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Simple summary: Ovarian cancer is the most lethal gynecologic cancer since often diagnosed at 14 

advances stages. Current tools for diagnosis are currently insufficient and include physical exami-15 

nation, ultrasound and pelvic magnetic resonance imaging as well as algorithm combining 16 

thoraco-abdomino-pelvic scans and blood markers. In this context, there is a need for new tools 17 

not only to assess the diagnosis but also to predict response to chemotherapy and detect recur-18 

rences. Previous studies have highlighted the potential value of non-coding RNAs (ncRNA) in tis-19 

sue samples, but rarely in biofluids. In this review, we aimed to summarize the literature existing 20 

on ncRNAs and ovarian tumors in biofluids. Most studies focused on serum and blood with no 21 

data in other biofluids and with few ncRNAs investigated using qRT-PCR or microarray, not per-22 

mitting reflecting the heterogeneity of ovarian cancers.  23 

Abstract: Ovarian tumors are the most frequent raising diagnostic and therapeutic issues linked to 24 

a large spectrum of tumors with a continuum from benign to malignant tumors. So far, none of the 25 

available diagnostic tools have proven efficient to decide strategy and no consensus exists on the 26 

best strategy between ‘single test’, ‘dual testing’, ‘sequential testing’, ‘multiple testing options’ and 27 

‘no testing’. In addition, there is a need of prognostic tool such as biological markers of recurrence 28 

and theragnostic tools to detect non-responding women to chemotherapy to adapt therapies. Non-29 

coding non-coding RNAs are classified in small or long based on their nucleotides count. Non-30 

coding RNAs have multiple biological functions such as a role in tumorigenesis, gene regulation 31 

and genome protection. These ncRNAs emerge as new potential tools to differentiate benign from 32 

malignant tumours and to evaluate prognostic and theragnostic factors. In the specific setting of 33 

ovarian tumors, the goal of the present work is to offer an insight on the contribution of biofluid 34 

non-coding RNAs (ncRNA) expression. 35 

Keywords: Ovarian tumor; non-coding RNA; borderline ovarian tumor; ovarian cancer 36 

 37 

1. Introduction 38 

Adnexal masses represent a wide spectrum of tumors of various origins (ovary, fal-39 

lopian tube, and pelvic organs), among them ovarian tumors are the most frequent rais-40 

ing diagnostic and therapeutic issues linked to a large spectrum of tumors with a con-41 

tinuum from benign to malignant tumors. The true incidence of ovarian tumors in the 42 

general population is unknown as most of them are asymptomatic hence undiagnosed 43 

[1]. It is estimated that 10% of women will undergo surgery for an ovarian mass in their 44 

lifetime [2].  45 

Ovarian tumors are generally detected at physical examination or at pelvic imaging 46 

for various reasons in asymptomatic patients.  Less frequently, an ovarian tumor can be 47 
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source of symptoms, acute pain (torsion of the adnexa), or chronic pelvic pain related to 48 

compression of neighboring organs [1]. Sometimes, the diagnosis can be made in the 49 

context of ovarian cancer (OC) often diagnosed at an advanced stage faced to ascites, 50 

bloating, weight loss with peritoneal carcinomatosis [3,4].  51 

OC is the fifth cancer and the most lethal gynecologic malignancy with 313,959 new 52 

cases per year and 207,252 death per year in 2020 [5]. Epithelial ovarian cancer (EOC) 53 

represents more than 95% of all OC [6]. During their lifetime, approximately one in sev-54 

enty women will develop the disease. The median age at diagnosis is 68 years with a 55 

maximum incidence in women in their 70s. The disease behaves as a chronic condition 56 

with relapses and therefore iterative chemotherapies which lengthen survival [7]. The 57 

disease survival remains poor of 40% at 5 years and 32% at 10 years as more than 75% of 58 

patients are diagnosed at advanced stage disease while the 5-year survival rate for 59 

women diagnosed at an early stage reaches 90% underlining the potential benefit of bi-60 

omarkers of early stages as well as to detect the transition of borderline tumor into inva-61 

sive cancer [5].  62 

Except from patients with deleterious mutation for whom a risk reducing surgery is 63 

recommended, no screening of OC in the general population has proved its relevance 64 

[8]. In routine practice, first line transvaginal ultrasound is used to differentiate benign, 65 

borderline or malignant ovarian tumors [9]. Van Calster et al, evaluating the clinical util-66 

ity of six prediction models for ovarian malignancy [10], found that the ADNEX models 67 

with and without cancer antigen 125 (CA125) determination and SRRisk were the best 68 

calibrated. However, previous studies have underlined that 18% to 31% of ovarian tu-69 

mors remain indeterminate after ultrasonography using International Ovarian Tumor 70 

Analysis (IOTA) Simple Rules or other ultrasonography scoring systems [9,11,12]. MRI 71 

is the second line imaging technique to characterize ovarian tumors. Ovarian-Adnexal 72 

Reporting Data System Magnetic Resonance Imaging (O-RADS MRI) score consists of 5 73 

categories according to the positive likelihood ratio for a malignant neoplasm [13] with a 74 

sensitivity of 0.93 and a specificity of 0.91. However, these results were based on an ob-75 

servational study without randomization, and the score was not integrated into clinical 76 

decision-making limiting its utility.  77 

CA125 is the most used biomarker to determine the nature of ovarian tumors 78 

[14,15] although normal levels has been reported in as high as 50% of early stages ovari-79 

an cancers [16] [17,18]. A recent Cochrane review has evaluated several algorithms to as-80 

sess the risk of malignancy of ovarian tumors, including biological markers and imaging 81 

[19]. However, none of these scoring systems had a sufficient relevance to characterize 82 

ovarian tumors [19].  83 

Finally, a recent review of Funston et al analyzing 18 documents from 11 countries 84 

showed that transabdominal/transvaginal ultrasound and the CA125 were the most 85 

widely advocated as initial tests [20]. However, no consensus exists on the best strategy 86 

to improve diagnostic performance: ‘single test’, ‘dual testing’, ‘sequential testing’, ‘mul-87 

tiple testing options’ and ‘no testing’. This further underlines the need for new biological 88 

tools to diagnose ovarian cancer in the general population as early as possible. In addi-89 

tion, there is a need of prognostic tool such as biological markers of recurrence and 90 

theragnostic tools to detect non-responding women to chemotherapy to adapt therapies.  91 

 92 

Among ncRNAs, those with less than 50 nucleotides are defined as small RNAs 93 

(sncRNAs) and those with more than 200 nucleotides are defined as long non-coding 94 

RNAs (lncRNAs). SncRNAs are further classified into microRNAs (miRNAs), Piwi in-95 

teracting RNAs (piRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), and 96 

small interfering RNAs (siRNAs) [21,22]. LncRNAs are classified into intergenic ncRNAs 97 

(lincRNAs), some circular RNAs (circRNAs), and ribosomal RNAs (rRNAs) [23,24]. 98 

Numerous studies indicate that ncRNAs, representing 98% of the transcriptome, are es-99 

sential for tumorigenesis by regulating the expression of tumour-related genes [25–32]. 100 

These ncRNAs emerge as new potential tools to differentiate benign from malignant tu-101 

mours and to evaluate prognostic and theragnostic factors. In the specific setting of 102 
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ovarian tumors, the goal of the present work was to offer an insight on the contribution 103 

of biofluid non-coding RNAs (ncRNA) expression. 104 

2. miRNAs 105 

miRNAs are small intracellular RNAs, 22 nucleotides long, capable of inducing the 106 

silencing of gene expression by post-transcriptional regulatory mechanisms [33] or al-107 

ternatively by binding miRNAs to the 5'UTR regions inducing either activation or re-108 

pression of translation. The miRNAs synthesis is presented in Figure 1.  109 

 110 

 111 

 112 

Figure 1. : miRNAs synthesis. Biogenesis of miRNAs is a multistep process, beginning with the transcrip-113 
tion of primary miRNAs (pri-miRNAs) by RNA polymerase II. The pri-miRNAs are transformed into pre-114 
cursor miRNAs (pre-miRNAs, 70 nucleotides long) by the RNase III Drosha-DGCR8-DDX5 microproces-115 
sor complex, and are then exported to the cytoplasm by Exportin (a Ran-GFP-dependent transporter). In the 116 
cytoplasm, pre-miRNAs are cleaved by the RNase Dicer-TAR RNA-binding protein (TRBP) complex, pro-117 
ducing mature miRNA. Not all miRNAs pass through the canonical miRNA biogenesis pathway. Special 118 
miRNAs called mirtrons are produced from spliced introns with structural features like pre-miRNAs and 119 
undergo a miRNA processing pathway that bypasses the Drosha-mediated cleavage step. 120 

Numerous studies focusing on tissue samples have demonstrated the role of 121 

miRNA in OC characterized by a wide-scale deregulation of miRNAs, and aberrant ex-122 
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pression of miRNAs correlated with histotype, histological grade, lymphovascular space 123 

involvement, lymph node and distant metastasis as well as FIGO stages [34–37]. Dhar 124 

Dwivedi et al reported 53 miRNAs upregulated, and 68 miRNAs downregulated in OC. 125 

In the upregulated miRNAs group, a total of 7605 gene target were found. Among them, 126 

miRNA-20a-5p and miRNA 106a-5p regulate 14.1% and 9.4% of target genes, respective-127 

ly. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis enrichment 128 

was performed for these upregulated miRNAs targets genes identifying 67 and 24 129 

pathways as enriched. Similarly for downregulated miRNAs, a total of 9287 gene targets 130 

were identified. miR-26b-5p, miR-519d, miR-15a, and miR-15b regulated respectively 131 

20.8%, 11.3%, 8.6%, and 8.9% of the target genes with 41, 95, and 38 enriched pathways 132 

[38].  133 

In contrast to miRNAs expression extensively analyzed in tissue samples, relatively 134 

little data are available on their expression in biofluids. This point is particularly im-135 

portant as it could allow preoperative tumor assessment, improving therapeutic strategy 136 

and share making decisions. There are published evidences that serum miR-221 [39], 137 

mir-205 [40], mir-375 [41], mir-210 [42], mir-34a-5p [43], mir-92 [44], mir-93 [45], mir-141 138 

[46]  mir-7 [47] and mir-429 [48] are upregulated in biofluids of patients with different 139 

types of ovarian cancers. On the other hand expression of microRNAs let-7f [49], mir-93 140 

[46], mir-199a [50] and mir-148a [51] is downregulated in biofluids of patients with ovar-141 

ian tumours. 142 

From the diagnostic point of view, Oliveira et al [52] evaluated the profile of plasma 143 

miRNAs on a panel of 46 candidates finding 4 upregulated miRNAs (miR-200c-3p, miR-144 

221-3p, miR-21- 5p and miR-484) and two downregulated (miRNA-195-5p and miRNA-145 

451a). However, only 2 miRNAs (miRNA-200c-3p and miRNA-221-3p) were confirmed 146 

in a validation cohort. Savolainen et al [53], on a short series of 9 patients, found that 147 

miRNA-200a, miRNA-200b and miRNA-200c both in tumor tissue and plasma allowed 148 

discrimination between malignant and benign samples. In addition, a correlation was 149 

found between the expression of miRNA-200 in urine and plasma with the malignant 150 

status of tumors. Another study reported a higher level of miR-590-3p in OC plasma 151 

compared to a control group [54], Chang et al [55] observed for germ cell tumors of the 152 

ovary (OGCT) and sex cord (SCST) specific expression profiles of miRNAs in 9 OGCTs 153 

(2 malignant and 7 benign) and 3 SCST. Overexpression of miRNA-373-3p, miRNA-372-154 

3p and miRNA-302c-3p and underexpression of miRNA-199a-5p, miRNA-214-5p and 155 

miRNA-202-3p were reproducibly observed in malignant OGCT versus benign OGCT or 156 

SCST. Yokoi et al reported a plasma signature composed of 6 miRNAs selected after RT-157 

qPCR (miRNA-200a-3p, miRNA-766-3p, miRNA-26a-5p, miRNA-142-3p, let-7d-5p and 158 

miRNA-328 -3p) able to successfully distinguish patients with ovarian cancer from 159 

healthy controls (AUC: 0.97; sensitivity, 0.92; and specificity, 0.91) paving the way for 160 

screening ovarian cancer [56]. Among five miRNAs, Zhu et al observed that only serum 161 

miRNA-125b could distinguish benign controls and EOC patients [57]. Moreover, 162 

among miR-200 family, Meng et al [58] identified that serum levels of miRNA-200a 163 

(p=0.0001), miRNA-200b (p=0.0001), and miRNA-200c (p=0.019)  could distinguish be-164 

nign from malignant ovarian tumors. Resnick et al [59], confirmed that miRNAs in se-165 

rum could be used as a marker for ovarian cancer in a series of 28 patients based on 166 

over-expression of miRNA-21, miRNA-92, miRNA -29a, miRNA-93 and miRNA-126, 167 

and underexpression of miRNA-99b, miRNA-127 and miRNA-155. In a meta-analysis on 168 

the diagnostic value of serum miRNA-21 expression, including 6 studies with limited 169 

sample size, Qiu & Weng reported a pooled respective sensitivity, specificity, and AUC 170 

of 0.81 (95%CI: 0.73–0.88), 0.82 (95%CI: 0.75–0.87), and 0.89 (95%CI: 0.85–0.91) imposing 171 

further validation [60]. Recently, Wenyu Wang developed a plasma signature for malig-172 

nant tumors using extracellular vesicle and identified a panel of eight miRNAs (miR-173 

1246, miR-1290, miR-483, miR-429, miR-34b-3p, miR-34c-5p, miR-145–5p, miR-449a). 174 

Their model had a respective AUC of 0.9762 and 0.9375 in the training and the valida-175 

tion set [61]. In contrast to several studies focusing on serum miRNAs, Kai Berner et al 176 
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focused on urinary expression of twelve microRNAs. In their experience, miR-15a was 177 

upregulated whereas let-7a was down-regulated in ovarian cancer patients [62].  178 

From the prognostic point of view, Zhu et al [57] found that elevated serum 179 

miRNA-125b levels were higher in patients with early OC stages (FIGO stages I-II), and 180 

with no residual tumor after surgery. In addition, elevated serum miR-125b were corre-181 

lated with progression-free survival (p = 0.035). Meng et al reported high levels of 182 

miRNA-200b and miR-200c were associated with poorer overall survival (p=0.007, 183 

p=0.017, respectively) [58]. Gao et al. [63] including 74 serum samples of OC patients, 19 184 

of borderline tumors and 50 of healthy controls, found that  elevated serum miRNA-200c 185 

were correlated with improved two-year survival while decreased serum miR-145 levels 186 

was associated with disease progression [64]. Finally, Zuberi et al. observed in OC an as-187 

sociation between high expression of serum miR-125b and lymph node and distant me-188 

tastases[65]. 189 

From the theragnostic point of view, most studies are based on cell cultures [66,67]. 190 

Yang et al [68] found that protein kinase B (AKT) pathway activation was regulated by 191 

miRNA-214 and miRNA-150. Moreover, Echevarria-Vargas et al reported a cisplatin re-192 

sistance associated with miR-21 expression [69]. Lu et al [70] observed that let-7a expres-193 

sion was significantly lower in OC patients sensitive to platinum and paclitaxel com-194 

pared to those resistant to these agents. Langhe et al reported a panel of 4 miRNAs (let-195 

7i-5p, miRNA-122, miRNA-152-5p and miRNA-25-3p) significantly down-regulated in 196 

OC with potential contribution to drug resistance [71]. Finally, in a recent review, Saburi 197 

et al [72] noted a relation between miRNA-30a-5p, miRNA-34a, miRNA-34a-5p, miRNA-198 

98-5p, miRNA-142-5p, miRNA-338-3p, miRNA-708 and cisplatin resistance. Similarly, a 199 

relation was noted between miRNA -136, miRNA-338-5p, miRNA-503-5p, miRNA-1246, 200 

miRNA-1307 and paclitaxel resistance. Finally, a relation was noted between 201 

miRNA509-3p and platinum resistance and between miRNA-744-5p and carboplatin re-202 

sistance. However, it is important to note that none of these miRNAs have been evaluat-203 

ed in biofluids while this could be a major contributor to adapt chemotherapy. 204 

From the analysis of the literature on miRNAs in biofluids, it appears that there are 205 

arguments to suggest their role in physiopathology, in the differential diagnosis between 206 

benign and malignant tumors and to a lesser degree with borderline tumors as well as to 207 

support their diagnostic, prognostic and theragnostic values. However, these analyses 208 

were mainly performed by microarray with validation by RT-qPCR with potential biases 209 

linked to the methodology as proven in the context of endometriosis [73].   Moreover, 210 

the small number of studies with limited sample size focusing on the specific evaluation 211 

of miRNAs expression in biofluids of patients with ovarian tumors limit their potential 212 

clinical utility. Indeed, Langhe et al [71] pointed out that miRNAs are abundant in tis-213 

sues but often rare in plasma and serum. For the quantification of miRNAs in plasma, 214 

the authors stressed that it was essential to use a high-sensitivity platform such as Next 215 

Generation Sequencing (NGS). However, no study using NGS and bioinformatic tools to 216 

analyze miRNA content in large blood, serum, urine or saliva series are available to de-217 

termine their role in routine practice.  218 

3. PiRNAs 219 

piRNAs are small ncRNAs of 24 - 32 nucleotides [74]. piRNA biosynthesis is sum-220 

marized in Figure 2 [74,75]. Dysregulation of piRNAs and proteins (e.g. PIWI family 221 

proteins) has been observed in various cancers including OC [75,76]. The main function 222 

of piRNAs is to protect the genome from transposons. Giulio Ferrero et al analyzing 223 

piRNA expression in urine, plasma exosomes, and stool observed that urine samples ex-224 

hibited the highest piRNAs expression [77]. The piRNAs production and function are 225 

presented in Figure 2.  226 
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 227 

Figure 2 : piRNAs synthesis and function. Mature piRNAs are generated from the processing of 228 

single-stranded RNAs transcribed from piRNA clusters in the genome representing the largest 229 

class of non-coding RNAs found in most species. piRNAs can be also generated in the cytoplasm 230 

by a mechanism called the "ping-pong" cycle involving piRNA-directed antisense primary cleav-231 

age of transposon transcripts by Aubergine and PIWI proteins. piRNAs can modulate histone 232 

modifications and DNA methylation in a sequence-specific manner, leading to alterations in 233 

chromosomal conformation and gene expression regulation. 234 

Singh et al. [78]  found that piRNAs distinguish endometrioid from serous OC with 235 

159 and 143 piRNAs differentially expressed, respectively. Among these piRNAs, 74 236 

were upregulated and 77 down-regulated in endometrioid OC, and 56 upregulated and 237 

81 downregulated in serous OC. piR-52,207 was found to be upregulated in 238 

endometrioid OC, and both piR-52,207 and piR-33,733 in serous. Interestingly, among 20 239 

biofluids evaluated by Hulstaert et al [79], saliva has the highest fraction of piRNAs. So 240 

far, in the specific setting of OC, little data are available on piRNA expression in blood 241 

sample allowing to evaluate their potential diagnostic and prognostic value and no 242 

study has evaluated saliva piRNA expression.  243 

 244 

4. Transfer-RNAs (tRNAs)  245 

Transfer RNAs (tRNAs) are a source of small regulatory RNAs (tsRNAs) acting on 246 

protein translation [38,80]. Based on the cleavage site, tsRNAs are divided into transfer 247 

RNA-derived RNA fragments (tRFs) and tiRNAs [81] with tumorigenesis functions [82–248 

86] [87,88]. tRFs are also involved in gene expression, oncogene activation and ovarian 249 

cancer progression through association with Ago and PIWI proteins [89].  250 

Dhar Dwivedi et al. [38] observed that tsRNAs can predict abnormal cell prolifera-251 

tion with high accuracy in serum samples from a cohort of patients healthy controls and 252 
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benign and malignant tumors [90]. Eric Y. Peng observed that four tsncRNAs differen-253 

tially expressed in serum samples had a high diagnostic accuracy for malignancy with 254 

an AUC of 0.95. Similarly, serum tRF-03357 and tRF- 03358 levels are increased in pa-255 

tients with high-grade OC [91,92]. In addition, i-tRF-GlyGCC is linked to advanced 256 

FIGO stages, suboptimal debulking and most importantly with early progression and 257 

poor overall survival in EOC patients [92].  258 

Despite, a relative abundant literature on tRNA, no study has focused on their di-259 

agnostic, prognostic and theragnostic relevance in the specific setting of OC 260 

5. Circular RNAs (CircRNAs) 261 

CircRNAs are a large class of ncRNA with more than 70,000 specimen identified in 262 

human tissues [93–99] and in many cancerous cell types including OC [95,100–102]. 263 

circRNAs have a high prevalence, specificity [103,104], stability [105] and conservation 264 

[106] conferring a particular value as biomarkers. Moreover, using 20 biofluids, 265 

Hulstaert et al demonstrated that circRNAs are enriched in biofluids compared to tis-266 

sues [79].Indeed, the median circRNA read fraction in biofluids was 84.4% vs 17.5% in 267 

tissues. circRNAs act as specific miRNA reservoirs or sponges, as protein or peptide 268 

translators, as regulators of gene transcription and expression and interact with RNA-269 

binding proteins (RBPs) impacting on transcription and translation of genes.  270 

 271 

 272 

Figure 3: CircRNAs Biosynthesis. Biosynthesis of circular RNA (circ-RNA) are expressed from mostly protein-coding genes. It is a multistep 273 

process, first the transcription of pre messagerRNA (mRNA), second splicing into mature mRNA then back-splicing into circ-RNA.  274 

Circ-RNA are then exported to the cytoplasm to A. act as micro RNA (miRNA) reservoir or transport miRNA; B. act as protein or peptide trans-275 

lators; C. Interact with RNA-binding proteins (RBPs) for transcription or translation of genes.  276 

 277 
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From the diagnostic point of view, in serum of OC patients, Wang et al. identified 5 278 

circRNAs (circ-0002711; Chr5:170610175-170632616+; circ-0001756; Chr4:147227078-279 

147230127-; and Chr16:53,175091-53191453+) with diagnostic value [107]. 280 

From the prognostic point of view, a previous study demonstrated that serum circ-281 

0049116 released from a cell surface protein (mucin 16) could have a value [108]. In-282 

creased expression of the circ-MUC16/miR-199a-5p axis positively correlates with ag-283 

gressiveness of OC. Expressions of circ-FAM35b, circ-051239, circ-ABCB10, circ-0072995, 284 

circ-EEF2, circ-RAB11FIP1, circ-FGFR3, circ-NOLC1 and circ-PGAM1 were correlated 285 

with metastasis of EOC [109–116]. Moreover, circ-0015756, circ-0002711, hsa-circ-286 

0015326, circ-0001068, circ-0025033 and circ-KIF4A exhibited prognostic value in OC 287 

[117–120]. Serum circ-SETDB1 is positively correlated with lymph node metastasis and 288 

advanced stages of serous OC [121].  289 

From the theragnostic point of view, circ-0002711/miR-1244/ ROCK1 and has-circ-290 

0015326/miR-127-3p/MYB pathways could be potential therapeutic targets [118]. 291 

CircRNAs, has-circ-0000714, circ-TNPO3 and circ-NRIP1 are expressed in OC with 292 

Paclitaxel resistance [122–124]. You et al also reported that Circ-0063804 promoted OC 293 

cells proliferation and resistance to cisplatin by enhancing CLU expression via sponging 294 

miR-1276 [125]. In a recent review, Min Liu et al [126] reported the different implications 295 

of circ-RNAs in the pathogenesis of OC and underlined that circRNA-Cdr1as inhibited 296 

OC cell proliferation and promoted cisplatin-induced cell apoptosis while circRNA-297 

TNPO3 enhanced paclitaxel resistance. Despite the potential contribution of these circ-298 

RNAs to the diagnostic, prognostic and theragnostic value in patients with OC, no study 299 

has focused on these biomarkers in biofluids in this specific setting. 300 

6. Small nucleolar RNAs (snoRNAs) 301 

Small nucleolar RNAs (snoRNAs) are a class of non-coding RNAs with 60–300 nu-302 

cleotides, and mainly divided into two classes: C/D box SnoRNAs and H/ACA box 303 

SnoRNAs [127]. Most snoRNAs act as guide RNAs for the post-transcriptional modifica-304 

tion of ribosomal RNAs by modifying 2′-O-ribose methylation and pseudo-uridylation 305 

of ribosomal RNAs (rRNAs) [126]. Cumulative evidence demonstrated that snoRNAs 306 

play a role in tumorigenesis of various cancer [128–131]. Using microarray on 197 EOC 307 

(162 serous, 15 endometrioid, 11 mucinous, and 9 clear cell), Oliveira et al found that 308 

SNORA68 and SNORD74 were associated with decreased overall survival (OS) and poor 309 

clinicopathological features [132]. In an in vitro study Huilong Lin et al. observed that 310 

SNHG5 enhanced the sensitivity of ovarian cancer cells to paclitaxel by sponging miR-311 

23a [133]. Wenjing Zhu et al developed a signature based on nine snoRNAs (SNORD126, 312 

SNORA70J, SNORD3C, SNORA75B, SNORA58, SNORA11B, SNORA36C, SNORD105B, 313 

SNORD89,) to predict prognosis of OC patients [134]. Finally, Peng-Fei Zhang et al re-314 

ported that SNHG22 overexpression was associated with poor prognosis and induces 315 

chemotherapy resistance to cisplatin and paclitaxel via the miR-2467/Gal-1 signaling 316 

pathway in EOC [135]. Although the number of dysregulated snoRNAs in ovarian can-317 

cer is up to 462 [128], one preliminary study investigated the role of snoRNA RNU2-1f in 318 

ovarian cancer. In this study, snoRNA abundance was investigated in serum (n = 10) by 319 

microarray analysis and validated in a serum set (n = 119) by reverse-transcription quan-320 

titative PCR. They reported abundance of U2-1 snoRNA fragment (RNU2-1f) was signifi-321 

cantly increased in sera of ovarian cancer patients (P < 0.0001) and paralleled Interna-322 

tional Federation of Gynecology and Obstetrics stage as well as residual tumor burden 323 

after surgery (P < 0.0001 and P = 0.011, respectively).   324 

7. Long non-coding RNAs (lncRNAs)  325 

lncRNAs act via various pathways to regulate gene expression at different levels 326 

[136] with a biogenesis similar to mRNAs (Figure 3) . Arbitrarily, lncRNAs are defined 327 

as composed of more than 200 nucleotides mainly between 1,000 and 10,000.  328 

Four different archetypes of lncRNA functions have been described (Figure 3) [137]. 329 

Since the discovery of lncRNAs, more than a thousand publications have been listed in 330 

https://pubmed.ncbi.nlm.nih.gov/?term=Lin+H&cauthor_id=31884343
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PubMed in the specific setting of OC but only about one percent focused on their ex-331 

pression in biofluids. Numerous studies about lncRNAs, mainly based on OC tissue 332 

samples, have demonstrated an association between clinicopathological characteristics 333 

such as histological type and grade, FIGO stages, lymph node and distant metastasis 334 

and some lncRNAs [138]. In a review including 34 studies involving more than 4,000 335 

women with OC, Hosseini and al observed an association between lncRNAs expression 336 

and PFS (HR: 1.88, 95% CI: (1.35–2.62)) and DFS (HR: 6.07, 95% CI: 1.28–28.78)). Howev-337 

er, among the 34 studies only one evaluating lncRNA in plasma [139] was included. 338 

They concluded that their work support the robust prognostic significance of altered 339 

lncRNAs in ovarian cancer but more extensive studies are required. 340 

 341 

Figure 3. : lncRNAs synthesis and functions. Four different archetypes of lncRNAs functions have 342 

been described; (i) lncRNAs can act as molecular signals occurring at a specific time and location 343 

to integrate developmental signals, interpret the cellular context, or respond to various stimuli, (ii) 344 

lncRNAs act as a molecular decoy by binding to their target proteins following transcription with 345 

mainly negative regulation, (iii) lncRNAs act as gene expression guides under a cis-form in the 346 

immediate vicinity of genes, and under trans-form for distant genes, and (iv) lncRNAs act as scaf-347 

folds. 348 

 From the diagnostic point of view, numerous studies have reported a relation 349 

between some lncRNAs and clinicopathological characteristics using OC samples ana-350 

lyzed by RT-qPCR, microarray and hybridization and fluorescence in situ hybridization 351 

(FISH) from cancer tissue compared with adjacent normal tissue or samples from 352 

healthy patients (Salamini-Montemurri). In a recent review, Salamini-Montemurri et al 353 

have listed the various lncRNAs with clinicopathological value [138]. Among them, only 354 

E2F4AS [140], FLVCR1-AS1[141], LINK-A [142], MLK7-AS1 [143] and aHIF [144] were 355 

evaluated in blood serum but none of them exhibited a sufficient diagnostic value. 356 

Chun-Na Liu et al in 185 EOC patients and 43 healthy volunteers evaluated by RT-qPCR 357 

the expression of LOXL1-AS1 showing a higher expression in EOC patients with an 358 

AUC of 0.843 but a sensitivity and specificity of only 65.3% and 68.2%, respectively 359 

[145]. Using RT-qPCR, Jiezhi Ma & Min Xue investigated the expression of LINK-A in 360 

the plasma of 68 patients with OC and 34 healthy females showing a higher level in OC 361 

patients. Recently, for the diagnosis of OC, Barwal and al found that blood lncRNA RP5-362 
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837J1.2 had a sensitivity, specificity and AUC of 97.3%, 94.6% and 0.99, respectively but 363 

without external validation [146].  364 

From the prognostic point of view, some studies have evaluated the value of 365 

lncRNAs in blood or serum to predict survival. In the meta-analysis using RT-qPCR, 366 

Chen et al evaluated plasma levels of MALAT1 in 47 patients with EOC with metastasis 367 

(EOC/DM), 47 patients without metastasis (EOC/NDM), and 47 healthy controls (HC) 368 

[147]. Plasma MALAT1 allowed to distinguish EOC/DM and HC with an AUC of 0.884 369 

(95% CI, 0.820‐0.949; P<0.001) with respective sensitivity and specificity of 89.4% and 370 

72.3%. Jianming Gong et al, analyzing plasma samples from 66 patients with OC and 54 371 

healthy controls, showed that lncRNA MIR4435-2HG was higher in patients with stage 372 

I-II FIGO stages OC but a high overlap of the value between the groups [148].  373 

From theragnostic point of view, Weiwei Xie et al have reviewed the contribution of 374 

lncRNAs in response to chemotherapy [149]. The main lncRNAs involved in the 375 

cisplatin resistance were HOTAIR, H19, MALAT1, MEG3, XIST, DNM3OS and ANRIL. 376 

Other lncRNAs have been proved to be associated to drug resistance such as LSINCT5, 377 

NEAT1 for paclitaxel resistance, UCA1 for paclitaxel-cisplatin resistance, GAS5 for plat-378 

inum resistance. So far, most of these lncRNA have been merely evaluated on very small 379 

series of plasma [150,151] not allowing to draw conclusions on their relevance. 380 

8. Perspectives et conclusions 381 

Despite an abundant literature on ncRNAs in OC mainly based on cell culture and 382 

tissue samples, relatively few data are yet available in biofluid while previous studies 383 

[79,152,153] have demonstrated the possibility to quantify ncRNAs in various biofluids 384 

such as plasma, serum, urine and saliva. Moreover, it is important to note some limits of 385 

the previous published studies such as the small sample size, the absence of external val-386 

idation, and the use in most studies of RT-qPCR and microarrays allowing ncRNA quan-387 

tification of a predefined set of target sequences while NGS and bioinformatics, repre-388 

senting an unbiased biomarker discovery method, is rarely used. To improve the pre-389 

operative diagnosis of ovarian cancer, studies evaluating the expression of ncRNAs in 390 

easily accessible biofluids should be promoted, imposing the use of new sequencing 391 

technologies. So far, to our knowledge, only two studies, the clinical trial NCT03738319 392 

focusing on ncRNA profile in exosomes of OC patients, [154] and the clinical trial NCT 393 

[155] evaluating the saliva expression of ncRNA in ovarian tumors including, benign, 394 

borderline and ovarian cancer, are ongoing. 395 

  396 
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