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Impairment of neutrophil functions 
and homeostasis in COVID‑19 patients: 
association with disease severity
Chloé Loyer1,2, Arnaud Lapostolle1,2, Tomas Urbina2,3, Alexandre Elabbadi4, Jean‑Rémi Lavillegrand2,3,5, 
Thomas Chaigneau1,2, Coraly Simoes1,2, Julien Dessajan2,4, Cyrielle Desnos2,4, Mélanie Morin‑Brureau1,2, 
Yannick Chantran1,2,6, Pierre Aucouturier1,2,6, Bertrand Guidet2,3, Guillaume Voiriot2,4, Hafid Ait‑Oufella2,3,5 and 
Carole Elbim1,2* 

Abstract 

Background:  A dysregulated immune response is emerging as a key feature of critical illness in COVID-19. Neutro‑
phils are key components of early innate immunity that, if not tightly regulated, contribute to uncontrolled systemic 
inflammation. We sought to decipher the role of neutrophil phenotypes, functions, and homeostasis in COVID-19 
disease severity and outcome.

Methods:  By using flow cytometry, this longitudinal study compares peripheral whole-blood neutrophils from 90 
COVID-19 ICU patients with those of 22 SARS-CoV-2-negative patients hospitalized for severe community-acquired 
pneumonia (CAP) and 38 healthy controls. We also assessed correlations between these phenotypic and functional 
indicators and markers of endothelial damage as well as disease severity.

Results:  At ICU admission, the circulating neutrophils of the COVID-19 patients showed continuous basal hyperac‑
tivation not seen in CAP patients, associated with higher circulating levels of soluble E- and P-selectin, which reflect 
platelet and endothelial activation. Furthermore, COVID-19 patients had expanded aged-angiogenic and reverse 
transmigrated neutrophil subsets—both involved in endothelial dysfunction and vascular inflammation. Simultane‑
ously, COVID-19 patients had significantly lower levels of neutrophil oxidative burst in response to bacterial formyl 
peptide. Moreover patients dying of COVID-19 had significantly higher expansion of aged-angiogenic neutrophil 
subset and greater impairment of oxidative burst response than survivors.

Conclusions:  These data suggest that neutrophil exhaustion may be involved in the pathogenesis of severe COVID-
19 and identify angiogenic neutrophils as a potentially harmful subset involved in fatal outcome.
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Background
The rising pandemic of coronavirus disease 2019 
(COVID-19) caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) has led to worldwide 
economic harm and deaths. The spectrum of clinical 
manifestations in SARS-CoV-2-infected patients (SARS-
CoV-2+) ranges from asymptomatic to severe acute res-
piratory distress syndrome (ARDS) and multiple organ 
involvement [1]. Emerging data and clinical reports 
increasingly suggest that severe COVID-19 reflects a 
confluence of micro-vascular damage related to endothe-
lial dysfunction and/or impaired angiogenesis, and dys-
regulated inflammation [2].

Neutrophils, the most abundant leukocytes in the 
blood, are known for providing immediate frontline 
protection against rapidly dividing bacteria and fungi. 
A growing body of evidence implicates neutrophils, via 

their generation of reactive oxygen species (ROS), neu-
trophil extracellular traps (NETs), and ability to act as 
antigen-presenting cells, in the host response to viral 
infections [3, 4]. However, the inappropriate activation 
of neutrophils can lead to oxidative stress and uncon-
trolled systemic inflammation that damage the capillary 
endothelium and disrupt the thrombo-protective state of 
endothelial cells [5]. Recent data have shown that poly-
morphonuclear neutrophils are functional, versatile, and 
phenotypically diverse [6]. Specific subpopulations of 
neutrophils that have great tissue-destructive potential 
are implicated in endothelial dysfunction, angiogen-
esis, and vascular inflammation: (i) senescent neutro-
phils become overactive, produce strong ROS responses, 
and express high levels of CXCR4 [7]; (ii) neutrophils 
have been observed to perform reverse transendothe-
lial migration (rTEM), re-entering the circulation and 
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then potentially spreading throughout the body via the 
bloodstream, transmigrating into other organs and con-
tributing to more injuries to more organs and to systemic 
inflammation [8]; (iii) pro-angiogenic neutrophils [9] are 
reported to migrate to hypoxic tissue and participate in 
neovascularization [10].

Studies conducted during the first COVID-19 wave 
reported the robust generation of NETs in patients with 
severe COVID-19 [11, 12], the presence in the circula-
tion of immature and suppressive myeloid cells, includ-
ing neutrophils, as well as neutrophilic infiltrates in the 
lung [13–19]. In addition, although substantial evidence 
points toward a vascular disease process as a contribu-
tor to COVID-19 pathogenesis, no data about senescent, 
rTEM, or angiogenic neutrophils in COVID-19 patients 
have been reported. Finally, as the success of dexametha-
sone treatment in oxygen-dependent COVID-19 patients 
might be explained by its anti-inflammatory as well as its 
clear vasoconstrictive effects, there is a real need to re-
evaluate the neutrophil compartment taking this treat-
ment into account.

We characterized in detail the phenotypes and longitu-
dinal functions of fresh whole-blood circulating neutro-
phils in a large cohort of severely ill COVID-19 patients 
(n = 90) in the ICU receiving steroid therapy, comparing 
them with those of 22 SARS-CoV-2– patients hospital-
ized for severe community-acquired pneumonia (CAP) 
and 38 healthy controls similar for sex and age. We also 
assessed correlations between these phenotypic and 
functional indicators and markers of endothelial damage 
as well as disease severity.

Materials and methods
Study design
This study enrolled 90 COVID-19 patients admitted 
to the intensive care units (ICUs) of Saint-Antoine and 
Tenon Hospitals (Paris, France) with moderate-to-severe 
ARDS according to the Berlin definition [20] and SARS-
CoV-2 infection confirmed by reverse transcription poly-
merase chain reaction (RT-PCR) tests of nasopharyngeal 
swab samples. At admission, we prospectively collected 
the following data for each: demographic information, 
including age, sex, body mass index (BMI), comorbidities 
according to the Charlson index, dates of first symptoms, 
hospital and ICU admissions, and vital signs. The SOFA 
score was calculated at admission and every 3 days until 
discharge or death. The following data regarding medical 
management in the ICU were collected daily: mechanical 
ventilation settings after intubation (mode, PEEP, FiO2, 
respiratory rate, tidal volume, and plateau pressure), 
duration of mechanical ventilation, use of advanced 
therapies for acute respiratory failure (neuromuscular 
blocking agents, inhaled pulmonary vasodilators, prone 

positioning, and extracorporeal membrane oxygena-
tion), antiviral therapies and immunomodulatory agents 
(i.e., interleukin-6-receptor antagonists and corticoster-
oids) with time from symptom onset to initiation, and 
any acute kidney injury, acute cardiac injury, pulmonary 
embolism or deep venous thrombosis.

A second cohort included 22 patients admitted to 
Saint-Antoine and Tenon Hospitals ICU with non-
SARS-CoV-2 community-acquired pneumonia (CAP). 
All episodes of pneumonia were classified as severe and 
required invasive mechanical ventilation. Pneumonia 
severity was assessed through the SOFA score and the 
Pneumonia Severity Index. A third cohort consisted of 
38 age-matched healthy controls (HCs), with blood bio-
chemical and hematological values within normal range.

Whole blood was sampled, kept on ice, and transported 
immediately to the laboratory for neutrophil analysis 
as previously described [21]. COVID-19 patients pro-
vided samples at their inclusion on ICU admission (Day 
1). Analysis at day 1 was performed a median of 10 days 
after the onset of symptoms. When possible, follow-up 
samples were obtained at 3 days and at 7 days after the 
baseline sample (Day 1) for COVID-19 patients. CAP 
patients gave a single blood sample at their inclusion on 
ICU admission, and HCs also donated blood only once.

Determination of neutrophil subsets
The neutrophil subsets were assessed by using 10-color 
flow cytometry (Gallios Flow Cytometer; Beckman Coul-
ter, Fullerton, Calif ). The detailed staining procedure is 
described in the Additional file 1: Methods.

Determination of adhesion molecule expression on resting 
and stimulated neutrophils
Heparin whole-blood samples (500 μL) were either kept 
on ice or incubated with PBS or 10−6 M bacterial peptide 
formyl-methionyl-leucyl-phenyl-alanine (fMLP) (Sigma 
Chemical Co., St Louis, MO) for 5  min. Samples were 
stained with PE-anti-human CD11b (clone 2LPM19c, 
Dakopatts, Glostrup, Denmark) and APC-anti-human 
CD62L (clone DREG-56, BD Biosciences) as previously 
reported [22]. Samples were then analyzed by means 
of flow cytometry, as described in the Additional file  1: 
Methods.

Measurement of neutrophil oxidative burst
Superoxide anion (O2

−) production by neutrophils was 
measured with a flow cytometry-based assay derived 
from the hydroethidine (HE) oxidation technique, as pre-
viously described [22]. Heparinized whole-blood samples 
(500  μL) were loaded for 15  min with 1500  ng/mL HE 
(Sigma Chemical Co., St Louis, MO) at 37  °C and then 
incubated for 45 min at 37 °C with PBS, TNF-α (5 ng/mL, 
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R&D Systems, Minneapolis, MN), lipopolysaccharide 
(LPS) from E. coli serotype R515 (TLR4 agonist, 10  ng/
mL, Alexis Biochemicals, San Diego, CA) or ssRNA with 
6 UUGU repeats/LyoVec™ (TLR8 Agonist, 50  μg/mL, 
InvivoGen, Toulouse, France). Samples were then treated 
with PBS or 10−6 M fMLP (Sigma Chemical Co., St Louis, 
MO) for 5  min. Samples were then analyzed by means 
of flow cytometry, as described in the Additional file  1: 
Methods.

Determination of neutrophil‑platelets aggregates
For the analysis of neutrophil-platelet aggregates, whole-
blood samples collected on anticoagulant citrate-dextrose 
solution (ACD) were incubated for 45  min with PE-anti-
human CD16b (clone CLB-gran11.5, BD Biosciences), 
APC-anti-human CD15 (clone HI98, BD Biosciences) 
and FITC-anti-human CD41b (clone HIP223]. Stain-
ing with anti-CD15 monoclonal antibody allowed us to 
identify PMNs in whole blood on the CD15/side scat-
ter dot plot and to gate out other cells, erythrocytes, and 
debris. Fluorescence analysis was performed on this gate. 
Neutrophil-platelet aggregates were identified as the per-
centages of CD16b+CD41+  cells in the gated neutrophil 
population. Fluorescence of isotypic controls served as neg-
ative controls.

Measurement of soluble pro‑ and anti‑inflammatory 
mediators
Whole-blood samples were centrifuged for 15  min at 
1000g within 30 min of collection. Soluble cytokines (IL-
6, IL-10 and TGFβ), junctional adhesion molecule (JAM-)
C, LTB4, neutrophil elastase (NE), E-selectin, P-selectin, 
VEGF, and VEGF-R1 were detected from serum by ELISA 
according to the appropriate dilution and following rec-
ommendations of the manufacturer (Human IL-6 Quan-
tikine ELISA kit, R&D Systems, Catalog number: D6050; 
Human IL-10 Quantikine  ELISA kit, R&D Systems, Cata-
log number: D1000B; Human TGFβ1 ELISA Kit, Abcam, 
Catalog Number: AB100647; Human JAM-C ELISA kit, 
Sigma Aldrich, Catalog number: RAB1067; Human LTB4 
Parameter Assay kit kit, R&D Systems, Catalog number: 
KEG006B; Human Neutrophil Elastase SimpleStep ELISA 
Kit, Abcam, Catalog Number: ab270204; Human E-Selec-
tin/CD62E Immunoassay, R&D Systems, Catalog Num-
ber: DSLE00; Human P-Selectin/CD62P Immunoassay, 
R&D Systems, Catalog Number: DPSE00; Human VEGF 
Quantikine ELISA Kit, R&D Systems, Catalog Number: 
DVE00; Human VEGFR1/Flt-1 Quantikine ELISA Kit, 
R&D Systems, Catalog Number: DVR100C). Cryostored 
samples frozen at −  80  °C and diluted according to the 
manufacturer’s instructions were assayed (R&D Systems).

Statistics
The freely available software Rstudio 1.0.143 (http://​www.​
rstud​io.​com/) was used for statistical analysis. All tests 
were two-tailed, with a significance level of α = 0.05. When 
a parametric test was used, normality of distribution was 
tested with the Shapiro–Wilk test. Differences between 
groups were assessed with the chi-square test or ANOVA, 
followed by the Tukey post-hoc test, as appropriate. 
ANOVA, adjusted for age, was used to compare neutro-
phil markers between the COVID-19 groups and controls 
(with age as a covariate). Bonferroni correction was used 
for multiple comparisons. Linear partial correlation analy-
sis, with adjustment for age, identified correlations.

Table 1  Characteristics of COVID-19 patients and SARS-CoV-2– 
patients hospitalized for severe community-acquired pneumonia 
(CAP) participating in the study

Sex, risk factors, and type of treatment were compared with the χ2 test. The 
Mann–Whitney test was used to compare quantitative variables

Biological data have been measured at the admission of patients to ICU (Day 1)

SOFA Sequential Organ Failure Assessment, CRP C-reactive protein, NS not 
significant

Characteristics COVID-19 CAP P value
N = 90 N = 

Men (N, %) 57 (63%) 14 (64%) NS

Age (years, SD) 63 ± 11 69 ± 17 0.0171

SOFA score Day 1 3.5 [0–12] 6 [1–13] 0.0065

Body mass index

 < 30 47 (52%) 16 (73%) NS

 > 30 40 (44%) 5 (25%) NS

Comorbidity (N, %)

Arterial hypertension 60 (67%) 10 (45%) NS

Diabetes mellitus 35 (39%) 6 (27%) NS

Chronic renal failure 5 (6%) 2 (9%) NS

Cirrhosis 1 (1%) 2 (9%) NS

Previous cancer: 2 (2%) 2 9%) NS

Hematological malignancy: 1 (1%) 0 (0%) NS

Immune deficiency 11 (12%) 2 (9%) NS

Treatment (N, %)

Corticosteroids 90 (100%) 2 (9%) NS

Tocilizumab 9 (10%) 0 (0%) NS

Organ support therapy (N, %)

Mechanical ventilation 50 (56%) 8 (28%) NS

Hemodialysis 9 (10%) 2 (9%) NS

Biological data (mean) [min–max]

Neutrophil count (G/L) 7.59 [0.78–22.8] 11.55 [2.7–19.4] 0.0047

Lymphocyte count (G/L) 0.76 [0.12–1.87] 0.84 [0.16–1.51] NS

CRP (mg/L) 152 [0–428] 253 [0–418] 0.0094

Fibrinogen (g/L) 6.9 [4.84–9] 6.61 [1.29–10.2] NS

http://www.rstudio.com/
http://www.rstudio.com/
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Results
Demographics and baseline characteristics of COVID‑19 
and CAP patients
Clinical and biological characteristics of the 90 COVID-
19 and the 22 CAP patients are shown in Table  1 and 
Additional file  1: Table  S1. All patients received oxy-
gen therapy and antibiotics during hospitalization. 
50% required invasive mechanical ventilation, and 4.3% 
extracorporeal membrane oxygenation. Most hospital-
ized patients had at least one comorbidity, regardless 
of SARS-CoV-2 status. A lower proportion of SARS-
CoV-2– subjects had comorbidities associated with a 
risk of severe COVID-19 compared with SARS-CoV-2+ 
patients. Among SARS-CoV-2− subjects, at least one 
bacterium was identified in 14 (64%) patients and at 
least one virus in 8 patients (36%). Streptococcus pneu-
moniae was the was the most commonly identified 
bacterium found in 8 patients (36%). Taken together, 
Legionella pneumophilia, Haemophilus influenzae, 
Pseudomonas aeruginosa and Enterobacteriaceae spe-
cies were identified in 8 (36%) patients of the bacterial 
group. Influenza viruses were the most commonly iden-
tified viruses, found in 6 (21.8%) patients.

Circulating neutrophils from COVID‑19 patients are 
hyperactivated and bind to platelets
From day 1 to day 7, expression of CD62L decreased 
and that of CD11b increased on resting neutrophils 
from patients with COVID-19, in comparison with 
neutrophils from HCs and CAP patients (Fig. 1a and b). 
This finding indicates the basal hyperactivation of the 
COVID-19 patients’ circulating neutrophils. The serum 
level of granule-derived proteins released by activated 
neutrophils, e.g., NE and LTB4 (Additional file  1: Fig. 
S1a and b) also rose in these patients, compared with 
HCs, and thus confirmed their phenotype of enhanced 
circulating neutrophil degranulation. Because neutro-
phils are reported to trigger microbicidal mechanisms 

on activation [24], we measured neutrophil production 
of ROS and found its basal production by unstimulated 
neutrophils slightly higher in the COVID-19 patient 
group than in HCs and CAP patients (Fig. 1c).

Activated neutrophils from COVID-19 patients can 
interact with platelets via CD11b/CD18 [25, 26]. Con-
sistently with these reports, we found higher circulat-
ing levels of neutrophil-platelet aggregates (NPAs) 
in the COVID-19 patient group than in HCs (Fig.  1d 
and 1e), positively correlated with CD11b expression 
at the surface of neutrophils from COVID-19 patients 
(Fig. 1f ).

Reduced functional responses of circulating neutrophils 
from COVID‑19 patients
Optimal stimulation with the bacterial peptide fMLP 
induced normal L-selectin shedding in the COVID-
19 patient group (Fig.  1g). In contrast, fMLP-induced 
CD11b translocation was significantly lower in 
COVID-19 patients and CAP patients than in HCs 
(Fig.  1h). We then assessed ROS production capacity 
of neutrophils in response to various stimuli. We have 
previously reported that neutrophils in whole blood 
produce minimal ROS in response to a single stimu-
lus [27, 28]. We therefore studied neutrophil oxidative 
burst in response to the bacterial peptide formyl-
methionyl-leucyl-phenyl-alanine (fMLP) after prim-
ing with TNF-α or TLR4 agonists. ROS production 
by non-primed neutrophils was significantly lower in 
CAP and COVID-19 patients than in HCs. Under TNF 
and LPS priming conditions followed by fMLP stimu-
lation, ROS production from day 1 to day 7 was much 
lower in both COVID-19 and CAP patients than in 
HCs and, importantly, significantly lower in COVID-
19 than CAP patients (Fig. 1i and j). We also analyzed 
the capacity of neutrophils from COVID-19 patients 
to produce ROS after priming with TLR8 agonist to 
directly address the importance of neutrophil sens-
ing of SARS-CoV-2 RNA [29] in the regulation of ROS 

(See figure on next page.)
Fig. 1  Phenotypic and functional characterization of circulating neutrophils from COVID-19 patients. a, b Surface expression of CD62L (a) and 
CD11b (b) on resting neutrophils (PMNs) was studied in whole-blood samples maintained at 4 °C and stained with specific monoclonal antibodies. 
Results are expressed as mean fluorescence intensity (MFI). c Production of ROS by unstimulated neutrophils was studied with dihydroethidium 
(DHE) oxidation after treatment of whole-blood samples for 50 min with PBS; results are expressed as MFI. d–f Analysis of neutrophil-platelet 
aggregates (NPA). d Gating strategy and representative dot plots of flow cytometry analysis. e NPA levels, expressed as percentage of neutrophils 
that bind platelets. f Correlation of the percentage of NPA with CD11b expression at the neutrophil surface. g, h Analysis of capacity for L-selectin 
shedding (g) and neutrophil degranulation (h) in response to stimulation. CD62L and CD11b expression were analyzed after incubation of 
whole-blood samples for 45 min with PBS or fMLP (10−6 M). Results are expressed as a stimulation index (SI; MFI of stimulated sample/MFI of 
unstimulated sample). i, j ROS production by stimulated neutrophils was measured after pretreatment of whole-blood samples for 45 min with 
PBS, TNF-α (TNF, 5 ng/mL) or LPS (TLR4 agonist, 10 ng/mL). One histogram representative of ROS production by LPS-primed samples from a control 
(white), a CAP patient (grey) and a COVID-19 patient (black) (i). Results are expressed as SI (j). Samples came from age-matched healthy controls 
(HCs) (n = 38), CAP patients (n = 22) and COVID-19 patients at day 1 (n = 53), day 3 (n = 49) and day 7 (n = 40). Values are means ± SEM. *P < 0.05, 
**P < 0.01, ***P < 0.001, adjusted for age
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production. Oxidative burst was strongly impaired in 
COVID-19 patients compared with HCs (Additional 
file 1: Fig. S1c).

Impaired neutrophil homeostasis in COVID‑19 patients
In accordance with previous studies performed dur-
ing the first COVID-19 wave [30–32], we observed the 
presence of a heterogenous population of mature and 
immature (CD16lowCD10low) neutrophils in COVID-19 
patients (Additional file 1: Fig. S1d). No correlation was 
found between the decrease in ROS production in prim-
ing conditions and the percentage of immature neutro-
phils (P = 0.32 and P = 0.077 for TNF and LPS priming 
respectively).

The percentage of the senescent CXCR4high/CD62Llow 
neutrophil subset was slightly higher at day 3 and day 7 
in COVID-19 patients than in HCs (Fig. 2a), whereas the 
percentage of the CD16dim/CD62Lbright immunosuppres-
sive subset, reported to exhibit reduced proinflamma-
tory properties [33, 34], as well as the ratio of senescent 
to immunosuppressive subsets did not significantly dif-
fer between patients and HCs from inclusion to day 7 
(Fig.  2b and c). The percentage of senescent neutrophil 
subset did not differ between patients who received and 
patients who did not receive tocilizumab.

Among CXCR4high aged neutrophils, a specific sub-
population of CD49bhigh and VEGF-R1high neutrophils 
has pro-angiogenic properties [9] and is reported to 
migrate to hypoxic tissue and to participate in neovascu-
larization [10]. Unexpectedly, we observed an expansion 
in the circulation of this angiogenic neutrophil subset in 
COVID-19 patients at day 1 (Fig. 2d and e) and persisting 
at day 3 and day 7 (Fig. 2e), together with a decrease in 
the expression of CD49b (Fig. 2f ) and VEGF-R1 (Fig. 2g 
and h) on the surface of angiogenic neutrophils. Because 
proteolytic cleavage of VEGF-R1 from lung epithelial cell 

surface has been reported during ARDS [35], we meas-
ured the level of soluble VEGF-1-receptor1 (sVEGF-R1) 
and found higher sVEGF-R1 levels in the COVID-19 
patient group from day 1 to day 7 than in HCs (Fig. 2i). 
Accordingly, sVEGF-R1 levels were negatively correlated 
with VEGF-R1 expression at the neutrophil surface in 
COVID-19 patients (Fig. 2j).

The proportion of circulating reverse‑migrated neutrophils 
is highest in COVID‑19 patients
The LTB4-NE axis is reported to induce cleavage of 
endothelial JAM-C, which plays a role in tight junction 
formation, leukocyte adhesion, and transendothelial 
migration: Proteolytic cleavage of endothelial JAM-C 
leading to soluble JAM-C (sJAM-C) has been reported 
to be instrumental in promoting neutrophil rTEM 
in vivo [36]. Circulating JAM-C levels were significantly 
higher at day 1 in COVID-19 patients than in HCs and 
CAP patients (Fig. 3a). Accordingly, we found a higher 
percentage of rTEM neutrophils in COVID-19 patients 
at day 1, day 3, and day 7 than in HCs (Fig. 3b and c).

Neutrophil abnormalities are associated with vascular 
inflammation in COVID‑19 patients
Each membrane-bound endothelial selectins has a 
soluble form that can be measured in the plasma and 
is used as a marker of endothelial injury and vascular 
inflammation [37, 38]. At inclusion, COVID-19 patients 
had higher soluble P- and E-selectin levels than the HCs 
(Fig.  4a and b). Furthermore, soluble P-selectin levels 
in COVID-19 patients were positively correlated with 
markers of neutrophil activation, i.e., CD11b expression 
(Fig.  4c) and LTB4 (Fig.  4d), as well as the circulating 
levels of JAM-C (Fig.  4e) and the percentage of rTEM 
neutrophils (Fig.  4f ). We next measured soluble levels 

Fig. 2  Impaired homeostasis of circulating neutrophils in COVID-19 patients. a–c Analysis of senescent and immunosuppressive neutrophil 
subsets in COVID-19 patients. Whole-blood samples were incubated for 45 min at 4 °C with Pe-Cy7-anti-human CXCR4, PE-anti-human CD11b, 
and APC-anti-human CD62L (a) or with FITC-anti-human CD16, PE-anti-human CD11c, Pe-Cy7-anti-human CD11b, and APC-anti-human CD62L (b) 
antibodies. a Percentages of the CXCR4bright/CD62Ldim senescent PMN subset. b Percentages of the CD16bright/CD62Ldim immunosuppressive PMN 
subset. (c) Ratio between the senescent and the immunosuppressive PMN subsets. d–h Analysis of the angiogenic neutrophil subset in COVID-19 
patients. Whole-blood samples were incubated for 45 min at 4 °C with FITC-anti-human VEGF-R1 and BV-481-anti-human CD49d. d Representative 
dot plot of angiogenic CD49dbright neutrophils gated according to forward-scattered light (FSC)/CD49d expression. e Percentages of the CD49dbright 
angiogenic neutrophil subset. f Expression of CD49d expression was analyzed at the surface of angiogenic neutrophils (CD49dbright); results are 
expressed in MFI. g One histogram representative of VEGF-R1 expression on angiogenic neutrophils from a control (white) and a COVID-19 patient 
(black). h Expression of VEGF-R1 on angiogenic neutrophils; results are expressed as MFI. Samples came from age-matched healthy controls (HCs) 
(n = 38), CAP patients (n = 22) and COVID-19 patients at day 1 (n = 53), day 3 (n = 49) and day 7 (n = 40). i Soluble VEGF-R1 was quantified by 
ELISA in HCs and COVID-19 patients at day 1 (n = 82), day 3 (n = 33) and day 7 (n = 32); results are as pg/ml. Values are means ± SEM. j Correlation 
between expression of VEGF-R1 on angiogenic neutrophils and soluble VEGF-R1 in COVID-19 patients. *P < 0.05, **P < 0.01, ***P < 0.001, adjusted for 
age. Samples came from age-matched healthy controls (HCs) (n = 38), CAP patients (n = 22) and COVID-19 patients at day 1 (n = 53), day 3 (n = 49) 
and day 7 (n = 40)

(See figure on next page.)
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of VEGF, which is reported to be critical in the regula-
tion of both vascular permeability and endothelial cell 
survival [39], and observed higher circulating levels of 
sVEGF in COVID-19 patients as compared to than in 
HCs and CAP patients (Fig.  4g). Consistent with the 
fact that soluble VEGF-R1 is a physiological antagonist 

of VEGF [40], sVEGF levels were negatively correlated 
with sVEGF-R1 in COVID-19 patients (Fig. 4h).

As expected [41], circulating levels of IL-6 and IL-10 
were higher in ICU COVID-19 patients (Fig. 4i and j). 
IL-6 levels were significantly lower at day 7 as com-
pared to those at day 1. Regarding IL-10, we observed a 
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Fig. 3  COVID-19 patients have higher levels of soluble JAM-C and of neutrophil reverse transendothelial transmigration. a Soluble JAM-C (sJAM-C) 
was quantified by ELISA; results are expressed as pg/ml. b, c Quantification of neutrophils undergoing reverse-endothelial transmigration (reverse 
transmigrated neutrophils, rTEM). Whole-blood samples were incubated for 45 min at 4 °C with FITC-anti-human CD181 (CXCR1) and PE-anti-human 
CD54 antibodies. b Representative dot plots of the neutrophil phenotype according to CXCR1 and CD54 expression in an HC (left) and a COVID-19 
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Fig. 4  Neutrophil abnormalities are associated with vascular inflammation in COVID-19 patients. a–f Evaluation of soluble markers of endothelial 
activation. Levels of soluble P-selectin (a) and E-selectin (b) were quantified by ELISA; results are expressed as pg/ml. Correlation between soluble 
P-selectin and CD11b expression on neutrophils (c), circulating LTB4 levels (d), circulating JAM-C level (e) and the percentage of rTEM neutrophils 
(f). g–k Measurement of circulating levels of cytokines. Soluble VEGF was quantified by ELISA; results are as pg/mL (g). Correlation between soluble 
VEGF and VEGF-R1 (h). IL-6 (i), and IL-10 (j) were quantified by ELISA; results are as pg/ml. Correlation between soluble IL-10 and ROS production by 
fMLP-stimulated neutrophils (k). All samples came from age-matched healthy controls (HC, n = 40) and COVID-19 patients at day 1 (n = 53), day 3 
(n = 49) and day 7 (n = 40). Values are means ± SEM. *Significantly different from controls P < 0.05, **P < 0.01, ***P < 0.001, adjusted for age

(See figure on next page.)
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trend to decline during patient follow-up, although no 
significant difference was noted between the COVID-
19 groups. At day 1, the ROS production in response to 
fMLP correlated negatively with that of IL-10 (Fig. 4k). 
Circulating TGFβ levels did not significantly differ 
between patients and healthy controls from inclusion 
to day 7 (not shown).

Neutrophil abnormalities are associated with clinical 
severity of COVID‑19
To investigate the relation between the neutrophil mark-
ers and lung or other organ failures in COVID-19, we 
distinguished respiratory from non-respiratory SOFA 
scores. Unlike some previous studies, neutrophil counts 
in COVID-19 patients at ICU admission did not correlate 
with the SOFA, the respiratory SOFA and the non-respir-
atory SOFA scores (Additional file 1: Fig. S2a, b, c). How-
ever, neutrophil counts in COVID-19 patients at day 3 
and day 7 post-admission correlate with the SOFA scores 
measured at the same time (Additional file 1: Fig. S2d–i).

At ICU admission, the neutrophil surface CD62L 
expression was not significantly associated with the non-
respiratory SOFA score (Additional file  1: Fig. S3a) but 
was negatively associated with high global SOFA and res-
piratory SOFA scores after adjustment for demographic 
and laboratory variables (Additional file  1: Fig. S3b and 
c). In addition, higher circulating of LTB4 and NE, two 
neutrophil hyperactivation markers, was positively asso-
ciated with high global SOFA and respiratory SOFA 
scores (Additional file 1: Fig. S3d and e). Higher percent-
age of senescent and immunosuppressive subsets were 
positively associated with respiratory SOFA score (Addi-
tional file 1: Fig. S4f and g). We also observed a negative 
association between VEGF-R on angiogenic neutrophil 
surfaces and a high global SOFA score at ICU admission 
of COVID-19 patients (Additional file 1: Fig S3h). Finally, 
the percentages of rTEM and angiogenic neutrophil sub-
sets analyzed at day 3 were positively associated with 
the respiratory SOFA score calculated at the same time 
(Additional file 1: Fig S3i and j).

In accordance with previous data [42], we found a posi-
tive association between IL-10 measured at inclusion and 
global SOFA at day 1 (Additional file 1: Fig. S4b) as well 

as between IL-6 and IL-10 measured at inclusion and 
global SOFA at day 7 (Additional file 1: Fig. S4c and d).

COVID‑19 patients who died had higher percentage 
of angiogenic neutrophil subset and greater impairment 
of neutrophil oxidative burst than survivors did
COVID-19 patients were classified into two groups 
according to their outcome at day 60. The COVID-19 
patients who died had significantly higher percentage 
of circulating angiogenic neutrophils (Fig. 5a) as well as 
lower expression of VEGF-R1 (Fig.  5b) associated with 
higher soluble VEGF-1 (Fig. 5c) at day 1, than survivors. 
Similar results were observed at day 7 (Fig.  5d-f ). At 
COVID-19 patients’ admissions to the ICU, ROS pro-
duction in response to fMLP by unprimed, LPS-primed 
or TNFα-primed neutrophils did not differ between 
these two groups (Fig.  5g-i) but was lower at day 7 in 
patients who died than survivors (Fig.  5j-l). In parallel, 
the COVID-19 patients who died had significantly higher 
levels of soluble IL-10, an anti-inflammatory cytokine 
reported to inhibit ROS production by activated neu-
trophils [43] (Additional file 1: Fig. S5a). In contrast, the 
patients who died and those who survived did not differ 
for neutrophil count, neutrophil basal activation state, 
percentages of immature, senescent and immunosup-
pressive subsets, or soluble levels of various proinflam-
matory mediators (Additional file 1: Fig. S5b–p).

As 74% of the deceased patients who died had super-
infections during their hospitalization, we analyzed the 
neutrophil markers according to the occurrence of bacte-
rial or fungal superinfections. ROS production by fMLP-
stimulated neutrophils, measured at day 1 and day 7, was 
significantly lower, in superinfected than non-superin-
fected COVID-19 patients (Additional file 1: Fig. S6a and 
d). Moreover, at day 7, TNF and LPS-primed neutrophils 
produced significantly fewer ROS in superinfected than 
non-superinfected COVID-19 patients (Additional file 1: 
Fig. S6e and f ).

Discussion
This extensive investigation of the phenotype and func-
tion of peripheral neutrophils from 90 COVID-19 ICU 
patients used whole blood to minimize any potential bias 

(See figure on next page.)
Fig. 5  COVID-19 patients who died had higher percentage of angiogenic neutrophils and greater impairments of neutrophil oxidative burst than 
survivors did. a–f Analysis of the angiogenic neutrophil subset in COVID-19 patients. Percentages of the CD49dbright angiogenic neutrophil subset 
measured at day 1 (a) and day 7 (d). Expression of VEGF-R1 on angiogenic neutrophils measured at day 1 (b) and day 7 (e); results are expressed as 
MFI. Soluble VEGF-R1 was quantified by ELISA at day 1 (c) and day 7 (f); results are expressed as pg/mL. g–l ROS production in response to fMLP by 
unprimed-neutrophils at day 1 (g) and day 7 (j), by LPS-primed neutrophils at day 1 (h) and day 7 (k), and TNFα-primed neutrophils at day 1 (i) and 
day 7(l). All measurements came from deceased COVID-19 patients or survivors at day 60 post-ICU inclusion. Values are means ± SEM. Statistical 
significance as determined by the nonparametric Mann–Whitney test is indicated. *Significantly different P < 0.05, **P < 0.01, ***P < 0.001, adjusted 
for age
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related to isolation procedures and take the proinflam-
matory cytokine environment into account. Our results 
demonstrated that these patients’ circulating neutro-
phils showed continuous basal hyperactivation from 
their admission to the ICU—hyperactivation not evi-
denced in CAP patients. The positive association of lower 
L-selectin expression and higher circulating levels of NE 
and LTB4 with the respiratory SOFA score suggests that 
neutrophil hyperactivation might be involved, at least 
in part, in lung dysfunction. Our critically ill COVID-
19 patients had a median SOFA score of 3.5, reflecting a 
predominantly isolated respiratory failure, showing that 
the SARS-CoV-2 infection itself rather than the multio-
rgan dysfunction associated with severe forms triggers 
these neutrophil function modifications. SARS-CoV-2 
infects human cells by attaching to angiotensin-convert-
ing enzyme 2 (ACE2) expressed on the epithelial cell lin-
ing of the lungs, arteries, heart, kidneys, and intestines. 
Although neutrophils do not express ACE2, a recent 
report described their expression of CD147 [44], which 
was recently shown to act as a receptor for SARS-CoV-2 
in cell lines of epithelial origin [45]. Moreover, the highly 
glycosylated nature of the SARS-CoV-2 spike protein 
[46] increases its likelihood of binding to CD147, which 
has three Asn glycosylation sites [47] at the neutrophil 
surface. It is thus possible that the virus can attach to 
the neutrophil surface, where it can induce various cel-
lular programs that lead to cell hyperactivation and 
exhaustion.

Neutrophil hyperactivation increases the circulating 
concentrations of granule-derived proteins released by 
activated neutrophils, e.g., NE which might be involved, 
at least in part, in the JAM-C cleavage and increased 
neutrophil reverse transendothelial migration [8]. While 
these neutrophils’ departure from an inflammation site 
resolves this local inflammation, they may then spread 
throughout the body via the bloodstream, transmigrating 
into other organs and contributing to more organ injuries 
and systemic inflammation [48]. Reverse migrated neu-
trophils show prolonged lifespans and delayed apoptosis 
[49], which could contribute to persistent and amplified 
inflammation.

The positive correlation of higher CD11b expression at 
the neutrophil surface with higher levels of NPAs and of 
circulating P-selectin suggests that platelets are in a pre-
activated state and may thus contribute to microthrom-
botic complications in severely ill patients. P-selectin 
is also stored in and expressed by endothelial cells, and 
its elevated plasma levels in patients might also reflect 
endothelial cell activation and damage [50]. Consistently 
with this finding, we found elevated levels of sE-selectin 
in COVID-19 but not CAP patients. The presence of all 

these biomarkers speaks in favor of endotheliopathy in 
our patients, in line with previous studies [51, 52].

Hyperactivation of circulating neutrophils may be 
involved in the impaired neutrophil oxidative burst 
observed in COVID-19 patients in response to bacterial 
formyl peptides and could indicate functional neutrophil 
tolerance/exhaustion. As ROS production in response 
to fMLP correlated negatively with that of IL-10 level, 
this impairment could be related to the effect of IL-10 in 
downregulating neutrophil activity [43]. Such an impair-
ment might also be related at least in part to the corti-
costeroid treatment administered to all patients in our 
COVID-19 cohort [53]. In contrast, very few patients 
from the CAP cohort received corticosteroids. As neutro-
phils play a key role in the defense against bacterial and 
fungal infections, these modifications could contribute to 
the increased susceptibility to the hospital-acquired bac-
terial and fungal infections that are emerging as a com-
mon secondary complication among COVID-19 patients. 
In accordance with previous data [54], secondary infec-
tions, which are observed in 41% of COVID-19 patients 
in our cohort, are significantly associated with lower 
60-day survival. Moreover, ROS production by TNF 
and LPS-primed neutrophils in response to formyl pep-
tides was significantly lower in COVID-19 patients who 
died compared to survivors as well as in superinfected 
patients compared with non-superinfected patients. 
Nevertheless, the direct link between the occurrence of 
superinfections in COVID-19 and lower neutrophil oxi-
dative burst remains to be demonstrated.

Neutrophils are typically regarded as terminally dif-
ferentiated cells that progress from immature neutro-
phils in the bone marrow to circulating mature inactive 
neutrophils that can, upon priming and subsequent acti-
vation in inflammatory conditions, extravasate into tis-
sues and fulfill their effector functions. At the end of the 
spectrum, mature neutrophils in the circulatory system, 
nearing the end of their lifetime, may acquire a specific 
phenotype. During follow-up, we observed an increase 
in the percentage of longer-lived CXCR4high neutrophils 
in COVID-19 patients. It has been proposed that gut 
microbiota regulate neutrophil aging [7]. Recent studies 
report gut dysbiosis in COVID-19 patients [55, 56]. Fur-
thermore, previous intestinal dysbiosis observed in type 
2 diabetes, obesity, hypertension, coronary heart disease, 
and in other age-related disorders are involved in the 
deregulation of the inflammatory immune response to 
SARS-CoV-2, which promotes infection, dissemination, 
and severity in patients with comorbidities [57]. In addi-
tion, glucocorticoid signaling in humans is proposed to 
drive diurnal aging in neutrophils [58].

Neutrophil aging may favor a proinflammatory phe-
notype, and the presence of aged neutrophils in the 
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circulation may predispose individuals to vascular 
inflammation, independently of NET formation [59]. The 
increased percentage of pro-angiogenic neutrophils in 
blood from COVID-19 patients may be related at least 
in part to decreased expression of VEGF-R1 at neutro-
phil surface, a probable consequence of metallopro-
tease-mediated ectodomain cleavage [60]. Accordingly, 
we found higher soluble levels of VEGF-R1 in COVID-
19 patients, correlated with the decreased expression 
of VEGF-R1 on the surface of angiogenic neutrophils. 
This abnormality might limit neutrophil recruitment to 
hypoxic areas [9] increasing the percentage of circulat-
ing angiogenic neutrophils. This subset is characterized 
by the ability to release high quantities of MMP-9 [9] 
thought to be involved in the pathogenesis of inflam-
matory vascular diseases [61]. Importantly, COVID-19 
patients who died had significantly higher percentage 
of circulating angiogenic neutrophils and lower expres-
sion of VEGF-R1 on angiogenic neutrophils than sur-
vivors. Accordingly, soluble VEGF-R1 was significantly 
increased in COVID-19 patients who died.

Our study has several limitations. First, the CAP popu-
lation consists of patients with severe pneumonia driven 
by multiple pathogens, both bacterial and viral and is 
not perfectly matched to our COVID-19 patient cohort. 
The comparison of COVID-19 patients with a pure viral 
pneumonia cohort could help further specify the unique 
immune signatures of SARS- CoV-2. Second, we did not 
perform functional testing of neutrophil subsets. Third, 
ROS production by neutrophil in response to TLR8 
agonist was not investigated in CAP patients. However, 
our results are based on a large population and include 
a kinetic analysis that adds to the current knowledge 
regarding the COVID-19-related impact on neutrophil 
functions. Future experiments in an independent cohort 
are required for further validation.

It’s important to note that in our study, all included 
COVID-19 patients received corticosteroid treatment. 
While the immunosuppressive effect of steroids is undis-
puted and desirable in the context of severe COVID-19 
[62], corticosteroids might increase the susceptibility to 
secondary bacterial or fungal infections in vulnerable 
patients, such as elderly, frail patients and might poten-
tially affect the risk–benefit balance [63–65]. The 
impairment of neutrophil oxidative burst in response to 
bacterial formyl peptide highlighted in our COVID-19 
cohort emphasizes the resulting immunosuppression due 
to corticosteroid treatment. Thereby, our results question 
the systematic use of high dose corticosteroid treatment 
in particular in vulnerable patient groups and a reduction 
either of steroid dose or treatment duration may be dis-
cussed to limit secondary infection risk.

Furthermore, our data should open new perspectives 
in the development of innovative immunotherapy strat-
egies. Recently, Crainiciuc et  al. identify the Src kinase 
Fgr as a driver of the pathogenic senescent state of neu-
trophils, and interference with Fgr protected mice from 
inflammatory injury in a model of ischemia–reperfusion 
[66]. In addition, targeting junctional adhesion molecule-
C has been reported to improve sepsis-induced acute 
lung injury by decreasing CXCR4+ aged neutrophils 
[67]. Taking into account these data, our new findings 
obtained from circulation neutrophils from COVID-19 
patients suggest that targeting senescent “aged” neu-
trophils within inflamed vessels might be a promising 
therapeutic choice for reducing clinical severity in severe 
SARS-CoV-2 infection.

Conclusions
In summary, our study highlights neutrophil hyper-
activation and impaired homeostasis during severe 
COVID-19—both abnormalities that might play a cen-
tral role in endothelial dysfunction, angiogenesis, and 
vascular inflammation. This study also demonstrates 
that neutrophil exhaustion appears to play a central 
role in the pathogenesis of severe COVID-19 and iden-
tifies angiogenic neutrophils as a potential harmful 
subset involved in fatal outcome.
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