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Abstract: Hydrogen polysulfide (H2Sn, n>1) has a valuable function in various 

aspects of biological regulation. Therefore, it is of great significance to realize the 

visual monitoring of H2Sn levels in vivo. Herein, a series of fluorescent probes 

NR-BS were constructed by changing types and positions of substituents on the 

benzene ring of benzenesulfonyl. Among them, probe NR-BS4 was optimized due to 

its wide linear range (0~350 μM) and little interference from biothiols. In addition, 

NR-BS4 has a broad pH tolerance range (pH = 4~10) and high sensitivity (0.140 μM). 

In addition, the PET mechanism of probe NR-BS4 and H2Sn was demonstrated by 

DFT calculations and LC-MS. The intracellular imaging studies indicate that NR-BS4 

can be successfully devoted to monitor the levels of exogenous and endogenous H2Sn 

in vivo. 
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1. Introduction 

Reactive sulfur species (RSS) have redox activity under physiological conditions, 

mainly including reduced glutathione (GSH), sulfur dioxide (SO2), cysteine (Cys), 

sulfite/bisulfite (SO3
2-

/HSO3
-
), homocysteine (Hcy), hydrogen polysulfide (H2Sn, n>1) 

and hydrogen sulfide (H2S). RSS give full play to superiority in adjusting redox 

activity [1] and maintaining mitochondrial health [2]. However, RSS disorders can 

also induce a variety of diseases such as arteriosclerosis [3], diabetes [4], 

neurodegenerative diseases [5], aging [6] and schizophrenia [7]. Among these RSS 

molecules, H2S is the third gas signal molecule with biological activity after NO and 

CO, which has been extensively studied in recent years [8-11]. With further research, 

H2Sn (n>1) has been found to be more effective than H2S in adjusting the activities of 

ion channels, transcription factors, protein kinases and tumor suppressors [12,13]. 

Obviously, many of the biological functions previously thought to be attributed to H2S 

may actually be performed by H2Sn [14]. Moreover, H2Sn has many biological 

functions such as anti-oxidation ion channel activation and nephrotoxicity inhibition 

[15-17]. In order to have a deeper understanding of its formation, molecular reactions 

and regulatory mechanisms, it is necessary to exploit accurate and highly specific 

tools to monitor H2Sn level in vivo. 

Although the traditional monitoring technologies mainly involving 

ultraviolet-visible spectroscopy [18], mass spectrometry [19] and high-performance 

liquid chromatography [20] could detect H2Sn in trace amounts, they usually require 

complex sample pretreatment, and the most critical problem is that they cannot be 

monitored in real time in organisms. At present, fluorescence analysis technology has 

become the most feasible method for detecting H2Sn due to its highly temporal and 

spatial resolution, high sensitivity, non-invasive and fast real-time imaging [21,22]. 

The first H2Sn-specific probe, DSP, was reported by Xian's group in 2014 [23], and a 

great quantity of H2Sn fluorescent sensors have been ensued, primarily including 

2-fluoro-5-nitrobenzoic ester [24], aziridine [25], nitro [26], cinnamate ester [27], 

acrylate ester [28] and 2-benzoylsulfanylbenzoic acid [21] as recognition groups (Fig. 



1). However, these probes have certain limitations, such as poor selectivity, long 

response time, and narrow linear range. Therefore, new recognition units need to be 

proposed for the development of H2Sn probes. 

 

Fig. 1. Commonly used recognition sites for H2Sn probes. 

Based on the fact that 2, 4-dinitrobenzenesulfonyl is a classical recognition site 

for biothiols and the strong nucleophilicity of H2Sn compared to biothiols, we 

envisioned an engineering to explore between different benzenesulfonyl analogs and 

efficient H2Sn fluorescent probes (Fig. 2). To this end, a series of fluorescent probes 

NR-BS based on Nile red skeleton were designed and synthesized. Among them, 

NR-BS4 with 3-hydroxy NR as the skeleton and 2-nitrobenzenesulfonyl as the 

reaction site has the advantages of wide linear range (0~350 μM) and high selectivity. 

Most importantly, probe NR-BS4 has low toxicity and superior ability to detect H2Sn 

level in cells and zebrafish. 

 

Fig. 2. Design of novel probes NR-BS. 

 

2. Experimental section 



2.1. Synthesis of probe NR-BS4 

Compound 2b (33.4 mg, 0.100 mmol, 1.00 equiv.) was dissolved in DCM and 

cooled to 0℃. Et3N (55.0 μL, 0.210 mmol, 2.10 equiv.), 2-nitrobenzene sulfonyl 

chloride (44.3 mg, 0.200 mmol, 2.00 equiv.) were dissolved in the main reaction flask 

and allowed to react for 2 h at room temperature. After monitoring by TLC to ensure 

that compound 2b was exhausted, the reaction mixture was extracted with DCM and 

water, the DCM layer was dried and evaporated. Then, the residue was purified by 

flash column chromatography (DCM:MeOH = 200:1) to give NR-BS4 (89.2% yield). 

1
H NMR (400 MHz, C5D5N) δ 8.52 (s, 1H), 8.17 (d, J = 7.9 Hz, 1H), 8.07 (d, J = 8.0 

Hz, 1H), 7.86 - 7.69 (m, 3H), 7.65 (d, J = 7.7 Hz, 2H), 6.76 (d, J = 8.9 Hz, 1H), 6.58 

(d, J = 1.4 Hz, 2H), 3.36 (t, J = 16.7 Hz, 4H), 1.10 (t, J = 7.0 Hz, 6H); 
13

C NMR (101 

MHz, C5D5N) δ 181.46, 152.63, 151.64, 147.15, 137.82, 136.53, 134.48, 132.70, 

132.38, 131.66, 130.97, 128.36, 127.71, 125.65, 125.59, 125.14, 117.28, 112.37, 

110.56, 105.21, 104.17, 96.45, 44.97, 12.39. HRMS (C26H21N3O7S): calcd. For 

[M+H]
+
 520.1178; found: [M+H]

+
 520.1071. 

 

Scheme 1. Synthesis of probes NR-BS. (a) NaNO2, HCl, H2O, 3.5 h, 77.1%; (b) 

Dihydroxynaphthalene, DMF, reflux, 6 h, 31.3%; (c) Et3N, DCM, r.t., 2 h. 

2.2. Titration experiments of probes NR-BS 

Before the fluorescence experiment, probes NR-BS were prepared as a solution 

(1.00 mM) by DMF. In addition, Na2S2 solution was prepared by reacting Na2S·9H2O 

with sulfur in an aqueous solution at 70 ℃ for 1.5 h. In general, the reaction of probes 

NR-BS with Na2S2 was performed in PBS (10.0 mM, pH 7.40, 20% DMSO, 100 μM 



CTAB). Then, the reaction solution was measured for its fluorescence intensity and 

scanned at 590 nm. 

2.3. Cell imaging 

For exogenous imaging, HepG2 cells with NR-BS4 (5.00 μM) were incubated at 

37 ℃ for 30 min, then bred with changed volume of Na2S2 (0 μM, 25 μM, 100 μM 

and 180 μM) for 15 min. For endogenous imaging, HepG2 cells were split into two 

plates. One disc was stimulated with lipopolysaccharide (LPS, 1.00 μg·mL
-1

) for 20 h, 

and then conducted to incubate with NR-BS4 for 30 min. The other disc was 

proceeded to incubate with DL-propargylglycine (PAG, 100 μM) and NR-BS4 for 30 

min, and then LPS was incubate for 20 h. Next, an excitation wavelength of 552 nm 

was selected to collect the emission light within the limits of 560 to 700 nm, the 

images were obtained under a confocal laser microscope. 

2.4. Zebrafish imaging 

Three-day-old zebrafish were selected for imaging and divided into two groups 

of six fish each. Two groups of fish were loaded with NR-BS4 and cultured at 28 ℃ 

for 30 min. One group was performed to incubate with 350 μM Na2S2 for 15 min, 

while the other group was added by E3 medium as a control. Imaging was performed 

under the same conditions as for cell imaging. 

3. Results and discussion 

3.1. Design of probes NR-BS 

Nile red dye (NR) has been recognized as a potential candidate with a wide range 

of applications due to excellent characteristics, including controllable emission and 

high photostability. Above all, it has a long fluorescence emission wavelength (λem > 

650 nm), which can effectively reduce the background fluorescence in complex 

samples, and improve the detection sensitivity and accuracy. As we know, 2, 

4-dinitrobenzenesulfonyl is a powerful recognition group for biothiols via 

nucleophilic substitution [29]. Inspired by this recognition group (Fig. 2a) and 

considering the strong nucleophilic properties of H2Sn, we speculated that this kind of 

benzenesulfonyl analog should also be able to capture H2Sn, thereby releasing the 



masked fluorophore and restoring its fluorescence. We assumed that the specific 

detection of H2Sn could be achieved by changing types and positions of the 

substituents on the benzene ring of benzenesulfonyl to affect biothiols. Furthermore, it 

has been found that the different hydroxyl positions of NR will lead to differences in 

its reactivity and fluorescence properties. To verify the assumptions, we selected 2- or 

3- hydroxy NR as the fluorophore scaffold, modified with 14 commercial 

benzenesulfonyl derivatives, and constructed a series of fluorescent probes NR-BS. 

We presume that the electron-withdrawing groups (-NO2, -CF3, -CN, -Cl and -OCH3) 

could suppress the fluorescence of NR-OH by way of PET, while the 

electron-donating group (-CH3) cannot produce PET process, as a control. When the 

strongly nucleophilic H2Sn is added, the sulfonate ester is cleaved, releasing NR-OH 

with high fluorescence intensity (Fig. 2b). 

The synthesis process is illustrated in Scheme 1. Specific synthesis steps and 

detailed spectra of structural characterization are shown in the Supporting 

Information. 

3.2. Fluorescent spectral properties and responses for H2Sn 

The source of H2S2, the main representative compound of H2Sn, is usually 

obtained by preparing a fresh Na2S2 solution [30]. Within NR-BS hand, we firstly 

tested the spectral properties and responses for Na2S2 under imitated physiological 

circumstances (10.0 mM PBS, pH 7.40, encompassing 20% DMSO and 100 μM 

CTAB), in which benzenesulfonyl analogs substituted with -NO2 and -CF3 produced 

red fluorescence, named NR-BS1, NR-BS2, NR-BS3, NR-BS4 and NR-BS5, 

respectively. The response time, linear range, and fluorescence enhancement multiples, 

were further studied for these five compounds. The fluorescence intensity of NR-BS1, 

NR-BS2, NR-BS3, NR-BS4 and NR-BS5 showed linear relationship within the scope 

of 0~300 μM, 0~5.00 μM, 0~200 μM, 0~350 μM, and 0~10.0 μM, respectively (Fig. 

3). The selectivity of the five probes for the determination of Na2S2 was further 

compared, and their responses to the interfering molecular biothiols were investigated, 

and the data are shown in Table S4. Considering that NR-BS4 has the advantages of 

wide linear range, high response fold, and no interference from biological thiols 



compared to the other four compounds, it was selected as a representative probe for 

follow-up examination. 
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Fig. 3. Linear relationship between probes and Na2S2 concentration at 590 nm. (a) 10.0 μM of 

NR-BS1 with Na2S2 (0~300 μM), (b) 10.0 μM of NR-BS2 with Na2S2 (0~5.00 μM), (c) 10.0 μM 

of NR-BS3 with Na2S2 (0~200 μM), (d) 10.0 μM of NR-BS4 with Na2S2 (0~350 μM), (e) 10.0 

μM of NR-BS5 with Na2S2 (0~10.0 μM). 

When NR-BS4 existed alone, it emitted powerless fluorescence. As Na2S2 was 

gradually added, the fluorescence intensity at 666 nm also gradually enhanced (Fig. 

4a), and the linear range was 0~350 μM (Fig. 4b, R
2
 = 0.9984). According to the 

formula listed in Table S2, LOD was figured up 0.14 μM. These data confirm that 

NR-BS4 can achieve quantitative detection of Na2S2 in vitro with good selectivity, 

excellent sensitivity, and wider linear range compared to the published probes listed 

in Table S1. 

3.3. Kinetic study of probe NR-BS4 on H2Sn 

For the purpose of successfully working for biofluorescence imaging, NR-BS4 

must be activated in the proper physiologic pH range. Therefore, we tested the 

sensitivity of NR-BS4 to Na2S2 at different pH values (2~13) using fluorescence 

spectrometry (Fig. 4c). Additionally, the time-driven phenomenon of NR-BS4 was 

observed. The fluorescence intensity of NR-BS4 gradually heightened and reached a 

plateau at 666 nm for 10 min, and then remained basically unchanged (Fig. 4d), 

which proved that NR-BS4 could be used as a tool to achieve monitoring in vivo.  

 



 

Fig. 4. Spectral properties of probe NR-BS4. (a) Fluorescence titration spectrum of probe 

NR-BS4 (10.0 μM) with different concentrations of Na2S2 (0~500 µM) in PBS (10.0 mM, pH 

7.40, 20% DMSO) at room temperature. (b) Linear relationship between probe NR-BS4 (10.0 μM) 

at 590 nm and Na2S2 concentration (0~350 µM). (c) pH-dependent fluorescence changes of 

NR-BS4 (10.0 μM) in the absence and present of Na2S2 (350 μM). (d) Time-dependent 

fluorescence changes of NR-BS4 (10.0 μM) with Na2S2 (350 μM) in phosphate buffer. λex = 590 

nm, λem = 666 nm, slits: 5.00 nm / 10.0 nm, volt: 850 V.  

3.4. Selectivity and competition of NR-BS4 to H2Sn 

To determine the selectivity of NR-BS4 toward Na2S2, a series of other 

fluorescence experiments with interfering small molecules were performed. As shown 

in Fig. 5a, the probe NR-BS4 had only a fluorescence-on response to Na2S2. While 

Na2S and NaHS caused weak fluorescence enhancement, but it could be ignored. 

These data demonstrate that NR-BS4 exhibits good selectivity for Na2S2 under 

physiological conditions. Then the competition of NR-BS4 in the complex system 

was measured. Even when other interfering substances were added, the fluorescence 

signal of NR-BS4 for Na2S2 still existed (Fig. 5b). These results conclude that 

NR-BS4 could selectively respond to Na2S2 against a variety of potential interfering 

species in the biological media. 
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Fig. 5. (a) Fluorescence spectrum of probe NR-BS4 (10.0 μM) upon addition 350 μM 16 kinds of 

analytes in PBS buffer solution. (b) Fluorescence spectrum of probe NR-BS4 (10.0 μM) under 

simultaneously presence of 350 μM Na2S2 and other analytes in PBS buffer solution (1. Na2SO3, 2. 

NaHSO3, 3. Na2SO4, 4. NaHSO4, 5. Na2S2O3, 6. Na2S2O5, 7. NaClO, 8. H2O2, 9. GSH, 10. Cys, 11. 

Hcy, 12. Met, 13. Na2S, 14. NaHS, 15. Blank, 16. Na2S2). 

3.5. DFT calculations 

In order to fully understand the fluorescence change mechanism of probe 

NR-BS4 and compound 2b, DFT calculations were performed using the 

B3LYP/6-311+G(d) level of the Gaussian 09 program. The solvent effects were 

considered in DMF using the polarizable continuum model (PCM). As shown in Fig. 

6, the LUMO energy (-3.68 eV) of 2-nitrobenzenesulfonyl chloride (DNS) is between 

the HOMO energy (-5.18 eV) and LUMO energy (-3.13 eV) of compound 2b, which 

proves that PET can happen. 
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Fig. 6. Structural optimization of DNB, compound 2b, and NR-BS4 by DFT. 

3.6. Reaction mechanism study 

The selective response mechanism of probe NR-BS4 to Na2S2 was further 

studied by LC-MS. As shown in Fig. 7a, the peak time of free NR-BS4 in methanol 

showed 22.5 min. After the addition of Na2S2, the signal at 22.5 min decreased, but a 

new peak appeared at 16 min, [M+H]
+
 = 335.1353 was determined, which 

corresponds to the production of compound 2b (Fig. 7b-c). 

 

Fig. 7. Reaction mechanism of probe NR-BS4 with Na2S2。(a) LC-MS chromatograms: eluent, 

CH3CN/H2O (gradient elution: 0~5 min, 50/50; 5~10 min, 60/40; 10~15 min, 70/30; 15~20 min, 

80/20; 20~30 min, 100% CH3CN); flow rate, 0.5 mL·min
−1

; temperature, 30°C; detection 

wavelength, 542 nm; and injection volume, 10.0 μL; (b) The reaction mechanism of NR-BS4 

towards H2S2; (c) HRMS spectrum of the probe NR-BS4 reacted with H2S2. 

3.7. Fluorescence imaging in living cells 



The cytotoxicity of NR-BS4 was quantified by the MTT assay prior to biological 

applications. Fig. S1 indicates that NR-BS4 has cytotoxicity, and a concentration of 

5.00 μM was selected for subsequent cell imaging.  

First, the imaging ability of NR-BS4 in cells was explored with exogenous Na2S2. 

The weak red fluorescence appeared after probe-loaded HepG2 cells were incubated 

at 30 min, confirming the good cell permeability of NR-BS4 (Fig. 8a-c). When 

different concentrations of Na2S2 were added and incubated for 15 min, followed by 

30 min incubation with probe NR-BS4, strong red fluorescence was observed (Fig. 

8d–i). 
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Fig. 8. Confocal fluorescence images of exogenous H2S2 in HepG2 cells. HepG2 cell incubated by 

probe NR-BS4 (5.00 μM) and observed under red channel (a), bright field (b), overlay (c), then 

further incubation with Na2S2 (25.0 μM, 100 μM and 180 μM) for 15 min and observed under red 

channel, bright field, overlay. 

Furthermore, the imaging capacity of NR-BS4 to monitor endogenous H2Sn was 

also investigated. It has been reported that lipopolysaccharide (LPS) can increase 

H2Sn production by inducing CSE mRNA overexpression. Obviously, a dramatical 

enhancement in intracellular fluorescence intensity can be discovered from Fig. 9a-c, 

compared to that of Fig. 8a. In addition, when DL-propargylglycine (PAG, a CSE 

inhibitor) was added, the fluorescence intensity was suppressed. These results are 

consistent with those reported in the literature that CSE contributes to generate 

endogenous H2Sn. In conclusion, NR-BS4 enables the detection of endogenous H2Sn 

levels in living cells. 
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Fig. 9. Fluorescence images of endogenous H2S2 in HepG2 cells. HepG2 cell were induced by 

LPS (1.00 μg/mL) for 20 h, then incubated with 5.00 μM NR-BS4 for 30 min, and observed under 

red channel (a), bright field (b), overlay (c); (d) pretreated with DL-propargylglycine (1.00 mM) 

for 30 min and then treated as (a). 

3.8. Fluorescence imaging of H2Sn in zebrafish 

In view of the satisfactory performance of NR-BS4 in detecting H2Sn in cells, the 

applicability of the probe NR-BS4 in live zebrafish is chosen to be evaluated. As 

shown in Fig. 10a, samples loaded with probe NR-BS4 display medium fluorescence 

brightness, which was caused by H2Sn in zebrafish. Probe-loaded zebrafish embryos 

served with external Na2S2 displayed increased fluorescence (Fig. 10b). These results 

further demonstrate the promise of probe NR-BS4 for in vivo imaging. 

 

Fig. 10. Fluorescence images of H2S2 in zebrafish. 5.00 μM of NR-BS4 under red channel (a), 

bright field (b); (c) 5.00 μM of NR-BS4 incubated with 350 μM of Na2S2 for 30 min under red 

channel, bright field (d). 

4. Conclusion 

In summary, inspired by the recognition group 2,4-dinitrobenzenesulfonyl of 

biothiols, we explored the effects of the types and positions of substituent on the 

benzene ring of benzenesulfonyl on the responses of biothiols and H2Sn. Furthermore, 



we think that the different positions of the hydroxyl groups of NR could lead to 

differences in its reactivity and fluorescence properties. Based on this, we selected 2- 

or 3-hydroxy NR as the fluorophore scaffold, modified with 14 commercial 

benzenesulfonyl derivatives, and constructed a series of fluorescent probes NR-BS. 

After the evaluation of fluorescence properties, the optimal probe NR-BS4 was found 

to have a rapid response (< 10 min), high sensitivity (0.140 μM), wide linear range 

(0~350 μM), large pH tolerance range (pH = 4~10) and good biocompatibility, so as 

to detect H2Sn levels in the organism. We believe that our work could provide a new 

identification group that will be further used to explore the biological and pathological 

functions of H2Sn. 
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