice-affecting mutations using matched RNA-seq data  

Let 𝑝 be the position of a predicted abnormal splicing event. Let 𝑅# be the set of reads crossing 

position 𝑝 in a control sample with a MapQ score ≥ 20 and 𝑅$ be the set of reads crossing position p 

in the mutated sample of interest with a MapQ score ≥ 20. We define 𝑀& and 𝑀' as a partition of 𝑅$ 

such as 𝑅$ = 𝑀& ∪𝑀'.  We define 𝐶& and 𝐶' as a partition of 𝑅# such as 𝑅# = 𝐶& ∪ 𝐶'. 𝑀' 

(respectively 𝑀&) represents the ensemble of abnormal (respectively normal) reads in the mutated 

sample of interest. 𝐶' (respectively 𝐶&) represents the ensemble of abnormal (respectively normal) 

reads in the control samples. We calculated the Relative Usage of the Novel Junction (RUNJ, Figure 
1C) as previously described (20):   

𝑅𝑈𝑁𝐽 =
#𝑀'

#𝑀' + #𝑀&
−

#𝐶'
#𝐶' + #𝐶&

 

 
Two custom control panels were used for each mutation: a control PON (Panel of Normal) composed 

of 5 non-tumor samples from the same sequencing series as the sample of interest, and a control 

POT (Panel of Tumors) composed of 5 tumor samples from the same sequencing series and without a 

somatic mutation at the same locus. The POT allows to exclude tumor-specific effects not directly 

linked with the mutation of interest (e.g. altered gene expression of isoform usage) that could lead to 

abnormal RNA-seq reads in tumors. 

RUNJ scores were calculated in two ways. First, the RUNJdirect score considers only abnormal reads 
that support the most direct consequence of the splicing alteration (e.g. reads passing trough the 

essential donor for donor loss events). However, the observed consequence on the RNA can be 

different from the expected one. For example, a donor loss could favor usage of a cryptic donor site 

upstream within the exon, leading to a truncated exon or even full exon skipping. In that case, we 

would not detect RNA-seq reads continuing from the exon to the intron, but rather abnormal junctions 

linking the cryptic donor to the next acceptor site. To account for these situations, we thus introduced 

a RUNJall score considering all abnormal reads at the considered exon-intron boundary 

(Supplementary Figure S1). 𝑅𝑈𝑁𝐽1234#5,789 and 𝑅𝑈𝑁𝐽'::,789	were calculated considering the Panel of 



 

 

Normal as controls. 𝑅𝑈𝑁𝐽1234#5,78< and 𝑅𝑈𝑁𝐽'::,78<	were calculated considering the Panel of Tumors 

as controls. 

Finally, a prediction was validated if and only if all of the following hypotheses are verified: 

- #𝑀' ≥ 2  

- 𝑅𝑈𝑁𝐽1234#5,789 ≥ 0.01 or 𝑅𝑈𝑁𝐽'::,789 ≥ 0.01   

- 𝑅𝑈𝑁𝐽1234#5,78< ≥ 0.01 or 𝑅𝑈𝑁𝐽'::,78< ≥ 0.01 or not applicable. 

To facilitate the validation of large numbers of variants, we created the PyRNA library that allows 

retrieving relevant reads from RNA-seq bam files and calculating RUNJ scores: 

https://github.com/FunGeST/pyRNA. 
 

Benchmarking the performance of SpliceAI against GeneSplicer and MaxEntScan 

We used the two widely used tools GeneSplicer (14) and MaxEntScan (17) to benchmark the 

performance of SpliceAI in predicting splice-affecting mutations. We downloaded the MaxEntScan and 

GeneSplicer softwares from http://genes.mit.edu/burgelab/maxent/download/ and 

http://www.cs.jhu.edu/genomics/GeneSplicer/ respectively. Both tools were run with default 

parameters to predict the impact on splicing of the 1,704,461 somatic mutations in th LICA-FR series.  

For comparison, we applied thresholds for GeneSplicer and MaxEntScan scores in order to have the 
same number of positive predictions as SpliceAi for three DS thresholds (0.2, 0.5, 0.8). We validated 

the predictions of the 3 tools using matched RNA-seq data as described above. We computed the 

proportion validated predictions and the area under the precision-recall curve (PR-AUC) for each tool.  

 

Driver gene analysis 

We used MutSigCV to identify genes with significantly more mutations than expected by chance 

considering mutation categories and genomic covariates, as previously described (31). For each 
tumor series, we first run MutSigCV with classical categories of coding mutations (missense, 

nonsense, essential splice, frameshift, inframe indels or synonymous). We then re-run the analysis 

after converting to splice variants the cryptic splice mutations uncovered by SpliceAI (DS ≥ 0.5). We 

then compared MutSigCV q-values obtained with both settings to identify new genes reaching 

significance when adding cryptic splice variants. We also calculated the mutation frequency of each 

gene in the Cancer Gene Census (10) considering only classical categories of coding mutations or 

adding cryptic splice sites.  

 
Mutational signature analysis 

We used Palimpsest (32) to quantify the contribution of known COSMIC signatures in 2,699 tumors of 

the ICGC PCAWG data set. To ensure that only relevant signatures were included, we analyzed each 

cancer type separately and we included only signatures that were shown to be present in that cancer 

type (33). We then used Palimpsest to quantify the probability 𝑝$,B2C of each mutation m being due to 

each mutational process with signature sig, as previously described (22). Finally, we compared the 

contribution of signatures to splice mutations and other mutations in each series. The contribution of 

signature sig to a set of mutations Sm was estimated as the sum: 
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To identify mutational processes preferentially giving rise to splice mutations, we compared the 

distribution of probabilities 𝑃(𝑚, 𝑠) for each signatures s between splice mutations and others using 

Wilcoxon rank sum tests. 

 
RESULTS 
 
SpliceAI outperforms traditional tools for predicting cryptic splice mutations in cancer 

We used an in-house series of 401 liver cancers (21–27) with whole exome (n=275) or whole genome 
sequencing (n=126) and matched RNA-seq data to predict and validate cryptic splice mutations using 

SpliceAI, MaxEntScan and GeneSplicer (Figure 1A). A total of 1,704,461 somatic mutations were 

analyzed with the three tools. SpliceAI returned predictions for 432,773 mutations, covering most 

intragenic mutations. By contrast, GeneSplicer returned predictions for only 13,589 mutations, and 

MaxEntScan 6,317 mutations, mostly located in splice regions. SpliceAI provides for each mutation a 

delta score (DS) representing the probability that a mutation creates (positive DS) or disrupts (negative 

DS) a splice site. 2,056 mutations were predicted to alter splicing with an absolute DS ≥ 0.5 (threshold 

recommended by SpliceAI developers), including 649 acceptor loss (AL), 753 donor loss (DL), 263 
acceptor gain (AG) and 391 donor gain (DG) events (Supplementary Table S1 and Supplementary 
Figure S2). Mutations with an absolute DS ≥ 0.9 were strongly enriched in essential splice sites (67%). 

By contrast, 60% of mutations with an absolute DS ≥ 0.5 were located outside canonical splice sites 

(Figure 1B). For comparison, we applied thresholds on GeneSplicer and MaxEntScan scores so that 

the number of mutations predicted to impact splicing was equivalent for the 3 tools. We then used 

matched RNA-seq data to validate the predictions. For each mutation predicted to affect splicing, we 

identified reads consistent with abnormal vs. normal splicing. We then calculated the ratio of abnormal 
reads over the total number of reads (UNJ score), which we normalized against UNJ scores in a series 

of normal and non-mutated tumor samples to obtain the RUNJ scores (Figure 1C). Mutations with a 

RUNJ ≥ 0.01 and at least 2 reads supporting the abnormal splicing events were considered validated. 

357 mutations were predicted to alter splicing by all the methods and showed the best validation rate 

(90%, Figure 1D). SpliceAI and MaxEntScan had more consistent predictions, with 1,159 mutations 

predicted to impact splicing by both tools but not GeneSplicer. Among tool-specific mutations, SpliceAI-

only mutations showed the best validation rate (64 % vs. 41% for MaxEntScan & 31% for GeneSplicer). 

The precision-recall curve shows that the best overall performance was achieved with SpliceAI, with a 
PR-AUC=0.54 (Figure 1E). Two examples of cryptic splice mutations affecting liver cancer driver genes 

uncovered by SpliceAI are shown in Figure 1. These include a TP53 mutation initially annotated as 

synonymous that actually disrupts the adjacent splice donor site, leading to various degrees of intron 

retention (Figure 1F). Another interesting example is a missense mutation in the tumor suppressor gene 

ARID1A that creates an acceptor gain 3 bases downstream. RNA-seq reads show that this cryptic 

acceptor is used in 12% of the transcripts, leading to a dual consequence of the mutation: missense or 

frameshift depending on the transcripts (Figure 1G). Altogether, these data indicate that SpliceAI 



 

 

detects splice-impacting mutations with better precision and recall than previous tools, and can reveal 

new cryptic splice mutations in cancer driver genes. 

 

Pan-cancer analysis of cryptic splice mutations 

We next applied SpliceAI to uncover cryptic splice mutations in a large compendium of 17,714 tumor 

samples across 25 cancer types from the ICGC-PCAWG (n=2,699 WGS, mostly primary tumors (28)), 

Hartwig Medical Foundation (n=4,818 WGS of metastatic cancers (29)) and TCGA (n=10,197 WES, 

mostly primary tumors (30)) projects (Figure 2A). To analyze the 277,415,611 somatic mutations, we 

used the Jean Zay supercomputer V100 quadri GPU partition, which took 0.003 second per variant to 

compute a prediction. We identified 203,889 mutations predicted to impact splicing with a DS ≥ 0.5, with 

a predominance of donor/acceptor losses (71.5%) over donor/acceptor gains (28.5%, Figure 2B). Of 
these, 43.5% corresponded to essential splice sites whereas 56.5% were cryptic splice mutations 

located in extended splice regions (13%), introns (14%) or exons (26%, Figure 2C,D). We used matched 

RNA-seq to validate 3,000 randomly selected mutations predicted to impact splicing in the TCGA series, 

and we obtained a validation rate of 67%, consistent with the results in our in-house series 

(Supplementary Table S2). In addition to the two first intronic bases corresponding to essential splice 

sites, donor loss mutations frequently involved the last exonic base (21%) and the 5th intronic base 

(9%), indicating an important role of these positions in regulating the recognition of donor sites (Figure 
2E). Interestingly, donor gain mutations also frequently involved the same positions (0 and +5, 9%, 
Figure 2F). Thus, by altering these bases that are important for the regulation of the native donor sites, 

these mutations favor the usage of alternative cryptic donors. Cryptic acceptor loss mutations were 

mostly located between the 3rd and 15th intronic bases (17%), corresponding to the polypyrimidine 

tract. Acceptor gains were quite evenly distributed between positions -15 and +3 relative to the closest 

essential acceptor site.  

 
Cryptic splice mutations enhance the landscape of driver genes and mutations 

We next investigated whether considering cryptic splice mutations would uncover new cancer driver 

genes and new damaging mutations in known cancer genes. To address this point, we used MutSigCV 

(31) to identify genes with significantly recurrent mutations in the HMF and TCGA series, considering 

classical VEP annotations or adding cryptic splice mutations. MutSigCV identified a median of 13.5 

significantly mutated genes (q < 0.05) per series (range 1-121) with classical annotations. Including 
cryptic splice mutations added a total of 126 significant genes (median=3.5 per series, range=1-16, 

Figure 3A, and Supplementary Figure S3). Extra significant genes were enriched in known cancer 

genes (n=32, 25%, P=1.1e-18, Supplementary Table S3), validating the biological relevance of the 

new findings. For example, ARID1A, a known driver gene in cholangiocarcinoma, was not significant in 

the relatively small TCGA_CHOL series (n=36) but became significant when adding cryptic splice 

mutations. This was also the case for SMAD4 in pancreatic cancer, TBX3 in colorectal cancer, or TSC2 

in liver cancer. Adding cryptic splice mutations also revealed extra-significant genes known to be drivers 

in other cancer types. For example, we identified in the HMF breast metastasis series significantly 



 

 

recurrent mutations of CDKN1A (known driver in bladder cancer), MAX (known in paragangliomas, 

endometrioid and colon carcinomas) and CDK12 (known in ovarian cancer). Finally, 94 of the genes 

that became significant when adding cryptic splice mutations were not in the Cancer Gene Census and 

may correspond to new driver genes (Supplementary Table S4). These included GPS2, negative 

regulator of RAS- and MAPK-mediated signal (34), recurrently mutated in prostate cancer; BRD7, 

member of the SWI/SNF chromatin remodeling complex, recurrently altered in urothelial cancer; GPAM, 
associated with steatosis and liver damage (35), recurrently mutated in liver cancer or FANCM, known 

susceptibility gene for breast cancer (36) but identified here as a somatic driver. 

In addition to finding new driver genes, cryptic splice mutations may reveal additional driver mutations 

in known cancer genes, incorrectly annotated as harmless variants otherwise (e.g. intronic or 

synonymous). To quantify this, we estimated the mutation frequency of the 695 genes from the Cancer 

Gene Census present in our large pan-cancer series, considering only classical coding mutations 

(missense, nonsense, essential splice, frameshift and in-frame indels) or adding cryptic splice mutations 

(Supplementary Table S5). On average, cryptic splice mutations increased splice mutation frequencies 
of driver genes by 100%, and particularly in tumor suppressor genes (Figure 3C). For example, TP53 

mutation frequency increased from 3.4% to 4.7% when considering cryptic splice mutations. In total, we 

identified 7,043 cryptic splice mutations in cancer genes versus 7,475 essential splice mutations, thus 

doubling the prevalence of splice mutations in those genes. Considering cryptic splice mutations thus 

improves the power of driver gene discovery, and increases the mutation frequencies of driver genes 

by rescuing variants misclassified as harmless.  

 
Mutational processes at the origin of splice mutations 

We next investigated the mutational processes at the origin of splice mutations. To that aim, we 

extracted the contribution of COSMIC mutational signatures (33) to each of the 2,699 tumors from the 

ICGC-PCAWG project. We then used Palimpsest (32) to estimate the probability of each splice mutation 

being due to each mutational process. By summing these probabilities over splice mutations (essential 
splice + cryptic splice mutations identified by SpliceAI) and other mutations, we could estimate the 

contribution of signatures to both mutation sets in each cancer type (Figure 4A). The contribution of 

signatures to splice and other mutations were globally consistent and highly dependent on the tumor 

type. For example, splice mutations were mostly attributed to single base substitution signature SBS4 

(tobacco-related) in lung, wheras they were mostly attributed to SBS7a/b (UV-related) in melanoma. 

Yet, we identified signatures with significantly higher probabilities of giving rise to splice than other 

mutations (Supplementary Table S6). Interestingly, clock-like signatures SBS1 (due to the 

spontaneous deamination of mCpGs) and SBS5 (unknown etiology, age-related) were significantly 
enriched in splice mutations of several cancer types (P < 6e-3, Wilcoxon rank-sum test), including 

esophageal, stomach and colorectal cancers (Figure 4B). Several signatures associated with DNA 

repair defects were also enriched in splice mutations (Figure 4C). This was the case for the mismatch 

repair deficiency signatures SBS26 (uterus) and SBS44 (stomach, colorectal), as well as the 

homologous repair deficiency signature SBS3 (breast, ovary). This may indicate that the preferential 

sequence contexts of these mutational processes overlap with splicing regulatory sequences. In 



 

 

contrast, other signatures were significantly less prevalent in splice mutations, including SBS17b 

signature (associated with fluoropyrimidine-based chemotherapy) in esophageal (P=4.6e-32) and 

stomach cancer (P=1.4e-10). Altogether, these data indicate that the mutational processes at the origin 

of splice mutations are cancer-dependent, and that some processes (clock-like, DNA repair deficiencies) 

may be more prone to generating splice mutations. 

 
DISCUSSION 

Our comparison of SpliceAI, GeneSplicer and MaxEntScan in a cancer setting is consistent with a 

previous benchmark in a context of germline variants (20), showing a higher sensitivity and specificity 

of SpliceAI. Of note, SpliceAI includes long sequences as input (10 kb around the mutation), which 

allows the tool to account for long-range sequence determinants. This may explain at least in part the 

higher performance of SpliceAI. In addition, SpliceAI returns predictions for mutations that can be 

located deeply in the introns, while GeneSplicer and MaxEntScan are restricted to mutations close to 

the essential splice site. Another approach, MiSplice, was recently proposed and applied to large pan-
cancer data sets (37). While this approach unraveled and validated many cryptic splice sites, it requires 

as input both DNA and RNA sequencing data. By contrast, SpliceAI requires only the DNA sequence 

and can thus be used to annotate any variant list identified by WES/WGS. 

SpliceAI identified 115,197 cryptic splice mutations in our large pan-cancer cohort, 34% are 

synonymous or intronic variants hence classified as low impact variants by classical variant annotation 

tools. We showed that rescuing these cryptic splice mutations increases the power of driver gene 

discovery with MutSigCV, and doubles the frequency of splice alterations in known tumor suppressor 

genes. Cryptic splice variants may explain part of the 5% of cancer cases without any driver alteration 
identified (28). In addition, 28% of cryptic splice mutations are annotated as missense variants. These 

mutations may have dual consequences, leading to missense and/or splice alteration depending on the 

RNA molecule, exemplified by the ARID1A mutation displayed in Figure 1G.  

Splice mutations may occur in different sequence contexts and can be generated by distinct mutational 

processes depending on the cancer type. Yet, we identified signatures enriched in splice mutations, 

related to clock-like processes, mismatch repair and homologous repair deficiencies. These 

associations may result from an overrepresentation of the sequence contexts in which these processes 
are particularly active in splice regulatory elements, which needs to be validated with experimental data. 

The contribution of DNA repair signatures to splice mutations may lead to a higher risk of acquiring 

splice mutations in patients carrying defects in DNA repair enzymes. 

This study highlights the power of deep learning to uncover previously overlooked regulatory mutations 

in cancer sequencing data, and emphasizes the importance of better annotating cryptic splice mutations 

in research series and clinical sequencing data. 
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Figure 1. Benchmark of splice prediction tools on the LICA-FR dataset. (A) Schematic diagram 

describing the benchmark study. (B) Proportion of initial mutation categories for mutations predicted to 
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impact splicing by SpliceAI with different delta scores (DS). (C) Example of RNA-seq validation of a 

predicted cryptic splice mutation. (D) Venn diagrams showing the number of overlap of mutations 

predicted to alter splicing by the 3 tools (top) and the proportion of mutations validated in matched RNA-

seq data (bottom). (E) Validation rate and sensitivity obtained with the 3 tools for different thresholds on 

prediction scores. (F) Example of cryptic splice variant in TP53 initially annotated as synonymous 

mutation. (G) Example of cryptic splice variant in ARID1A initially annotated as missense mutation. 
  



 

 

 
Figure 2. Pan-cancer analysis of cryptic splice mutations with SpliceAI. (A) Number, origin and 

cancer type of samples analyzed. (B) Proportion of splice altering mutations identified in each series 

classified by type of alteration (DL: donor loss, AL: acceptor loss, DG: donor gain, AG: acceptor gain). 
(C) Proportion of initial mutation categories for mutations predicted to impact splicing by SpliceAI in 

each cohort (DS > 0.5). (D) Overall proportion of initial mutation categories for the 203,889 mutations 

predicted to impact splicing with a DS > 0.5 in the whole data set. (E) Position of donor and acceptor 
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loss mutations identified by SpliceAI relative to the closest essential splice acceptor and donor. (F) 
Position of donor and acceptor gain mutations identified by SpliceAI relative to the closest essential 

splice acceptor and donor. 

  



 

 

 
Figure 3. Cryptic splice mutations enhance the landscape of driver genes and mutations. (A) 
Number of significant genes identified by MutSigCV algorithm when considering only classical coding 

mutations (in blue) or when adding cryptic splice mutations revealed by SpliceAI (in yellow). (B) 
Comparison of MutSigCV q-values when considering only classical coding mutations or when adding 

cryptic splice mutations. Four series are shown as examples. Results for all series are shown in 

Supplementary Figure S2. (C) Frequency of splice mutations of Cancer Gene Census genes 

considering only essential or both essential and cryptic splice mutations. Tumor suppressor genes and 

oncogenes are distinguished with a color code. 
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Figure 4. Mutational processes generating splice mutations. (A) Mutational signatures 

contributing to splice (top) and other (bottom) mutations in each series of the ICGC-PCAWG project. 

Splice mutations include both mutations in essential splice sites and cryptic splice mutations identified 

by SpliceAI (DS ≥ 0.5). (B) Clock-like and (C) DNA repair signatures have significantly higher 

probabilities of giving rise to splice mutations compared to other mutations in several cancer types. P-

values were obtained using Wilcoxon rank-sum tests. 
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ICGC-PCAWG (2,699 tumors)


