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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Humans have been shown to strategically explore. They can identify situations in which

gathering information about distant and uncertain options is beneficial for the future.

Because primates rely on scarce resources when they forage, they are also thought to stra-

tegically explore, but whether they use the same strategies as humans and the neural bases

of strategic exploration in monkeys are largely unknown. We designed a sequential choice

task to investigate whether monkeys mobilize strategic exploration based on whether infor-

mation can improve subsequent choice, but also to ask the novel question about whether

monkeys adjust their exploratory choices based on the contingency between choice and

information, by sometimes providing the counterfactual feedback about the unchosen

option. We show that monkeys decreased their reliance on expected value when exploration

could be beneficial, but this was not mediated by changes in the effect of uncertainty on

choices. We found strategic exploratory signals in anterior and mid-cingulate cortex (ACC/

MCC) and dorsolateral prefrontal cortex (dlPFC). This network was most active when a low

value option was chosen, which suggests a role in counteracting expected value signals,

when exploration away from value should to be considered. Such strategic exploration was

abolished when the counterfactual feedback was available. Learning from counterfactual

outcome was associated with the recruitment of a different circuit centered on the medial

orbitofrontal cortex (OFC), where we showed that monkeys represent chosen and unchosen

reward prediction errors. Overall, our study shows how ACC/MCC-dlPFC and OFC circuits

together could support exploitation of available information to the fullest and drive behavior

towards finding more information through exploration when it is beneficial.
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Introduction

In many species, most behaviors, including foraging, can be accounted for by simple behaviors

—approach/avoidance of an observed and immediately available source of food—that require

no mental representations. Exploration is, by definition, a non-value maximizing strategy

[1,2], so in those models, exploration is often reduced to a random process, where noise in

behavior can lead animals to change behavior by chance [1,3–6]. However, in species relying

upon spatially and temporally scattered resources, such as fruits, exploration is thought to be

aimed at gathering information about the environment in order to form a mental representa-

tion of the world. Work in monkeys and humans has shown that primates are sensitive to the

novelty of an option when deciding to explore [7–9]. They sample novel options until they

have formed a representation of their relative values compared to the available options. This

work clearly showed that monkeys have a representation of the uncertainty and actively

explore to reduce it. Similar results had been shown in humans, whose exploration is driven by

the uncertainty about the options [10,11]. However, it is still unknown whether monkeys have

a specific representation of potential future action and outcomes that enables them to organize

their behavior over longer time or spatial scale. We design a novel paradigm in monkeys—

based on work in humans—to assess whether on how monkeys engage in strategic exploration,

which is exploring only when it is useful for the future. Strategic exploration enables an animal

to adapt to a specific context and is essential to maximize rewards over a longer time and spa-

tial scale. For frugivorous animals such as primates, it might be critical for survival.

Humans have been shown to strategically explore [12–15], but there is little evidence in

other species. Inspired by Wilson and colleagues’ “horizon” exploration task [12], we devel-

oped a task to investigate whether monkeys mobilize strategic exploration based on whether

that information can improve subsequent choice. Importantly, non-human primate models

provide insights into the evolutionary history of cognitive abilities, and of the neuronal archi-

tecture supporting them [16]. Given the rhesus monkeys’ ecology (including feeding), they

should also be able to use strategic exploration, but the extent to which they can mobilize stra-

tegic exploration might be different from that of humans. Based on the similarities in circuits

supporting cognitive control and decision-making processes in humans and macaques

[17,18], one could further hypothesize that the same neurocognitive processes (the same

computational model) might be recruited but not to the same extent (different weights).

As in Wilson and colleagues’ original study, we manipulated whether the information

could be used for future choices by changing the choice horizon [12]. By comparing explora-

tion in both conditions, we could test whether the animals reduced their reliance on value esti-

mates (random exploration) and increased their preference for more uncertain options

(directed exploration) when gathering information was useful for future choices in the long

horizon [12]. In addition, we manipulated the contingency between the choice and the infor-

mation by varying the type of feedback that monkeys received. In the complete feedback con-

dition, information was freely available, and we could probe whether monkeys decreased their

exploration compared to the classic partial feedback condition. In humans, providing the com-

plete feedback decreases decision noise [19] and improves learning [20–23], both of which are

consistent with reduced exploration. A strategic explorer would only actively explore—and

forgo immediate rewards—when it is useful for the future (long horizon) and that it is the only

way to obtain information (partial feedback). In addition to behavioral data, neural data were

collected using fMRI to probe the neural substrates of strategic exploration. Our analysis was

focused on regions previously identified in fMRI studies on reward valuation and cognitive

control in monkeys [24–29]. Finally, we took advantage of the different feedback conditions to

explore how monkeys update their expectations based on new information. Specifically, we
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investigated the behavioral and neural consequences of feedback about the outcome of their

choice and—in the complete feedback condition—on counterfactual feedback from the

alternative.

We found that rhesus monkeys engaged in strategic exploration by decreasing their reliance

on expected values (random exploration) when it was useful for the future (long horizon) and

that active sampling was the only way to obtain information (partial feedback). Neurally, we

found prefrontal strategic exploration signals in the anterior and mid-cingulate cortex (ACC/

MCC) and dorsolateral prefrontal cortex (dlPFC). However, we did not find a significant mod-

ulation by the horizon and feedback type of the effect of uncertainty (directed exploration) on

choices. When making choices in a sequence (long horizon), we found evidence that macaques

used counterfactual feedback to guide their choices. Complementing this activity at the time of

decision, in the complete feedback condition, we found overlapping chosen and unchosen out-

come prediction error signals in the orbitofrontal cortex (OFC), at the time of receiving the

outcome. The counterfactual prediction errors in the OFC are particularly interesting as they

point to the neural system that allowed the macaques to forgo having to make exploratory

choices in the complete condition, which could also change how the MCC-dlPFC network rep-

resented the value of the chosen option.

Results

Probing strategic exploration in monkeys

Three monkeys performed a sequential choice task inspired by Wilson and colleagues [12]. In

this paradigm called the horizon task, monkeys were presented with one choice (short hori-

zon) or a sequence of four choices (long horizon) between two options (Fig 1A). Each option

belonged to one side of the screen and had a corresponding touch pad located under the screen

(see Materials and methods for details). Both types of choice sequence (long and short hori-

zon) started with an “observation phase” during which monkeys saw four pieces of informa-

tion randomly drawn from both options and reflecting outcome distribution of each option.

They received at least one piece of information per option (Fig 1B). Each piece of information

was presented exactly like subsequent choice outcomes as a bar length (equivalent of 0 to 10

drops of juice) drawn from each option’s outcome distribution. The animals had learned that

the length of the orange bar on a yellow background indicated the number of drops of juice

associated with that specific option on a given trial (Fig 1B). One option was associated with a

larger reward (more drops of juice) on average than the other. The means of the distributions

were fixed within a sequence but unknown to the monkey. Monkeys only received the reward

associated with the option they chose at the end of each choice.

First, we manipulated whether the information gathered during the first choice could be

useful in the future. During a session, we varied the number of times monkeys could choose

between the options (horizon length). The horizon length was visually cued (Fig 1A and 1B).

On short horizon trials, the information provided by the outcome of the choice could only be

used for the current choice and was then worthless going forward. On long horizon trials, it

could be used to guide a sequence of four choices. Second, we manipulated the contingency

between choice and information by varying the type of feedback monkeys received after their

active choices (the observation phase was identical for partial and complete feedback condi-

tions). In the partial feedback condition, they only saw the outcome for the option they chose.

In the complete feedback condition, they saw the outcome of both the option they chose and

the alternative option (Fig 1D and 1E). In the latter case, the information about the options

could be learned from the counterfactual outcomes—the outcome that would have been

obtained had a different choice been made. This type of feedback is sometimes referred to as
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“hypothetical” [30] or “fictive” feedback [31]. The feedback condition was not cued but was

fixed during a session.

To assess monkeys’ sensitivity to the expected value and the uncertainty about the options,

we set up an ideal observer Bayesian model (see Materials and methods for model details),

which estimates the probability of observing the next outcome given the current information

(Fig 1C). This model uses only the visual information available on the screen to infer the true

underlying mean value of each options but does not use the horizon nor the feedback type as

those were irrelevant for this inference. We extracted the expected value (peak of the probabil-

ity distribution of the next observation, i.e., most likely next outcome) and the uncertainty

(variance) of the options from the model to evaluate monkeys’ sensitivity to these variables. If

Fig 1. Task and model. (A) During the task, we manipulated whether the information could be used in the future by

including both long and short horizon sequences. In both trial types, monkeys initially received four samples (“observations”)

from the unknown underlying reward distributions. In short horizon trials, they then made a one-off decision between the two

options presented on screen (“choice”). In long horizon trials, they could make four consecutive choices between the two

options (fixed reward distributions). On the first choice (highlighted), the information content was equivalent between short

and long horizon trials (same number of observations), whereas the information context was different (learning and updating

is only beneficial in the long horizon trials). (B) Example short and long horizon trials. The monkeys first received some

information about the reward distributions associated with choosing the left and right option. The length of the orange bar

indicates the number of drops of juice they could have received (0–10 drops). The horizon length of the trial is indicated by the

size of the grey area below the four initial samples. The monkeys then make one (short horizon) or four (long horizon)

subsequent choices. As monkeys progressed through the four choices, more information about the distributions was revealed.

Displayed here is a partial information trial where only information about the chosen option is revealed. (C) Ideal model

observer for the options of the example trial shown in B (color code corresponds to the side of the option). The distributions

correspond to the probabilities to observe the next outcome for each option. The expected value corresponds to the peak of the

distribution and the uncertainty to the variance. Thick lines correspond to post-outcome estimate and thin lines to pre-

outcome estimates (from the previous trial). (D) We also modulated the contingency between choice and information by

including different feedback conditions. In the partial feedback condition, monkeys only receive feedback for the chosen

option. In contrast, in the complete feedback condition, they receive feedback about both options after active choices (not in

the observation phase). (E) Example partial and complete feedback trials (both short horizon). Here, the observation phase

shown in (B) is broken up into the components the monkeys see on screen during the experiment. Initially, the samples were

displayed on screen, but a red circle in the center indicates that the monkeys could not yet respond. After a delay, the circle

disappears, and the monkeys could choose an option. After they responded, the chosen side was highlighted (red outline).

After another delay, the outcome was revealed. In the partial feedback condition (top), only the outcome for the chosen option

was revealed. In contrast, in the complete feedback condition (bottom), both outcomes were revealed. After another delay, the

reward for the chosen option was delivered in both conditions.

https://doi.org/10.1371/journal.pbio.3001985.g001
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monkeys did not engage in strategic exploration, the effect of expected value should be unaf-

fected by the manipulations of horizon and feedback as was the case for the model.

The horizon length and the type of feedback modulate monkeys’

exploration

We first focused our analysis on the first choice of the trial, as the information about the

reward probability of two options was identical across horizons and feedback conditions, such

that choices should only be affected by the contextual manipulations (horizon and feedback

type). If monkeys were sensitive to whether the information could be used in the future, they

would explore more in the long compared to the short horizon. This is because information

obtained early in a trial can only beneficial for subsequent choices in long horizon trials. More-

over, exploration should only occur when obtaining information is instrumentally dependent

upon it, i.e., in the partial feedback condition (Fig 2A).

We first ensured that monkeys’ choices were influenced by the expected value computed by

the Bayesian model. We looked at the accuracy (defined as choosing the option with the high-

est expected value according to the model) during the first choice. For the two horizon lengths

and in both feedback conditions, accuracy was above chance level (t test compared to a distri-

bution with a mean at 0.5; partial feedback short horizon: t (40) = 10, p< 0.001, partial feed-

back long horizon: t (40) = 8.930, p< 0.001, complete feedback short horizon: t (39) = 7.9,

p< 0.001, complete feedback long horizon: t (39) = 8.963, p< 0.001, Fig 2B). Therefore, mon-

keys used the information provided by the informative observations on each trial to guide

their choices. Monkeys also adjusted their choices to variations in expected value, as can be

seen when pooling together both feedback conditions and horizon lengths (Fig 2C; see statisti-

cal significance in Fig 2D).

Although choices were guided by the expected value of the options above chance level,

monkeys still sometimes chose the less valuable option in both conditions and horizons (Fig

2B and 2C). We examined whether monkeys were less driven by expected value on partial

feedback long horizon trials, as exploration is only a relevant strategy on these trials (Fig 2A).

Fig 2. First choice. (A) In our experimental design, on the first choice of a horizon, directed exploration is only sensible in long horizon

trials in the partial feedback condition. This is because in short horizon trials, the information gained by exploring is of no use for

subsequent choices, so a rational decision-maker would only choose based on the expected value of the options. Moreover, in the

complete feedback condition, all information is obtained regardless of which option is chosen, so an ideal observer would again always

choose the option with the highest expected value. (B) The proportion of trials in which the monkeys chose the option with the higher

expected value is above chance level (0.5) across both feedback conditions and horizons. Mean across sessions (partial feedback: 41

sessions, complete feedback: 40 sessions). (C) Monkeys’ choices are sensitive to nuanced differences in expected value. Mean across all

sessions (81 sessions). (D) According to the logistic regression model predicting monkeys’ first choices in a horizon (see main text and

methods for details), monkeys’ first choices are less driven by expected value in the partial than in the complete feedback condition.

Within the partial feedback condition, they are less driven by expected value in long than in short horizon trials. No such difference was

found in the complete feedback condition. This is evidence that monkeys deliberately modulate their exploration behavior to explore

more on partial feedback long horizon trials, where exploration is sensible (see (A)). Error bars indicate standard error to the mean in B

and C and standard deviation in D. Data and code to reproduce the figure can be found at https://doi.org/10.5281/zenodo.7464572.

https://doi.org/10.1371/journal.pbio.3001985.g002
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To test this hypothesis, we ran a single logistic regression predicting responses during first

choices in the partial and complete conditions with the following regressors: the expected

value according to our Bayesian model, the uncertainty according to our Bayesian model, the

horizon (short/long), and the interactions of expected value and uncertainty with horizon. In

the same model, we added two potential biases, a side bias and tendency to repeat the same

action. We fitted regressors to vary by condition (partial or complete feedback) and by mon-

key, and modelled sessions as random effects for each monkey, with all regressors included as

random slopes. We confirmed that in both feedback conditions, monkeys tended to choose

the option with the highest expected value (p< 0.000001 in the partial condition and

p< 0.000001 in the complete; one-sided test, based on sample drawn from Bayesian posterior;

see Materials and methods). We identified that monkeys relied more on the difference in

expected value in the complete than in the partial feedback condition (p = 0.0024; one-sided

test), and in short horizon than in the long horizon in the partial condition only (p = 0.0163 in

the partial condition and p = 0.6598 in the complete; one-sided test). Thus, animals engaged in

strategic exploration by reducing their reliance on expected value. In other words, animals

strategically modulated the degree to which they used random exploration both depending on

the horizon length and feedback type (S3A Fig).

We next looked at the effect of uncertainty. Exploratory behaviors should be sensitive to

how much they can reduce uncertain, i.e., the animals should optimally pick the most uncer-

tain option when they explore [12]. We found that monkeys were sensitive to uncertainty

overall, avoiding options that were more uncertain in the partial and the complete feedback

conditions (p = 0.0081 in the partial condition and p = 0.00025 in the complete; one-sided test)

(see S1 Fig for full model fit and the posteriors for each individual subject). This risk aversion

was driven by the difference in number of information presented as when we restricted our

analysis to the trials where they received 2 information about each option, monkeys showed a

small preference for the more uncertain option (p = 0.077 in the partial condition and

p = 0.066 in the complete; p = 0.02 when combined; one-sided test) (see S2 Fig for full model

fit and the posteriors for each individual subject). However, we found no statistically reliable

difference in the sensitivity to the uncertainty across the experimental conditions. We also ran

a second model that used the number of available information (which is mathematically equiv-

alent to the model used by Wilson and colleagues [12]) rather than uncertainty and found

identical results, both for the effects on expected value and the absence of an effect on the sen-

sitivity to the number of available information (S3B and S4 Figs for full model fit and the pos-

teriors for each individual subject). Therefore, uncertainty did not play a key role in strategic

exploration in our task. This indicates that our macaques did not use directed exploration to

strategically guide their choices (S3 Fig).

Finally, we checked whether the decision variables were stable over trials and across ses-

sions. First, in the above regression model, we added interaction terms with the trial number.

We found no significant interaction with our regressors of interest (expected value, expected

value interaction with horizon, uncertainty, and uncertainty interaction with horizon). Sec-

ond, we fitted each session separately and looked for a linear trend in the session number. We

found no linear nor clear trend for the regressors over sessions. Overall, we found no evidence

that monkeys’ decision variables changed throughout the recording.

Monkeys learn from chosen and counterfactual feedbacks

We next assessed whether monkeys used the information they collected during their previous

choices to update their choice, and how the nature of the feedback affected this process. To

this end, we focused our analysis on choices from long horizon trials. On such trials, monkeys’
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accuracy (defined as choosing the option with the highest expected value according to the

model) was always above chance level (t test compared against a mean of 0.5; all p< 10−10)

and increased as they progressed through the sequence (t test compared against a mean of 0 of

the distribution regression coefficients of the trial number onto the accuracy (both z-scored)

for each session; partial feedback condition: t (40) = 11.3653, p< 0.001, complete feedback

condition: t (39) = 5.6590, p< 0.0001) (Fig 3A). We inferred that this improvement was due to

the use of the information collected during the choices. To examine this, we isolated the

change in expected value compared to the initial “observation phase” (see Materials and meth-

ods). We found that monkeys were sensitive to the change in expected value both for the cho-

sen option (in the partial and complete feedback conditions) and the unchosen option

(counterfactual feedback in the complete feedback condition only) (Fig 3B and 3C; see statisti-

cal significance in Fig 3E). Monkeys displayed a significant tendency to choose the same

option (t test compared against a mean of 0.5; all p< 10−6), which sharply increased after the

first trial (paired t test between the first choice and the subsequent choices; all p< 10−10) and

kept increasing after the first choice (t test compared to a distribution with a mean at 0 of the

distribution regression coefficients of the trial number onto the probability to choose the same

option (both z-scored) for each session; partial feedback condition: t (40) = 5.3026, p< 0.001,

complete feedback condition: t (39) = 3.1265, p = 0.0033) (Fig 3D).

Fig 3. Behavioral update. (A) As monkeys progressed through the long horizon, they were more likely to choose the

option with the higher expect reward in both the partial and complete feedback condition. Mean across sessions

(partial feedback: 41 sessions, complete feedback: 40 sessions). (B) Monkeys were sensitive to changes in the expected

value compared to the baseline expected value they experienced during the observation phase both for the chosen

option (mean across all sessions (81 sessions)) and (C) the unchosen option (mean across all complete feedback

sessions (40 sessions)). (D) Monkeys were also more likely to repeat their choice as they progressed through the long

horizon. Mean across sessions (partial feedback: 41 sessions, complete feedback: 40 sessions). (E) Results of the single

logistic regression model predicting second, third, and fourth choices in the long horizon. In both the partial and

complete feedback, monkeys were sensitive to the expected value at observation but more so in the complete than the

partial feedback condition (left). Monkeys tended to repeat previous choices in both conditions but more so in the

partial than in the complete feedback condition (center left). In both conditions, monkeys were sensitive to the change

in expected value compared to the observation phase with no significant difference between conditions (center right).

In the complete feedback condition, monkeys were also sensitive to the change compared to baseline of the additional

information they received. Error bars represent standard error to the mean in A-D and standard deviation in E.
�p< 0.05, ��p< 0.01, and ���p< 0.001. Data and code to reproduce the figure can be found at https://doi.org/10.5281/

zenodo.7464572.

https://doi.org/10.1371/journal.pbio.3001985.g003
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We investigated the determinants of these effects by performing a single logistic regression

for all non-first choices with the following regressors: the expected value and uncertainty dur-

ing the observation phase (which served as a baseline for subsequent choices), the change in

these baselines as new information was revealed as they progressed through the horizon. We

also added in the same model three potential biases in choices: a side bias, the tendency to

repeat the same action, and a bias for choosing the option most often chosen (see S5 Fig for

full model fit and the posteriors for each individual subject). Just as with the previous regres-

sion model for first choices, we again allowed regressors to vary by condition and monkey and

modelled sessions as random effects. We confirmed that monkey remained sensitive to the dif-

ference in expected value during the observation phase and that guided the first choice

(p< 0.000001 in the partial condition and p< 0.000001 in the complete; one-sided test). Con-

sistent with the choice behavior on the first choice, monkeys relied more on this difference in

the complete than in the partial feedback condition in subsequent choices (p = 0.0192, one-

sided test; Fig 3E). Monkeys were biased towards repeating the same choice (p< 0.000001 in

the partial condition and p< 0.000001 in the complete; one-sided test), but this bias was also

more pronounced in the partial feedback condition (p = 0.0018, one-sided test; Fig 3E) as can

already be seen in Fig 3B. Monkeys also preferred to choose the option most chosen

(p< 0.000001 in the partial condition and p< 0.000001 in the complete; one-sided test),

which explained the increase in repetition bias over time, but this was not affected by the feed-

back type (partial > complete: p = 0.309) (S5 Fig). Monkeys were sensitive to the change in

expected value when the information was related to the chosen option (p< 0.000001 in the

partial condition and p< 0.000001 in the complete; one-sided test), with no statistical differ-

ence between the partial and complete feedback conditions (partial > complete: p = 0.6913).

Finally, in the complete feedback condition, monkeys were sensitive to the change in expected

values obtained from the counterfactual feedback (p< 0.000001; one-sided test; Fig 3E).

Overall, we found that on top of being more sensitive to the expected value difference dur-

ing the initial evaluation, monkeys were less likely to be biased towards repeating the same

action when they had counterfactual feedback to further guide their choices in the complete

feedback condition. They were able to learn about the options, using both the chosen and the

counterfactual feedback when it was available.

Strategic exploration signals in ACC/MCC and dlPFC

To identify brain areas associated with strategic exploration, we ran a two-level multiple

regression analysis using a general linear model (GLM). For each individual session, we used a

fixed-effects model. To combine sessions and monkeys, we used random effects as imple-

mented in the FMRIB’s Local Analysis of Mixed Effects (FLAME) 1 + 2 procedure from the

FMRIB Software Library (FSL). We focused our analysis on regions previously identified in

fMRI studies on reward valuation and cognitive control in monkeys [24–29]. Thus, to only

look at the regions we were interested in and to increase the statistical power of our analysis,

we only analyzed data in a volume of interest (VOI) covering frontal cortex and striatum (pre-

viously used by Grohn and colleagues [29]). We used data from 75 (41 partial feedback and 34

complete feedback) of the 81 (41 partial feedback and 40 complete feedback) sessions we had

acquired (fMRI data from 6 sessions were corrupted and unrecoverable). Details of all regres-

sors included in the model can be found in the Materials and methods section. In addition to

the analysis in the VOI, we examined the activity in the functionally and anatomically defined

regions of interest (ROIs). These ROIs were not chosen a priori but were selected based on the

activity in the VOI. The goal of these analyses was either (i) to examine the effect of a different

variable than the one used to define the ROI in our VOI, which is an independent test so we
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could look for statistical significance of this different variable on the activity in the ROI, or (ii)

to illustrate an effect revealed in the VOI, which is not an independent test, so we did not do

any statistical analysis.

To examine how monkeys use initial information displayed during the observation phase

of the task differently depending on the horizon and the feedback condition, we examined the

brain activity when the stimuli were presented on the first choice (“wait” period; Fig 1D). Cru-

cially, there was no difference in the visual inputs between the partial and the complete feed-

back condition, as the nature of the feedback was not cued and fixed for blocks of sessions and

monkeys only received the counterfactual feedback after an active choice (not in the observa-

tion phase). We first investigated the main effects of our two manipulations: the overall effect

of the horizon and feedback type on brain activity.

We combined all sessions and looked for evidence of different activations in the long and

short horizon. We found a significantly greater activity for the long horizon in 3 clusters (clus-

ter p< 0.05, cluster forming threshold of z > 2.3; Fig 4A, see S1 Table for coordinates of clus-

ter peaks). One cluster was centered on the pregenual anterior cingulate cortex (pgACC), and

the striatum and two clusters of activities were centered on the dlPFC and extended in the lat-

eral orbitofrontal cortex (lOFC, area 47/12o; see Materials and methods for more details about

Fig 4. First choice neural results. (A) When combining partial and complete feedback sessions, we found clusters for a differential in

activity in long horizon than short horizon in the pgACC, the dlPFC, and the lateral OFC. Cluster p< 0.05, cluster forming threshold

of z> 2.3. (B) We placed ROIs (in yellow) in the overlap of the functional cluster and anatomical region and extracted t-statistics for

the difference between long horizon and short horizon. Mean across sessions (partial feedback: 40 sessions, complete feedback 34

sessions). (C) We looked for differences in how the contingency between choice and information (complete vs. partial feedback)

modulates the initial information that was presented before first choices. Within our VOI, we found clusters of activity in MCC both

for the main effect of feedback type and a greater sensitivity to expected value in the complete feedback condition. We also found a

cluster of activity in dlPFC for a greater sensitivity to expected value in the complete feedback condition. (D) We placed an ROI (in

yellow) in the part of MCC that is activated by the main effect of feedback type and extracted the t-statistics of the regressor for every

session. We found that the effect we observe in the VOI is driven by increased activity in the complete feedback condition, whereas

there is no activity in the partial feedback condition. Mean across sessions (partial feedback: 40 sessions, complete feedback 34

sessions). (E) We also placed ROIs (in yellow) in the parts of MCC and dlPFC where we found significant clusters in the VOI for the

interaction of feedback type and expected value and extracted the t-statistics for the expected value regressor of every session. Plotting

these regressors separately for feedback type reveals that both MCC and dlPFC were more active when an option with high expected

value was chosen in the complete feedback condition, whereas they were more active when an option with low expected value was

chosen in the partial feedback condition. Mean across sessions (partial feedback: 40 sessions, complete feedback 34 sessions). Error

bars represent standard error to the mean. �p< 0.05. Data and code to reproduce the figure can be found at https://doi.org/10.5281/

zenodo.7464572. dlPFCAU : AbbreviationlistshavebeencompiledforthoseusedinFigs4and5; attheendofeachfigurecaption:Pleaseverifythatallentriesarecorrect:, dorsolateral prefrontal cortex; MCC, anterior and mid-cingulate cortex; OFC, orbitofrontal cortex; pgACC,

pregenual anterior cingulate cortex; ROI, region of interest; VOI, volume of interest.

https://doi.org/10.1371/journal.pbio.3001985.g004
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OFC subdivisions) with one on each hemisphere. In an independent test, we placed ROIs by

calculating the functional and anatomical overlap for each Brodmann area 24, 46, and 47/12o

and extracted the t-statistics of the regressor to examine the effect the contingency between

choice and information (feedback condition). We observed no effect of the feedback type in

ACC (p = 0.19) and lOFC (p = 0.53), but we found a main effect of feedback type in the dlPFC

(two-way ANOVA, F(144, 147) = 4.86, p = 0.029) and no interaction anywhere (ACC:

p = 0.29, dlPFC: p = 0.9 and lOFC: p = 0.78). This revealed that a subpart of the pgACC and

the lOFC were sensitive to the horizon length, while the dlPFC showed an additive sensitivity

to the horizon length and the feedback type, such that it was most activated in the long horizon

and partial feedback, when exploration is beneficial.

We next examined the effect of the feedback in our VOI. We found one cluster around the

MCC that was significantly modulated by the difference between the activity during the com-

plete and partial feedback conditions during stimuli presentation on the first choice (Fig 4C,

yellow contrast; see S1 Table for coordinates of cluster peaks). To examine this effect further,

and although it is not an unbiased test, we defined an ROI by taking the overlap between our

functionally defined cluster and Brodmann area 240. Extracted the t-statistics of each session

from the regressor from this ROI revealed that the MCC is more active at the time of choice in

the complete feedback condition but not in the partial feedback condition (Fig 4D). We found

no interaction between the horizon length and the feedback type in our VOI. Thus, a different

subpart of the MCC that was sensitive to the horizon length was sensitive to the type of

feedback.

Behaviorally, we observed that strategic exploration was implemented by decreasing the

influence of expected value on the choice. We therefore next looked for evidence of stronger

expected value signals in complete feedback condition compare to the partial feedback condi-

tion. We tested the expected value of the chosen option, the unchosen option, and the differ-

ence in expected values between the chosen and unchosen options. We only found activity

related to the expected value of the chosen option. We found two clusters of activities bilater-

ally in the MCC (area 240) and the left dlPFC (area 46) that were modulated by the contingency

between choice and information (Fig 4C; see S1 Table for coordinates of cluster peaks). We

again placed two ROIs by calculating the functional and anatomical overlap for Brodmann

areas 240 and 46 and extracted the t-statistics of the regressor. Although this is not an unbiased

test, we can see that the MCC and dlPFC seemed to be active when an option with a low

expected value was chosen, whereas in the complete feedback condition, they were more active

when choosing high expected value options (Fig 4E for illustration). We found, however, no

difference of the strength of this sensitivity between short and long horizons. Thus, we found

that the availability of the counterfactual feedback in the complete feedback condition

decreased—and potentially even inverted—the sensitivity of the MCC and dlPFC to the

expected value of the chosen option. We conducted additional exploratory brain–behavior

correlations but found no significant relationships to behavioral sensitivity (see “Author

Response” file within the Peer Review History tab for additional details).

Finally, we looked for signals that were related to the expected outcome of the chosen

option and that were common to both feedback conditions. Consistent with previous studies

[32–35], when we combined the partial and complete feedback conditions session and took all

trials in the “wait” period, we found a large activation related to the expected value of the cho-

sen option (which is the same as the chosen action in our task) spanning from the motor cor-

tex/somatosensory cortex, the dlPFC, the OFC, and striatum, as well as an inverted signal in

the visual areas in the whole brain (without mask; S6A Fig). We also found a clear representa-

tion of the uncertainty about the chosen option on the first choice (when the magnitude of the

uncertainty about the chosen option is equivalent in the partial and complete feedback
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conditions as no counterfactual feedback has yet been provided) in the right medial prefrontal

cortex (24c and 9m) that extended bilaterally in the frontal pole (10mr) (S6B Fig). We con-

ducted additional exploratory brain–behavior correlations but found no significant relation-

ships to behavioral sensitivity (see “Author Response” file within the Peer Review History tab

for additional details).

Overall, we found that pgACC and MCC reflected the horizon length and the type of feed-

back, respectively. The dlPFC was linearly modulated both, with the strongest activation in the

long horizon and partial feedback, when exploration is beneficial. Additionally, the feedback

type modulated the effect of the chosen expected value on the activity of the MCC and the

dlPFC, such that it was more active for low value choices only when obtaining information

was contingent on choosing an option.

Chosen and counterfactual outcome prediction error signals in the OFC

We next examined the brain activity when the outcome of the choice is revealed (“outcome”

period in Fig 1D) and monkeys are updating their beliefs about the options. After the first

choice, the sequences of events played out differently in the partial and complete feedback

conditions; therefore, we analyzed each dataset separately in regard to feedback. At out-

come, the partial feedback condition closely resembles previously reported results from

fMRI studies in monkeys [27,29]. We looked for brain regions with an activity that was

modulated by magnitude of the outcome prediction error signals, i.e., the difference

between the outcome and the expectation (S7A Fig). Consistent with these studies, we

found the expected clusters of activity in the medial prefrontal cortex and bilaterally in the

motor cortex in our VOI (see fig for outcome only–related activity). When we time-locked

our search to the onset of the reward (1 s after the display of the outcome, on a different

GLM), we also found the classic prediction error related activity in the ventral striatum at

the whole brain level (S7C Fig).

We then turned to the complete feedback condition, in which we simultaneously presented

the outcome of the chosen and the unchosen after the first active choice, in order to examine

the neural substrates involved in learning about counterfactual feedback and the extent to

which they overlap with learning about chosen feedback. We looked in our VOI for brain

regions with an activity that was modulated by the prediction error for the chosen option and

the unchosen option. We found a cluster of activity around the lOFC (area 47/12o) that was

negatively modulated by the prediction error for the chosen option and a cluster of activity

around the medial orbitofrontal cortex (mOFC, area 14) that was negatively modulated by the

prediction error of the unchosen option (Fig 5A; see S1 Table for coordinates of cluster peaks).

These clusters intersected in the central part of the OFC (cOFC, area 13). Prediction error

activity should show both an effect of outcome and expectation, with opposite signs. To inde-

pendently test whether observed effects were prediction errors, rather than being driven by the

outcome or the expectation alone, we extracted the t-statistics for both outcome and expecta-

tion in ROI defined by their outcome-related activity only and looked for a modulation by the

expectations (S8 Fig). Again, we defined ROIs based the functional modulation by the magni-

tude of the chosen outcome and anatomical overlap. For the chosen outcome, we found that

lOFC did not show a significant positive expectation for the chosen outcome (p = 0.1083) (Fig

5C). We found that the somatosensory cortex (area 3) showed a strong positive chosen out-

come signal and as well as a positive modulation by the chosen expectation (T (33) = 2.5246,

p = 0.017) and the ventrolateral prefrontal cortex (vlPFC) (area 45) had no sensitivity for the

chosen expectation (p = 0.95) (S6B Fig). Using the same procedure with the unchosen out-

come, we found that the cOFC showed a positive expectation about the unchosen outcome (t
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(33) = 2.2617, p = 0.0304), as well as a negative modulation by the chosen outcome (t (33) =

−2.8761, p = 0.007) and a positive modulation by the expectation about the chosen outcome

(t (33) = 2.5560, p = 0.0154). We found a similar pattern in the mOFC (unchosen expectation:

t (33) = 2.5130, p = 0.017; chosen outcome: t (33) = −2.2455, p = 0.0316; chosen expectation:

t (33) = 2.8729, p = 0.0071). The ventral-medial prefrontal cortex (area 10m according to the

atlas we used [36] but has been called 14m [37]) showed a negative modulation of its activity

by the unchosen and the chosen (t (33) = −3.079, p = 0.004) outcomes but no sensitivity to the

expectations. Overall, we found that the cOFC and mOFC both showed prediction error–

related activity for both the chosen and the unchosen outcomes, and with the same sign.

To test the OFC prediction error effects even further, we ran an exploratory correlational

analysis, between the ROIs based the prediction error signal (t-statistic) and session specific t-

statistic of the behavioral effect of the change in expected value on choices (estimated with a

separate GLM for each session with the same regressors as in Fig 5B). We wanted to see

whether the strength of the counterfactual outcome prediction error in the brain is predictive

of how much an animal uses it in a particular session. Only in mOFC (and not cOFC) did we

see the expected—albeit modest—correlation between increased negative counterfactual pre-

diction error signals and increased behavioral impact of the counterfactual information (Fig

5D, ß = −0.1701 ± 0.0971, t (32) = −1.7507, p = 0.0448, one-sided test).

Fig 5. Prediction error neural results. (A) In complete feedback sessions only, we found clusters for inverted prediction error

activity in the central part of OFC (area 13), extending into lOFC (area 47/12o). We also found inverted prediction error activity in

the cOFC (area 13) and mOFC (area 14) for the unchosen, counterfactual reward. (B) Brain–behavior correlational analysis

between the prediction error signal in the mOFC (t-statistic) and session-specific t-statistic of the behavioral effect of the change in

expected value on choices (estimated with a separate GLM for each session). (C) We placed ROIs (in yellow) in the overlap of the

functional cluster modulated by the magnitude of the chosen outcome and anatomical region. We extracted t-statistics for reward

and expectation, both of the chosen and unchosen option. Prediction error activity should evoke both a reward and an expectation

response with opposite signs. We did not found evidence for outcome expectation of the chosen option. Mean across complete

feedback sessions (34 sessions). (D) When defining the ROIs (in yellow) according to the response to the magnitude of unchosen

outcome, we find evidence for a classic reward prediction error and a counterfactual prediction error about the unchosen option

both in cOFC and mOFC: We observe activity related both to the obtained and the unobtained reward, and also activity related

both the chosen and unchosen outcome expectation. Mean across complete feedback sessions (34 sessions). Error bars represent

standard error to the mean. �p< 0.05, ��p< 0.01. Data and code to reproduce the figure can be found at https://doi.org/10.5281/

zenodo.7464572. cOFC, central OFC; GLM, general linear model; OFC, orbitofrontal cortex; lOFC, lateral OFC; mOFC, medial

OFC; ROI, region of interest.

https://doi.org/10.1371/journal.pbio.3001985.g005
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Discussion

Weighing up exploration to gather new information with exploitation of your current knowl-

edge is a key consideration for humans and animals alike. Inspired by recent work carefully

dissociating value-driven exploration from simple lack of exploitation [12], we designed the

horizon task to look at the behaviors and neural correlates of goal-directed evaluation of strate-

gic exploration in rhesus monkeys. While strategic value-driven exploration is important to

optimize the behavior in time, it is equally important to be able to learn from observations

related to choices not taken. In particular, being able to process counterfactual information

during learning is key to optimize exploration for only the kind of situations when active sam-

pling is necessary.

Strategic exploration as a reduction of the effect of expected value on

choices

We know that monkeys can seek information before committing to a choice or to increase

confidence about their decision [38–40]. However, here, we showed that monkeys could iden-

tify situations in which a strategic exploratory choice would lead to gaining information that

would be beneficial for future decisions. Indeed, their choices were least influenced by

expected value in the long horizon partial feedback condition, which is when there should be a

drive to explore. This suggests that monkeys had a representation of the significance of the

information and used it to plan future actions. Our results demonstrate that they could discern

both whether information will be useful in the future (greater exploration in long horizon) and

that choosing an option is instrumental to get information about it (greater exploration in the

partial feedback condition).

Exploration during value-based decision-making has been conceived in different ways in

the past. A simple way to account for exploration is the “epsilon-greedy strategy,” in which a

small fraction of choices is made towards the non-most rewarded option [1,3]. Along the same

line, another way to formalize exploratory choices is through the noise or (inverse) tempera-

ture in the softmax choice-rule, which predicts that there are more exploratory choices when

the expected values of the options are close [1,3–6]. This process is also called random explora-
tion because the relaxation of the effect of expected value on choices could allow for stumbling

upon better options by chance [12,15]. This form of exploration is negatively correlated with

accuracy. Therefore, without varying the other features such as the usefulness of information

for the future and the contingency between choice and information, it is impossible to know

whether monkeys made a mistake or were exploring the non-most rewarded option to obtain

information about it.

Here, we show that monkeys, like humans, can perform sophisticated choices that take into

account the prospective value of discovering new information about the options [41]. Our

results revealed that foraging behaviors in macaques do not only rely on simple heuristics (e.g.,

win-stay/lose shift) but are also based on strategic exploration. To some extent, it mirrors

anticipatory switch to exploitative behavior once enough information has been learned about

the information, even when the expected outcome has not yet been obtained [42]. It also adds

to recent works showing that complex sociocognitive processes thought to be uniquely human

such as mentalizing or recursive reasoning could be identified in rhesus monkeys [43,44].

However, contrary to human behavior, our monkeys only adapted by reducing their reliance

on expected value (i.e., exploitative value) on choices, which corresponds to the degree to

which they use random exploration. Humans also increase their preference for the most uncer-

tain option when exploration is useful for the future, which has been referred to as directed
exploration [12]. Our results can also be compared to recent work in monkeys showing that

PLOS BIOLOGY Strategic exploration in macaques

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001985 January 30, 2023 13 / 29

https://doi.org/10.1371/journal.pbio.3001985


monkeys choose novel options until they have an estimate of its value compare to other

options [7–9], which can be interpreted as exploration for uncertainty reduction. Here, we

found that monkeys did not seek to reduce overall uncertainty. This perhaps is because the

number of reward samples was negatively correlated with uncertainty, and thus no option was

novel in the sense that there was no information about it. Uncertainty-related behavior was

not modulated by the feedback type nor the horizon, hinting that uncertainty (rather than nov-

elty) was not a driver of strategic exploration. This suggests species specificity in exploratory

strategy. In the future, a variation of our task could be used to test the effect of novelty on stra-

tegic exploration by offering zero information about one option.

Use of counterfactual feedback in subsequent choices

We next investigated whether and how the availability of the counterfactual feedback impacted

their subsequent choices in the long horizon. First, we found that having more information

about the options in the complete feedback condition improved accuracy. In general, monkeys

were more sensitive to the initial expected values of the options when there was no contin-

gency between choice and information, in the complete feedback condition, but then utilized

the feedback about the chosen option to the same degree in both conditions. However, in

the complete feedback condition, monkeys additionally used the counterfactual feedback

about the unchosen option to update their preference. Our results confirm that rhesus

macaques are sensitive not only to direct reinforcers (i.e., the reward they obtain) but also

counterfactual information [28,30,31,45]. Here, we clearly demonstrate that monkeys can

learn directly from counterfactual feedback, via prediction error. We also demonstrated this

learning is associated with OFC activity. Identifying that an alternative action could have led

to a better outcome and acting upon it has been shown to modulate OFC activity in rodents

[46], suggesting that this ability was present in the last common ancestor to primates and

rodents 100 M years ago.

The availability of counterfactual feedback also helped compensate for the repetition bias

that monkeys displayed during the performance of the sequence. This form of engagement can

also be considered in terms of the exploration/exploitation trade-off, where exploiting corre-

sponds to staying with the current or default option: Monkeys committed to an option at the

beginning of the trial and only changed option if there were sufficient evidence that it was

worth it. Consistently, humans and animals show a tendency to overexploit compared to the

optimal policy in various tasks [47–49]. In general, there seems to be a cost associated with

switching from the ongoing representation or strategy to a new one [50,51]. In our task,

switching options also requires minimal physical effort as the monkeys are positioned in the

sphinx position in the scanner. Additional information about the options, particularly about

the alternative option, seems to encourage the reevaluation of the default strategy of persever-

ing with the current option, enhance behavioral flexibility, and increases the willingness to

bear the cost associated with the physical resetting required by switching target.

Strategic exploration signals in ACC/MCC and dlPFC

Using fMRI, we investigated the neural correlates of the assessment of the possibility to use the

information collected during the choice in the future, manipulated through horizon length, as

well as the assessment of the contingency between choice and information, manipulated

through the availability of the counterfactual outcome. Modulation of activity associated with

exploratory behavior in an uncertain environment has been recorded in humans and monkeys

in both the ACC and the MCC [42,52–54], but here, we found interesting anatomical distinc-

tions. We found that the pgACC was more active when the information could be used in the
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future in the long horizon. In humans, the pgACC activity has been shown to scale with the use

prospective value to guide choices [41]. Thus, the pgACC might be critical to organize the

behavior in the long run, beyond the immediate choice. The activity of a separate anatomical

region of the MCC was modulated by the feedback type. The MCC has been shown to encode

the decision to obtain information about the state of the world [55] and to integrate information

about the feedback to adapt the behavior [56]. Here, we show that activity in the MCC was mod-

ulated prospectively by the feedback type. This activation was greater when more information

was going to be provided, i.e., in the complete feedback condition. Thus, the MCC could be

involved in anticipating more learning or regulating exploration prospectively based on the

feedback that will be received. Critically, the dlPFC displayed an additive effect of the usefulness

of exploration for the future and the contingency between choice and information. It was most

active when both were true, and exploration was sensible. Moreover, in the complete feedback

condition, the MCC and the dlPFC were more active when the expected value of the chosen

option was high. Such modulation is in line with studies in monkeys and humans showing that

neuronal activity in the MCC and the dlPFC does correlate with actions’ values [57–60]. When

the unchosen outcome was not available, MCC and dlPFC were more active when the expected

value of the chosen option was low, which is consistent with the pursuit of an exploration strat-

egy. Overall, the coordinated roles of ACC and MCC participate to the regulation of explor-

atory/exploitative behaviors, not only in rhesus macaque but also in humans [61].

Computational modelling of the activity in ACC/MCC and dlPFC suggest that ACC/MCC

could regulate decision variables in the dlPFC based on the strategic assessment for explora-

tion [62]. Noradrenaline has been shown to modulate the noise in the decision process that

could fuel random exploration and potentially give a mechanism for modulation of explor-

atory activity [13,49,63,64]. Importantly, ACC/MCC also more generally interacts with other

frontal lobe regions as well as monoamine systems and, in particular, the noradrenergic system

making it a feasible mechanism for changing exploratory behaviors [65]. Specifically, a net-

work consisting of the MCC, the dlPFC, and, potentially, the locus coeruleus could support the

relaxation of the effect of expected value on choices based on the context. Altogether, these

results illustrate how ACC/MCC and dlPFC might dynamically switch modes to pursue differ-

ent goals depending on the task demands [42,52,54]. Future studies will aim at testing whether

switching mode is dependent on noradrenergic inputs and which causal role both regions play

in changing into and out of strategic exploration.

Update signals for chosen and counterfactual outcomes in OFC

Being able to process counterfactual information during learning is key to reducing costly

exploration to only the kind of situations when active sampling is necessary. Doing so requires

an ability to process abstract information and learn from it similarly to experienced outcomes,

without confusion between the two, which our monkeys achieved. Neurally, we found classic

activations in the partial feedback condition in response to the magnitude of the outcome and

the prediction error of the chosen option. At reward delivery, we observed a prediction error

signal in ventral striatum, which has previously been reported in neurophysiological studies

[66]. We also observed prediction error activity at outcome in MCC, which had been shown

previously in neurophysiological recordings [67]. We also found that the prediction error for

the chosen outcome modulated the activity of the OFC, but further examination showed that

the lOFC was mostly sensitive to the chosen outcome. Previous studies have shown the lOFC

involvement in learning and using choice–outcome associations to guide behavior [68–70],

and causal studies demonstrated its role in credit assignment [71–74]. Here, in the presence of

two outcomes—two stimuli—OFC could be crucial to integrate the information specifically
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related the chosen option. We also revealed that the cOFC and mOFC carried clear chosen

prediction error signals.

However, our results go beyond chosen prediction error signals and add two additional

dimensions to our understanding the neural processing of counterfactual information during

exploration and learning. Firstly, we were able to map out for the first time counterfactual pre-

diction error signals in monkeys in the cOFC and mOFC. Importantly, by using fMRI, we

could establish its specificity within the prefrontal cortex. In particular, we found signals for

that counterfactual and the chosen outcomes but not the expectations in the vmPFC (10/

mc14m). This adds to our knowledge of modulation of activity by counterfactual outcomes in

gambling tasks had been reported in macaque lateral prefrontal cortex, MCC, and OFC [30,31].

Secondly, we found in the mOFC a relationship between the strength of the counterfactual pre-

diction error signal and the extent to which the counterfactual outcomes influenced future

choices (Fig 5). Encoding of the counterfactual outcome has also been observed in humans

mOFC [23,75,76], and lesion of the mOFC in patients had been associated with an inability to

use counterfactual information to guide future decisions [77]. Those results are compatible with

the proposed broader role of the mOFC in representing abstract values [78,79]. Here, we show

that it represents the comparison of the obtained counterfactual information with the expected

counterfactual information. We found that the representation of the prediction error for the

chosen and unchosen outcomes had the same sign at the time of outcome, which leads us to

postulate that this update mechanism is independent of the frame of the decision [23,79,80].

Having identified the orbitofrontal source of counterfactual prediction errors in macaques

opens up further possibilities to directly interfere with the neural processes in each system to

see the effect it has on this complex adaptation of the animals’ exploratory strategy. Further-

more, knowing how the brains of non-human primates might solve this complex sequential

exploration task also sheds light on the building behavioral and neural blocks of reward explo-

ration, learning, and credit assignment.

Conclusions

Here, we showed that monkeys are able to assess the contingency between choice and information

and the utility of information for the future when making strategic exploratory decisions. Different

subparts of the ACC and MCC related to the assessment of these variables for strategic exploration,

and the dlPFC represented them both additively, such that it was most active when exploration was

beneficial. Only when the only way to obtain information was to explore did MCC and dlPFC

show increased activity with less exploitative choices. This suggests a role in suppressing expected

value signals when value-guided exploration should to be considered. Importantly, to limit costly

exploration to when it is necessary being able to process counterfactual information is key. We

showed monkeys could do this potentially by representing chosen and unchosen reward prediction

errors in central and medial OFC. Furthermore, the strength of this signal in the mOFC was

shown to be correlated with future decisions taken. Overall, our study shows how ACC/MCC-

dlPFC and OFC circuits together might support exploitation of available information to the fullest

and drive behavior towards finding more information when it is beneficial.

Materials and methods

Ethics statement

Animals were kept on a 12-h light–dark cycle, with access to water for 12 to 16 h on testing

days and with ad libitum water otherwise. Feeding, social housing, and environmental enrich-

ment followed guidelines of the Biomedical Sciences Services of the University of Oxford. All

procedures were conducted under licenses from the United Kingdom (UK) Home Office in
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accordance with The Animals (Scientific Procedures) Act 1986 and the European Union

guidelines (EU Directive 2010/63/EU).

Monkeys and task

Three male rhesus monkeys were involved in the experiment (Monkey M: 14 kg, 7 years old,

monkey S: 12 kg, 7 years old, and monkey E: 11 kg, 7 years old). During the task, monkeys sat

in the sphinx position in a primate chair (Rogue Research, Petaluma, CA) in a 3T clinical hori-

zontal bore MRI scanner. They faced an MRI-compatible screen (MRC, Cambridge) placed 30

cm in front of the animal. Visual stimuli were projected on the screen by an LX400 projector

(Christie Digital Systems). Monkeys were surgically implanted under anesthesia with an MRI-

compatible cranial implant (Rogue Research) in order to prevent head movements during data

acquisition. Two custom-built infrared sensors were placed in front of their left and right

hands that corresponded to the stimuli on the screen. Blackcurrant juice rewards were deliv-

ered from a tube positioned between the monkey’s lips. The behavioral paradigm was con-

trolled using Presentation software (Neurobehavioral Systems, CA, USA).

The task consisted of making choices between two options by responding on either the left

or right touch sensor to select the left or right stimulus, respectively. A trial consisted of a

given number of choices (determined by the horizon length) between these two options (Fig

1A). Each option corresponded to one side for the entire trial (Fig 1B). After each choice, mon-

keys received a reward associated with the chosen option (Fig 1E). The reward was between 0

and 10 drops (0.5 mL of juice per drop) and was sampled from a Gaussian distribution with a

standard deviation of 1.5 and mean between 3 and 7. The means of the underlying distribution

were different for the two options and remained the same during a trial, such that one option

was always better than the other. After each choice, monkeys also received a visual feedback on

the reward (Fig 1E). This feedback was in the form of an orange rectangle displayed in a yellow

rectangular window, such that the wider the orange rectangle, the greater the amount of juice

(Fig 1B). It remained on the screen for the remainder of the trial.

At the beginning of each trial, prior to making their first choice, monkeys received 4 infor-

mative observations in total, which consisted of information about the reward they would have

received if they had chosen the option (Fig 1B). This was displayed in the same manner as

reward feedback and also remained on screen during the duration of the trial. For each infor-

mative observation, a non-informative observation was presented for the other option (Fig 1B).

The non-informative observation was a white rectangle crossed by black diagonals. Half of the

trials started with an equal amount of information about the two options (2 informative and 2

non-informative observations for each option), and the other half with an unequal (3 informa-

tive and 1 non-informative observations). The order and side were randomly determined.

A critical parameter was the number of choices in each trial (horizon length). In short hori-

zon trials, monkeys were only allowed 1 choice before a new trial with new stimuli started,

whereas in long horizon trials, they were allowed to make 4 choices between the options.

Horizon conditions were blocked (5 consecutive trials of equal horizons) and alternated in the

session. A second key manipulation was whether feedback was received only for the option

they chose (partial feedback condition) or whether they received information about both the

reward they received for the chosen option and the reward they would have received for select-

ing the alternative option (complete feedback condition) (Fig 1E).

A trial would proceed as follows (Fig 1E; timings in Table 1): After an inter-trial interval

during which the screen was black, the stimuli were displayed, consisting of a large grey rect-

angle and the 4 horizontal bars of feedback information (Fig 1B and 1E). The length of the

grey rectangle corresponded to the length of the horizon, which each line corresponding to a
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choice, simulated or actual. Informative or non-informative stimuli were displayed on the first

four lines. After the display of the stimuli, a red dot at the center of the screen disappeared,

and monkeys were then allowed to choose between the two options by touching the corre-

sponding sensor (in less than 5,000 ms or the trial restarted). A red rectangular frame appeared

around the line on the side of the chosen option. After a delay, the outcome—the reward feed-

back—was displayed inside the rectangle. In complete feedback condition only, the reward

that would have been gained on the other side (informative stimulus) was also displayed at the

same moment. After an additional delay, a white star appeared on the screen, and the reward

was delivered. After the end of the reward delivery, the star disappeared. In short horizon

blocks, a new trial started after the inter-trial interval delay. In long horizon trials, the red dot

appeared and then monkeys could choose among the options. The events leading to the reward

were similar than for the first choice, but the delays were shorter. At the end of the fourth

choice, a new trial started. The feedback condition monkeys were in was not explicitly cued

but instead fixed both within and across several sessions (6 to 10 consecutive sessions). Ses-

sions after a switch from one feedback condition to the other were included in the analysis

since it only took one choice for monkeys to know the feedback condition.

Monkey M performed 14 sessions in the partial feedback condition and 13 (2 were cor-

rupted and unrecoverable for fMRI analysis) in the complete feedback condition; monkey S

performed 13 and 12 (3 corrupted sessions) sessions in each condition, respectively; and mon-

key E performed 14 and 15 (1 corrupted session) sessions in each condition. Sessions with less

than 50 trials completed for the horizon task or with more than 80% bias for one side were

removed from the analyses.

Training

All monkeys followed the following training procedure, which lasted several months in a testing

room mimicking the actual scanner room: First, they learned the meaning of the informative

observation stimuli by choosing between a rewarded (1 to 10 drops) and a non-rewarded (0

drop) observation stimulus and then between different rewarded (0 to 10 drops) observation sti-

muli. They next learnt to associate an option with an expected value by choosing between a

non-rewarded option (0 drop) and a rewarded option and then between rewarded options in

the long horizon and partial feedback condition. We then introduced blocks of small and long

horizon trials. Monkeys were then tested in the scanner room. They all had previous experience

of awake behaving testing in the scanner. We discarded the first scanning session and then ana-

lyzed the following ones if they corresponded to our inclusion criterions in terms of number of

trials and spatial bias. Monkeys M and S were introduced to the complete feedback condition

during the training procedure; monkey E experienced it for the first time during testing.

Bayesian expectation model

We analyzed the behavior using an ideal Bayesian model, which estimated the most likely next

outcome given the previous observations about the options. Outcomes were randomly drawn

Table 1. Timings.

Choice ITI Go delay Outcome delay Reward delay ICI

First 4,000 ± 1,000 ms 1,500 ± 500 ms (1,500 ± 200 ms for monkey E) 3,500 ± 500 ms 1,000 ms 2,500 ± 500 ms

Second to fourth N/A 1,500 ± 500 ms 1,500 ± 500 ms

ICIAU : PleaseprovidefullspellingsforabbreviationsICIandITIinTable1abbreviationlistatthebottomofthetable:, Inter-choice interval; ITI, Inter-trial interval.

https://doi.org/10.1371/journal.pbio.3001985.t001
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form a distribution of mean μ and fixed standard deviation. P(x|μ) is the probability that an

outcome x would be observed given that it came from a distribution of mean μ. Since out-

comes were independently dram from a distribution of mean μ, the probability of observing a

set of outcomes {x1. . .xn} was:

Pðfx1 . . . xngjmÞ ¼
Qn

i¼1
PðxijmÞ ð1Þ

Using Bayes’ rule, we computed the probability that this observation was generated by a dis-

tribution of mean μ:

P mj x1 . . . xnf gð Þ ¼
Pðfx1 . . . xngjmÞPðmÞ

Pðfx1 . . . xngÞ
¼

Qn
i¼1

PðxijmÞ

PN
j

Qn

i
PðxijmjÞ

ð2Þ

For each observation, we computed the probability of a new observation:

Pðxnþ1jfx1 . . . xngÞ ¼
PN

j¼1
Pðxnþ1jmjÞPðmjjfx1 . . . xngÞ ð3Þ

Thus, we can compute the probability distribution of the future outcomes given a set of

observations (Fig 1C shows how the distributions change with new observations).

In our model, the expected value (EV) of an option is the mean of the probability distribu-

tion of the set of observations. The uncertainty (U) about what the next outcome was repre-

sented by the variance of the distribution. In general, the more informative observations the

subject has access to for an option, the closer the expected value to the actual mean of the

underlying distribution and the smaller the uncertainty about this quantity. The weight of the

expected value controls a specific form of exploration: the reward-based exploration. Reducing

this parameter allows exploring options by relaxing the tendency to choose the most rewarded

option.

Choice model fit

We first focused our analysis on the first choice of the trial because it was similar in terms of

information content (4 informative observations) across horizon lengths and feedback con-

ditions. Contrary to subsequent choices in the long horizon, the expected value and the

uncertainty about the expected value (which decreases with the number of informative

observations, from 1 to 3) associated with each option were uncorrelated on the first choice.

Indeed, in the partial feedback condition, if the option with the higher expected value is

chosen more often, the uncertainty about its expected value decreases specifically, inducing

a correlation between expected value and uncertainty about it. For these first trials t, we

model the probability of picking the option that is presented on the right side of the screen

as

PðrighttÞ ¼ sðbSB þ bRBRBt þ bhorizonhorizont þ bEVEVt þ bUUt þ bERhorizonERthorizont
þ bUhorizonUthorizontÞð4Þ

using logistic regression. Here, σ is the sigmoid function, RBt is a categorical predictor that

control for a repetition bias, EVt and Ut denote the difference between the expected value /

uncertainty of the options on the right and left side of the screen, horizont is a categorical

predictor for whether trial t is a short or long horizon trial, and et is the residual.

For the remaining trials (second, third, and fourth choice in the long horizon), we are inter-

ested in whether the animals change their behavior as new information becomes available. We
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model these trials as

PðrighttÞ ¼ sðbSB þ bRBRBt þ bDChosenDChosent þ bbaselineERbaselineEVt þ bDERchosenDEVchosent
þ bbaselineUbaselineUt þ bDUchosenDUchosent þ bDERunchosenDEVunchosent
þ bDUunchosenDUunchosentÞð5Þ

For this logistic regression, we used an additional bias, ΔChosen, which corresponds to the

number of times the option on the right was chosen during the trial. Here, baselineEVt and

baselineUt are the difference between the expected value/uncertainty of the right and the left

option at the first trial within the horizon. As such, these regressors capture the impact the ini-

tial information displayed on screen has on subsequent choices. ΔEVchosent and ΔUchosent
capture the difference between the initial baseline and the information presented at the current

trial based on the choices the animal has made; i.e., these regressors capture the update of out-

come expectation and uncertainty between the right and the left option compared to the first

choice based on the consequent rewards the animals experienced.

In our complete feedback condition, the animals can also learn about the reward they

would have gotten, had they chosen the other option. This is not captured by ΔEVchosent and

ΔUchosent as these regressors only take the experienced (i.e., obtained) reward into account.

To see how the unobtained reward affects choices, we included the regressors ΔEVunchosent
and ΔUunchosent. These regressors are computed as the difference between the full outcome

expectation and uncertainty (based on both the obtained and unobtained reward), and the

outcome expectation and uncertainty for the obtained reward only. Just as with the ΔEVcho-
sent and ΔUchosent, these regressors are also again constructed as the difference between the

right and left option, and with the baseline subtracted.

To fit these models, we used STAN (https://mc-stan.org) and brms with the default priors

[81,82]. For each model, we ran 12 chains, each with 1,000 iterations after a warm-up of 1,000

samples. We allowed all regressors to vary by condition (partial and complete) and animal (3

animals) as fixed effects. We modelled testing sessions as random effects with different Gaus-

sians for each animal; i.e., for each regressor and each animal, we estimated the Gaussian dis-

tribution that session-level regressors are most likely drawn from. Group-level estimates of the

coefficients were obtained by averaging across animals and/or conditions. To determine statis-

tical significance, we counted the number of samples of the posterior that are greater/smaller

than 0.

MRI data acquisition and pre-processing

Imaging data were acquired using a 3T clinical MRI scanner and an 8-cm-diameter four-chan-

nel phased-array receiver coil in conjunction with a radial transmission coil (Windmiller Kol-

ster Scientific, Fresno, CA). Structural images were collected under general anesthesia, using a

T1-weighted MP-RAGE sequence (resolution = 0.5 × 0.5 × 0.5 mm, repetition time (TR) =

2.05 s, echo time (TE) = 4.04 ms, inversion time (TI) = 1.1 s, flip angle = 8˚). Three structural

images per subject were averaged. Intramuscular injection of 10 mg/kg ketamine, 0.125 to 0.25

mg/kg xylazine, and 0.1 mg/kg midazolam were used to induce anesthesia. fMRI data were col-

lected while the subjects performed the task with a gradient-echo T2� echo planar imaging

(EPI) sequence (resolution = 1.5 × 1.5 × 1.5 mm, interleaved slice acquisition, TR = 2.28 s,

TE = 30 ms, flip angle = 90˚). To help image reconstruction, a proton density–weighted image

was acquired using a gradient-refocused echo (GRE) sequence (resolution = 1.5 × 1.5 × 1.5

mm, TR = 10 ms, TE = 2.52 ms, flip angle = 25˚) at the end of the session.

fMRI data were pre-processed according to a dedicated non-human primate fMRI pre-pro-

cessing pipeline [29,83,84] combining FSL, Advanced Normalization Tools (ANTs), and
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Magnetic Resonance Comparative Anatomy Toolbox (MrCat; https://github.com/

neuroecology/MrCat) tools. In brief, T2� EPI data were reconstructed using an offline SENSE

algorithm (Offline_SENSE GUI, Windmiller Kolster Scientific, Fresno, CA). Time-varying

spatial distortions due to body movement were corrected by non-linear registration (restricted

to the phase encoding direction) of each slice and each volume of the time series to a reference

low noise EPI image for each session. The distortion corrected and aligned session-wise images

were first registered to the animal structural image and then to a group-specific template in

CARET macaque F99 space. Finally, the functional images were temporally filtered (high-pass

temporal filtering, 3-dB cutoff of 100 s) and spatially smoothed (Gaussian spatial smoothing,

full-width half maximum of 3m).

fMRI analysis

We conducted our fMRI analysis using a hierarchical GLM (FSLREF). Specifically, we first fit-

ted each individual session (in session space) using FSL’s fMRI Expert Analysis

Toolbox (FEAT). We then warped the session-level whole-brain maps into F99 standard

space, before combining them using FEAT’s FLAME 1 + 2 random effects procedure. Here,

we used contrast to obtain separate estimates for the partial and complete sessions, the differ-

ence between partial and complete sessions and their average. To determine statistical signifi-

cance, we used a cluster-based approach with standard thresholding criteria of z > 2.3 and

p< 0.05. To increase power, we ran this cluster correction only in an a priori mask of the fron-

tal cortex that was previously used in Grohn and colleagues [29].

On the session level, we included 58 regressors for the partial feedback sessions and 73

(including the same 58 regressors as in the partial feedback condition) for the complete feed-

back sessions. On top of these regressors, we also included nuisance regressors that indexed

head motion and volumes with excessive noise. All regressors were convolved with an HRF

that was modelled as a gamma function (mean lag = 3, standard deviation = 1.5 s), convolved

with a boxcar function of 1 s.

The two main periods of the task we were interested in were when the stimuli first appeared

on screen and when the outcome appeared on subsequent choices in the long horizon trials.

At stimulus onset, we included a constant and regressors for the expected value of the chosen

and unchosen options and also regressors for the uncertainty of the chosen and unchosen

option. To allow us to examine the effects of these five regressors on first choices in short and

long horizons and subsequent choices within the long horizon, we up each regressor by hori-

zon and choice number (first choice short horizon, first choice long horizon, second choice

long horizon, third choice long horizon, and fourth choice long horizon) for a total of 25

regressors. At outcome, we included another constant, the expected value of the chosen and

unchosen options, the reward obtained on this trial, the absolute value of the prediction error

of this trial (|reward—expected value|), and the update in uncertainty on this trial. Again, all of

these regressors were split up by horizon and choice number, for a total of 30 regressors at out-

come. On top of these regressors of interest, we also included 3 control regressors: the log

response time at stimulus onset, a constant at decision, and the response side (left or right) at

decision. In the complete feedback condition, we included additional regressors: At outcome,

we added regressors for the reward of the unchosen option, the absolute prediction error for

the unchosen option, and the update in uncertainty for the unchosen option. Splitting these

regressors up by horizon and choice within a horizon yields an additional 15 regressors.

Having split up all regressors this way into choice horizon and number of choices within a

horizon, we used planned contrasts combining them again to answer our questions of interest.

At stimulus onset, we were only interested in first choices, as this allowed us to compare
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whether the animals represented expected value and uncertainty differently depending on con-

dition (partial or complete feedback) and/or choice horizon (long and short). We thus con-

structed contrasts adding up and subtracting the first choices on long and short horizons for

the constant, the expected value, and the uncertainty. At outcome, we were interested in

reward effects and updates to the expected value of stimuli. As this should happen not just

after first choices in a horizon but all choices, we used contrast to construct (weighted) aver-

ages of our regressors combining all choices within horizons. Moreover, to look at the effect of

(signed) prediction errors, we use contrasts that subtract the expectation from the reward.

To visualize the cluster-corrected effects we find in our mask of the frontal cortex, we use

an atlas of the macaque brain [36] to identify the regions where we observe activity. We then

create ROIs by calculating the overlap of the anatomical region according to the atlas (dilated

with a kernel of 3 × 3 × 3 voxels), and the functional activation we found. By extracting the

average t-statistics in this region, we are able to visualize the effects we found and also examine

the individual components that contributed the effects (e.g., the reward and outcome expecta-

tion for prediction errors).

To best describe the localization of orbitofrontal activities, we considered 3 orbital subdivi-

sions based on their respective position on the orbital surface. Lateral to the lateral orbitofron-

tal sulcus is the lateral OFC; medial to the medial orbitofrontal sulcus is the medial OFC. In

between the two sulci is a region we referred to as the central OFC. Such parcellation resembles

subdivisions considered in humans and rodents [71,85,86], although alternative labels have

been proposed [70].

To best describe the localization of cingulate activities, we considered a dissociation

between anterior and mid-cingulate subdivisions as proposed by Vogt and colleagues [87,88].

Supporting information

S1 Fig. Full model fit of the model predicting choosing the right option on screen on first

choices (shown in Fig 2D and descripted in detail in the Materials and methods section).

(A) Predictors are from left to right: Intercept (i.e., a side bias), repetition bias (RB), expected

value of difference between right and left according to our Bayesian model (EV), uncertainty

difference between right and left according to our Bayesian model (U), horizon length (short

horizon is positive, long horizon is negative), the interaction between horizon and expected

value (horizonXER), and the interaction between horizon and uncertainty (horizonXU). The

distributions are the posteriors of the parameter estimates, shown both for each monkey indi-

vidually and averaged over animals. Fits from the partial feedback sessions are shown on the

left, and from the complete feedback sessions on the right. (B) Data from the same fit as in (A)

but now summed up over both partial and complete feedback sessions. (C) Data from the

same fit as in (A) but now we computed the difference between partial and complete feedback

sessions. (D) One-sided p-values for all parameters are computed as the number of samples of

the posterior greater than 0. To compute the p-value for effects smaller than 0, the p-values in

the table can be subtracted from 1. Data and code to reproduce the figure can be found at

https://doi.org/10.5281/zenodo.7464572.

(TIFF)

S2 Fig. The same model as in S1 Fig but only fit to trials during which the available choices

on screen were the same on each side (2 and 2). All conventions are the same as in S1 Fig.

Data and code to reproduce the figure can be found at https://doi.org/10.5281/zenodo.

7464572.

(TIFF)
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S3 Fig. Equivalency between our linear regression and the framing in terms of random and

directed exploration. (A) With the uncertainty regressor. We find that monkeys modulate

their sensitivity to the expected value depending on the horizon and the feedback type, which

is equivalent to the random exploration parameter, the softmax noise, which is the inverse of

the expected value regressor. However, we find no modulation of the uncertainty by the hori-

zon nor the feedback type, which is equivalent to the directed exploration parameter, the

uncertainty bonus, which is the uncertainty regressor divided by the expected value regressor.

(B) Same as A but with the number of available information rather than the uncertainty. Error

bars indicate standard deviation. Data and code to reproduce the figure can be found at

https://doi.org/10.5281/zenodo.7464572.

(TIFF)

S4 Fig. The same model as in S1 Fig but only using the number of available information on

each side rather than the uncertainty. All conventions are the same as in S1 Fig. Data and

code to reproduce the figure can be found at https://doi.org/10.5281/zenodo.7464572.

(TIFF)

S5 Fig. Full model fit of predicting choosing the right option on screen during subsequent

choices in the long horizon (choices 2–4; shown in Fig 3E and described in detail in the

Materials and methods section). (A) Predictors are from left to right: Intercept (i.e., a side

bias), repetition bias (RB), the change in expected value between the right and left option

revealed by choices made during this horizon, compared to the initial expected value for this

horizon, i.e., the baseline (deltaERchosen), the change in expected value between the right and

left option revealed by feedback about the unchosen option, compared to the initial expected

value for this horizon (deltaERcounterfactual), the difference in initial expected value between

the right and left option available, i.e., the expected value difference at first choice (baselineU),

the change in uncertainty between the right and left option revealed by choices made during

this horizon, compared to the initial uncertainty for this horizon (deltaUchosen), the change

in uncertainty between the right and left option revealed by feedback about the unchosen

option, compared to the initial uncertainty for this horizon (deltaUcounterfactual), the differ-

ence in initial uncertainty between the right and left option available, i.e., the uncertainty dif-

ference at first choice (baselineU), the difference between how often the right option has been

chosen over the left option during this horizon (deltaChosen). All other conventions are the

same as in S1 Fig, also for panels B-D. Data and code to reproduce the figure can be found at

https://doi.org/10.5281/zenodo.7464572.

(TIFF)

S6 Fig. (A) Expected value of the chosen option without mask and when taking the activity

before the choice in all trials (not just first choice trials), we observed large activations related

to the expected value of the chosen option (which is the same as the chosen action in our task)

spanning from the motor cortex/somatosensory cortex, the dlPFC, the OFC, and striatum, as

well as an inverted signal in the visual areas (Cluster p< 0.05, cluster forming threshold of

z> 2.3). (B) In the partial and complete feedback conditions in our VOI and when taking the

activity before the first choice only, we found 1 cluster of activity related to the inverse of the

magnitude of the uncertainty about the chosen option in the right medial prefrontal cortex

(24c and 9m) that extended bilaterally in the frontal pole (10mr) (Cluster P< 0.05, cluster

forming threshold of z > 2.3). Data to reproduce the figure can be found at https://doi.org/10.

5281/zenodo.7464572. dlPFCAU : AbbreviationlistshavebeencompiledforthoseusedinS6 � S8Figsattheendofeachfigurecaption:Pleaseverifythatallentriesarecorrectlyabbreviated:, dorsolateral prefrontal cortex; OFC, orbitofrontal cortex; VOI,

volume of interest.

(TIFF)
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S7 Fig. Outcome prediction error and magnitude in the partial feedback condition. (A) In

the partial feedback condition and at the time of outcome, we found 3 clusters of activity that

were positively modulated by the chosen option prediction error in the medial prefrontal cor-

tex and bilaterally in the somatosensory and motor cortex in our VOI (Cluster p< 0.05, cluster

forming threshold of z > 2.3). (B) We found the same 3 clusters when we looked for a positive

modulation by the magnitude of the chosen outcome. We additionally found 1 cluster of activ-

ity in the right lateral OFC that was negatively modulated by the magnitude of the chosen out-

come. (C) When we time-locked our search to the onset of the reward (1 s after the display of

the outcome, with a different GLM), we found the same clusters as in A, as well as the classic

prediction error related activity in the ventral striatum and a negative prediction error in visual

areas (see full map at https://doi.org/10.5281/zenodo.7464572) at the whole brain level. Data to

reproduce the figure can be found at https://doi.org/10.5281/zenodo.7464572. GLM, general

linear model; OFC, orbitofrontal cortex; VOI, volume of interest.

(TIFF)

S8 Fig. Chosen and unchosen outcome magnitude in the complete feedback condition. (A)

In complete feedback sessions only, we found clusters for inverted chosen outcome magnitude

activity in the right lOFC (47/12o) and bilaterally in the vlPFC and 2 clusters in the somatosen-

sory/motor cortex [3]. (B) We found a cluster of activity for the inverted unchosen outcome

magnitude in the cOFC and mOFC and the vlPFC. Data to reproduce the figure can be found

at https://doi.org/10.5281/zenodo.7464572. cOFC, central orbitofrontal cortex; lOFC, lateral

orbitofrontal cortex; mOFC, medial orbitofrontal cortex; vlPFC, ventrolateral prefrontal cortex.

(TIFF)

S1 Table. Tables showing the peaks of all significant clusters found within our frontal

masks that are reported in the main text. Coordinates are given in the F99 standard space.

(TIFF)
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