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a b s t r a c t 

Recent studies suggest that the interaction between the brain and heart plays a key role in cog- 
nitive processes, and measuring these interactions is crucial for understanding the interaction 
between the central and autonomic nervous systems. However, studying this bidirectional inter- 
play presents methodological challenges, and there is still much room for exploration. This paper 
presents a new computational method called the Poincaré Sympathetic-Vagal Synthetic Data Gen- 
eration Model (PSV-SDG) for estimating brain-heart interactions. The PSV-SDG combines EEG and 
cardiac sympathetic-vagal dynamics to provide time-varying and bidirectional estimators of mu- 
tual interplay. The method is grounded in the Poincaré plot, a heart rate variability method to 
estimate sympathetic-vagal activity that can account for potential non-linearities. This algorithm 

offers a new approach and computational tool for functional assessment of the interplay between 
EEG and cardiac sympathetic-vagal activity. The method is implemented in MATLAB under an 
open-source license. 

• A new brain-heart interaction modeling approach is proposed. 
• The modeling is based on coupled synthetic data generators of EEG and heart rate series. 
• Sympathetic and vagal activities are gathered from Poincaré plot geometry. 
Specifications table 

Subject area: Neuroscience 

More specific subject area: Autonomic Neuroscience 
Name of your method: Poincaré Sympathetic-Vagal Synthetic Data Generation (PSV-SDG) 
Name and reference of original method: First proposal to study heart rate variability with Poincaré plots, by Woo et al. [1] 

Modeling of heart rate oscillations using Poincaré plots, by Brennan et al. [2] 
Modeling of EEG signals using adaptive Markov process, by Al-Nashash et al. [3] 
Original proposal of brain-heart modeling through synthetic data generation models, by Catrambone et al. [4] 
Alternative proposal of brain-heart modeling through synthetic data generation models, by Candia-Rivera 
et al. [5] 

Resource availability: https://github.com/diegocandiar/brain _ heart _ psv _ sdg 

Introduction 

Brain-heart interactions are actively involved in cognitive processes, such as perception, decision, and action [6] . Recently pro- 
posed methods for brain-heart interaction analysis exploit signal processing techniques to uncover these interactions, including infer- 
ences on causality and directionality between cortical and cardiac oscillations [7] . State-of-the-art methods of brain-heart interaction 
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include the analysis of heartbeat-contingent responses [8] , convergent cross-mapping [9] , coupling through symbolic representations 
[10] , time-delay stability [11] , granger causality [12] , transfer entropy [13] , among others. Synthetic Data Generation (SDG) mod-
eling is a framework that aims to gather the bidirectional interactions of EEG and sympathetic-vagal activity [ 4 , 5 ]. The estimation
of bidirectional interactions is done through a generative model of neural dynamics, where two physiologically-inspired models of 
synthetic EEG and heart rate series are coupled to gather the mutual interactions [6] . 

The analysis of brain-heart interaction aims to provide evidence on how the central nervous system interacts with the sympathetic
and vagal branches of the autonomic nervous system [14] . However, current heart rate spectral analysis is challenged because such
estimators do not allow a proper quantification of cardiac sympathetic activity. This is because sympathetic activity is typically
studied in the 0.04–0.15 Hz range, which may also be affected by changes in vagal oscillations [ 15 , 16 ]. Additionally, using fixed
frequency bands to study sympathetic and vagal activities may be inaccurate due to nonlinear fluctuations in heart rate variability.
An alternative method is the use of Poincaré plots, which illustrate beat-to-beat changes in heart rate, accounting for nonlinearities
and reflecting short- and long-term fluctuations of heart rate variability [ 1 , 17 ]. Poincaré plot-derived measures have been proposed
as a potential methodology to gather sympathetic and vagal tone [18–20] and have shown to accurately describe changes in vagal
and sympathetic tone in both healthy participants and pathological conditions [21–23] . 

Method details 

The proposed method requires as inputs time-varying EEG power and interbeat interval (IBI) series gathered from ECG. Below is
described the preprocessing of EEG and ECG series, used to validate the method. 

EEG preprocessing 

The EEG preprocessing involves frequency filtering, large artifact removal, eye movements, cardiac-field artifact removal, inter- 
polation of contaminated electrodes, and common average reference, as detailed elsewhere [7] . EEG data were bandpass filtered 
with a Butterworth filter of order 4, between 0.5 and 45 Hz. Note that the proposed method requires continuous EEG power series.
Therefore, to retain the EEG’s entire length, adequate removal of large muscle artifacts is necessary. The proposed strategy used
wavelet filtering on the independent component space. In brief, independent components analysis (ICA) was computed to identify 
large artifacts from the ICA series. Then, the ICA series were subjected to wavelet transform and thresholded to remove only the large
artifacts [24] . The large artifact identification could be done with either automated thresholding or manually. Afterward, all the time
series are combined to reconstruct the EEG series, and ICA was re-run to identify and remove physiological artifacts (eye movements
and cardiac-field artifacts). Contaminated EEG channels were identified under two criteria: First, channels were marked as contami- 
nated if their area under the curve exceeded three standard deviations of the mean of all electrodes. Second, channels were compared
with their weighted-by-distance-correlation neighbors using the standard Fieldtrip neighbor’s definition for 32 electrodes Biosemi 
system. If a channel resulted in a weighted-by-distance correlation coefficient of less than 0.5, it was considered contaminated. A
maximum of 6 channels was imposed using the two criteria. Contaminated channels were replaced by the neighbor’s interpolation,
as implemented in Fieldtrip [25] . EEG channels were re-referenced offline using a common average [7] . 

The EEG spectrogram was computed using a short-time Fourier transform with a Hanning taper. The calculations were performed 
with a sliding time window of 2 s with a 50% overlap, resulting in a spectrogram resolution of 1 s and 0.5 Hz. Successively, time
series were integrated within five frequency bands: delta ( 𝛿; 0–4 Hz), theta ( 𝜃; 4–8 Hz), alpha ( 𝛼; 8–12 Hz), beta ( 𝛽; 12–30 Hz) and
gamma ( 𝛾; 30–45 Hz). 

ECG preprocessing 

The ECG preprocessing involves frequency filtering, R-peak detection, and correction of misdetections. ECG data were bandpass 
filtered using a Butterworth filter of order 4, between 0.5 and 45 Hz. Heartbeats from QRS waves were identified in an automated
process based on a template-based method for detecting R-peaks [7] . Misdetections were corrected first by visual inspection of
detected peaks and the respective inter-beat interval histogram. Note that automated algorithms for the detection of ectopic beats
can be used as well [26] . 

Estimation of sympathetic and vagal activity from Poincaré plot 

Poincaré plot is a non-linear method to study heart rate variability and depicts the fluctuations on the duration of consecutive IBI
[17] , as shown in Fig. 1 . Different measures gathered from Poincaré plot geometry have been proposed to characterize changes on
heart rate. The typically quantified features from Poincaré plot are the SD 1 and SD 2 , the ratios of the ellipse formed from consecutive
changes in IBIs, representing the short- and long-term fluctuations of heart rate variability, respectively [27] . 

The ellipse ratios for the whole experimental condition 𝑆𝐷 01 and 𝑆𝐷 02 are computed as follows: 

𝑆𝐷 01 = 

√ 

1 
2 
𝑠𝑡𝑑 ( 𝐼 𝐵𝐼 ′) 2 (1) 

𝑆𝐷 02 = 

√ 

2 𝑠𝑡𝑑 ( 𝐼𝐵𝐼 ) 2 − 

1 
2 
𝑠𝑡𝑑 ( 𝐼 𝐵𝐼 ′) 2 (2) 
2 
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Fig. 1. Poincaré plot example. In green the geometric features used for the heart-to-brain model, corresponding to the standard deviation in both 
axes. In orange the geometric features used for the brain-to-heart model, corresponding to the length and width of the Poincaré plot. 

 

 

 

 

 

 

where 𝐼 𝐵𝐼 
′

is the derivative of 𝐼 𝐵𝐼 and 𝑠𝑡𝑑() refers to the standard deviation. 
In this framework, I propose to study brain-heart interactions using the changes in time of the Poincaré ellipse. The time-varying

fluctuations of the ellipse ratios are computed with a sliding-time window, as shown in Eqs. (3) and 4 : 

𝑆𝐷 1 ( 𝑡 ) = 

√ 

1 
2 
𝑠𝑡𝑑 

(
𝐼 𝐵𝐼 ′Ω𝑡 

)2 
(3) 

𝑆𝐷 2 ( 𝑡 ) = 

√ 

2 𝑠𝑡𝑑 
(
𝐼𝐵𝐼 Ω𝑡 

)2 
− 

1 
2 
𝑠𝑡𝑑 

(
𝐼 𝐵𝐼 ′Ω𝑡 

)2 
(4) 

where Ω𝑡 ∶ 𝑡 − 𝑇 ≤ 𝑡 𝑖 ≤ 𝑡 , in this study T is fixed in 15 s. 
The Cardiac Vagal Index ( 𝐶𝑉 𝐼), Sympathetic Index ( 𝐶𝑆𝐼), and Sympathovagal balance Index ( 𝑆𝑉 𝐼) are computed as follows: 

𝐶𝑉 𝐼 ( 𝑡 ) = 𝑆 𝐷 01 + 𝑆 𝐷 1 ( 𝑡 ) (5) 

𝐶𝑆 𝐼 ( 𝑡 ) = 𝑆 𝐷 02 + 𝑆 𝐷 2 ( 𝑡 ) (6) 

𝑆 𝑉 𝐼 ( 𝑡 ) = 𝐶𝑆 𝐼 ( 𝑡 ) ∕ 𝐶𝑉 𝐼 ( 𝑡 ) (7) 

where 𝑆𝐷 𝑥 is the demeaned 𝑆𝐷 𝑥 

Estimation of functional brain–heart interactions 

Functional brain-heart interplay was estimated using the Poincaré Sympathovagal Synthetic Data Generation (PSV-SDG) model. 
The interplay from the brain to the heart was quantified through a model of synthetic heartbeat intervals, based on an integral

pulse frequency modulation model parameterized with Poincaré plot features [2] . The synthetic heartbeats were modeled as Dirac 
functions 𝛿(t), as shown in Fig. 2 . The heartbeats generation occurs at the timings 𝑡 𝑘 , as presented in Eq. (8) . Heartbeat generation is
triggered by the integral of a reference heart rate μ𝐻𝑅 and a modulation function 𝑚 ( 𝑡 ) , as shown in Eq. (9) , where a new R-peak is
generated when the integral function reaches a threshold value of 1. 

𝑥 ( 𝑡 ) = 

𝑁 ∑
𝑘 =1 

𝛿
(
𝑡 − 𝑡 𝑘 

)
(8) 

1 = ∫
𝑡 𝑘 +1 

𝑡 𝑘 

[
𝜇𝐻𝑅 + 𝑚 ( 𝑡 ) 

]
𝑑𝑡 (9) 

Eq. (10) presents 𝑚 ( 𝑡 ) as a sum of two oscillators representing the sympathetic and vagal autonomic outflows. The oscillators are
centered at the frequencies 𝜔 𝑆 and 𝜔 𝑉 , with amplitudes defined by 𝐶 𝑆 and 𝐶 𝑉 , representing the sympathetic and vagal activities,
respectively. 

𝑚 ( 𝑡 ) = 𝐶 𝑆 ( 𝑡 ) ⋅ 𝑠𝑖𝑛 
(
𝜔 𝑆 𝑡 

)
+ 𝐶 𝑉 ( 𝑡 ) ⋅ 𝑠𝑖𝑛 

(
𝜔 𝑉 𝑡 

)
(10) 
3 
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Fig. 2. Heart rate variability (HRV) modeling and the brain-to-heart estimation schematic. 

Fig. 3. EEG modeling and the heart-to-brain estimation schematic. 

 
𝐶 𝑆 and 𝐶 𝑉 are computed as a function of heart rate variability. In brief, the parameters 𝐿 and 𝑊 are the length and width of the
Poincaré Plot, as shown in Fig. 1 : 

𝐿 = max 
𝑘 

IB 𝐼 𝑘 − min 
𝑘 

IB 𝐼 𝑘 (11) 

𝑊 = 

√
2 max 

𝑘 

{
IB 𝐼 𝑘 − IB 𝐼 𝑘 −1 

}
(12) 
4 
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Table 1 

Trials studied, divided in pleasant and unpleasant. Trial numbers correspond to the assigned 
identification in the dataset. Values reported for valence and arousal correspond to the group 
median ( N = 32). 

Pleasant trials (high arousal and high valence) 

Trial: 1 3 4 8 9 11 14 18 19 20 
Valence: 7 7.5 7 7.1 7.1 7.3 8 7.3 7.3 7 
Arousal: 5.8 6.7 6 5.7 6 5.7 5 5 6.1 5.8 
Unpleasant trials (high arousal and low valence) 

Trial: 24 30 31 32 34 35 36 37 38 39 
Valence: 3.3 3.1 4 4 4.1 3.1 3.9 3 2.2 3.2 
Arousal: 5 6 6 7 6.4 6 6.6 6.1 6.2 6.2 

Table 2 

Video clip excerpts of the trials studied, divided in pleasant and unpleasant. 

Pleasant trials (high arousal and high valence) 

1 Emilíana Torrini Jungle Drum 

3 Jackson 5 Blame It On The Boogie 
4 The B52 ′ S Love Shack 
8 Lily Allen F — You 
9 Queen I Want To Break Free 
11 Michael Franti & Spearhead Say Hey (I Love You) 
14 Jason Mraz I’m Yours 
18 Louis Armstrong What A Wonderful World 
19 Manu Chao Me Gustas Tu 
20 Taylor Swift Love Story 
Unpleasant trials (high arousal and low valence) 

24 James Blunt Goodbye My Lover 
30 Enya May It Be (Saving Private Ryan) 
31 Mortemia The One I Once Was 
32 Marilyn Manson The Beautiful People 
34 Dj Paul Elstak A Hardcore State Of Mind 
35 Napalm Death Procrastination On The Empty Vessel 
36 Sepultura Refuse Resist 
37 Cradle Of Filth Scorched Earth Erotica 
38 Gorgoroth Carving A Giant 
39 Dark Funeral My Funeral 

 

 

 

 

 

 

These parameters can be estimated as a function of the heart rate, using trigonometric identities and mathematical approximations,
as described in [2] : 

𝐿 ≈ 4 
𝜇𝐻𝑅 

[ 

𝐶 𝑆 

𝜔 𝑆 

|||||𝑠𝑖𝑛 
( 

𝜔 𝑆 

2 𝜇𝐻𝑅 

) ||||| + 

𝐶 𝑉 

𝜔 𝑉 

|||||𝑠𝑖𝑛 
( 

𝜔 𝑉 

2 𝜇𝐻𝑅 

) |||||
] 

(13) 

𝑊 ≈
4 
√
2 

𝜇𝐻𝑅 

[ 
𝐶 𝑆 

𝜔 𝑆 

𝑠𝑖𝑛 2 
( 

𝜔 𝑆 

2 𝜇𝐻𝑅 

) 

+ 

𝐶 𝑉 

𝜔 𝑉 

𝑠𝑖𝑛 2 
( 

𝜔 𝑉 

2 𝜇𝐻𝑅 

) ] 
(14) 

Therefore, by resolving the system of Eqs. (13) and (14) , 𝐶 𝑆 and 𝐶 𝑉 are computed as follows: 

[ 
𝐶 𝑆 

𝐶 𝑉 

] 
= 

1 
𝛾

⎡ ⎢ ⎢ ⎢ ⎣ 
sin 

(
𝜔 𝑝 ∕2 𝜇HR 

)
𝜔 𝑠 𝜇HR 

4 sin ( 𝜔 𝑠 ∕2 𝜇HR ) 
− 
√
2 𝜔 𝑠 𝜇HR 

8 sin ( 𝜔 𝑠 ∕2 𝜇HR ) 
− sin ( 𝜔 𝑠 ∕2 𝜇HR ) 𝜔 𝑝 𝜇HR 

4 sin 
(
𝜔 𝑝 ∕2 𝜇HR 

) √
2 𝜔 𝑝 𝜇HR 

8 sin 
(
𝜔 𝑝 ∕2 𝜇HR 

)
⎤ ⎥ ⎥ ⎥ ⎦ 
[ 
𝐿 

𝑊 

] 
(15) 

𝛾 = 𝑠𝑖𝑛 
(
𝜔 𝑝 ∕2 𝜇𝐻𝑅 

)
− 𝑠𝑖𝑛 

(
𝜔 𝑠 ∕2 𝜇𝐻𝑅 

)
(16) 

Finally, the brain to heart interaction coefficients are quantified as the ratio between 𝐶 𝑆 and 𝐶 𝑉 , and the EEG power in the
frequency 𝐹 ( 𝑖.𝑒., 𝛿, 𝜃, 𝛼, 𝛽, or 𝛾) , during the previous time window 𝑎 𝐹 ( 𝑡 − 1 ) . Eqs. (12) and (13) present the final computation of the
brain-to-sympathetic and brain-to-vagal interplay coefficients C F →CSI and C F →− CVI , respectively. 

𝐶 𝐹→CSI ( 𝑡 ) = 𝐶 𝑆 ( 𝑡 ) ∕ 𝑎 𝐹 ( 𝑡 − 1 ) (12) 

𝐶 𝐹→CVI ( 𝑡 ) = 𝐶 𝑉 ( 𝑡 ) ∕ 𝑎 𝐹 ( 𝑡 − 1 ) (13) 

The interplay from the heart to the brain is quantified through a model based of synthetic EEG series using an adaptive Markov
process [3] . The changes on EEG are modelled as fluctuations in EEG power at different frequency bands, as shown in Fig. 3 and
Eq. (14) , where 𝑓 is the main frequency in a defined frequency band, and 𝜃𝑓 is the phase. The changes in the EEG power are modelled
5 
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Fig. 4. Brain-heart model validation in emotion elicitation. The test is performed on 20 trials of emotion elicitation, 10 pleasant and 10 unpleasant 
trials. The displayed results correspond to the clustered effects found in the 3D space (time-frequency-channel) when comparing emotion elicitation 
vs rest. Colormaps represent the Z-value from the Wilcoxon test performed and thick channels indicate clustered effect at p < 0.001 after permutation. 

 

 

 

by the coefficient Ψ𝑓 using least squares in an exogenous autoregressive process, as shown in Eq. (15) , κf is a constant, and ε f is a
Gaussian white noise term. 

EEG ( 𝑡 ) = 

𝑓 𝑛 ∑
𝑓= 𝑓 1 

𝑎 𝑓 ( 𝑡 ) ⋅ sin 
(
𝜔 𝑓 𝑡 + 𝜃𝑓 

)
(14) 

𝑎 𝑓 ( 𝑡 ) = 𝜅𝑓 ⋅ 𝑎 𝑓 ( 𝑡 − 1) + Ψ𝑓 ( 𝑡 − 1) + 𝜀 𝑓 (15) 

The Markovian neural activity generation uses its previous neural activity and heartbeat dynamics as inputs for EEG data gener-
ation. The coefficients C CSI →F and C CVI →F can be modelled from the contribution of heartbeat dynamics and the exogenous term of
the autoregressive model, as follows: 

𝐶 𝐶𝑆𝐼 →𝐹 ( 𝑡 ) = Ψ𝐹 ( 𝑡 ) ∕ 𝐶𝑆𝐼( 𝑡 ) (16) 

𝐶 𝐶𝑉 𝐼 →𝐹 ( 𝑡 ) = Ψ𝐹 ( 𝑡 ) ∕ 𝐶𝑉 𝐼( 𝑡 ) (17) 
6 
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Fig. 5. Brain-heart coupling coefficients obtained from generated EEG and HRV data, for the interplay between vagal index (VI) and theta. Each 
row corresponds to the coupling coefficients computed for different levels of noise in EEG data. The noise standard deviations are 𝜎i = {0 0.5 1 2 
4}. 

 

 

 

 

 

 

 

 

 

 

 

 

For this study, the model computed the coefficients using a 15 s long time window with a 1 s step to estimate the coefficients. The
central frequencies used were 𝜔 𝑆 = 2 𝜋 ⋅ 0 . 1 𝑟𝑎𝑑∕ 𝑠 and 𝜔 𝑉 = 2 𝜋 ⋅ 0 . 25 𝑟𝑎𝑑∕ 𝑠 , in which 0.1 Hz and 0.25 Hz correspond to sympathetic
and vagal frequencies, respectively. 

For the statistical comparison of the computed biomarkers, nonparametric statistics are recommended [28] . 

Method validation 

The method validation was performed over an open dataset of emotion elicitation [29] . The dataset comprises healthy human
volunteers undergoing audiovisual stimulations with affective content. The dataset consists of 32 subjects (age range, 19–27 years; 
median, 27 years; 16 females) visualizing 40 one-minute video clips. Videos were presented after an initial resting period of two-
minute and separated by a pad of 5 s. Subjective ratings of arousal and valence were reported by participants, from 1 to 9. Physiological
data includes 32-channel EEG and ECG, sampled at 512 Hz. 

A total of 20 trials were selected for the method validation procedure. 10 trials with high arousal and high valence were labeled
as pleasant trials, and 10 trials with high arousal and low valence were labeled as unpleasant trials. Details on the selected trials in
this study are displayed on Tables 1 and 2 . 

Brain-heart interaction estimators were computed using the proposed method PSV-SDG for the whole experimental condition. 
Statistical comparisons were performed between each trial and the averaged resting state period. The statistical comparison was per- 
formed using a nonparametric cluster permutation analysis on a 3D space (time-frequency-channel) [28] , separately for sympathetic- 
vagal interplay and directionality. Therefore, each trial was compared against the initial resting state in sympathetic-to-brain, vagal- 
to-brain, brain-to-sympathetic, and brain-to-vagal. 

Results shown in Fig. 4 depict that brain-heart interaction estimators distinguish rest from emotion elicitation in most of the
selected trials. 

As an additional method of validation, synthetic EEG and HRV data were generated to depict the parallel fluctuations in time of
the brain-heart interplay. HRV data was initialized from a white noise signal, from uniformly distributed random numbers between
0 and 1, and then standardized to 100 ms and mean 700 ms. EEG data was generated at 256 Hz sampling frequency as a sum of five
oscillators at 2, 6, 10, 20, and 40 Hz. The time-varying oscillator amplitudes were initially generated as white noise and then imposed
7 
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as an autoregressive process of order 1. White noise was added to the simulated EEG data at 0.5, 1, 2, and 4 standard deviations.
PSV-SDG coupling coefficients were computed from the generated data. Fig. 5 shows the simulation results for the interplay between
the cardiac vagal index and theta oscillations. The top row shows the ascending and descending coupling coefficients on time without
added noise, and the rows below correspond to the different levels of added noise. The results on the effects of the level of noise on
the coupling estimation show that descending interplay coefficients are not much affected. However, ascending interplay with added 
noise at 𝜎 = 4 shows that the estimated coupling coefficients qualitatively differ from the lower noise levels. Previous simulations in
other models of brain-heart interplay using synthetic data generation models showed similar results, where low noise levels do not
affect the brain-heart interplay estimation [ 4 , 5 ]. 

The interactions between the brain and peripheral organs are linked to different neural pathways, including visceral, pain, and
thalamocortical pathways [30] . Overlapping brain regions control autonomic pathways for the activity of peripheral organs with 
sensory specificity [31] . The high integration in network physiology mechanisms shows the importance of modeling interoceptive 
processes to understand multisystem dysfunctions [14] . The importance of the study of brain-heart interactions is supported by 
previous research showing the involvement of heartbeat dynamics in several cognitive processes, including emotions [32] and self- 
awareness [ 33 , 34 ]. The characterization of functional brain-heart interactions has contributed to the development of novel biomarkers
with potential clinical use [ 9 , 35–40 ]. The proposed method has the advantage of assessing the directionality and latencies of functional
brain-heart interactions, with numerous neuroscientific and clinical applications. 
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