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Abstract

In neuroscience, the time elapsed since the last discharge has been used to predict the probability
of the next discharge. Such predictions can be improved taking into account the last two discharge
times, and possibly more. Such multi-time processes arise in many other areas and there is no
universal limitation on the number of times to be used. This observation leads us to study the
infinite-times renewal equation as a simple model to understand the meaning and properties of
such partial differential equations depending on an infinite number of variables.

We define two notions of solutions, prove existence and uniqueness of solutions, possibly mea-
sures. We also prove the long time convergence, with exponential rate, to the steady state in differ-
ent, strong or weak, topologies depending on assumptions on the coefficients.
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1 Introduction

A number of physical and biological processes take into account several successive events, such as
the spike times of a neuron, seismic sequences, and more generally multi-time renewal processes.
Using the language of partial differential equations (PDE) to describe the probability distribution of
such processes at time t, which we denote by n∞(t, s1, s2, ...), we are interested in the infinite-times
renewal equation, where the renewal rate is denoted by p∞. It is set in the domain 0 ≤ s1 ≤ s2 ≤ ...,
where si refers to the elapsed time of the i-th recent event counting from present to past, and can be
written as, ∂tn∞ +

∞∑
i=1

∂sin∞ + p∞(s1, s2, ...)n∞ = 0,

n∞(t, s1 = 0, s2, ...) =
∫∞
u=0

p∞(s2, ..., sK , ..., u)n∞(t, s2, ..., sK , ..., u) du.

(1.1)

This writing is formal since there is no ’last variable’ u to integrate with. Our aim is to define precisely
the notion of solutions, in particular the meaning of the boundary condition, and to prove uniqueness.
We build these solutions taking the limit as N →∞ of the N -times renewal equation,∂tnN +

N∑
i=1

∂sinN + pN ([s]N )nN = 0,

nN (t, s1 = 0, s2, ..., sN ) =
∫∞
u=0

pN (s2, ..., sN , u)nN (t, s2, ..., sN , u) du.

(1.2)

For the applications we have in mind, the existence of a limit justifies to restrict the physical descrip-
tion to an arbitrary value N , since the precise value does not change too much after some range.
Furthermore, we show that this approximation N →∞ holds uniformly in time.

Motivations from biology The boundary condition in (1.2) means that after renewal, a new time is
initiated and all labels are shifted of +1 thus the ’oldest’ is forgotten and the penultimate becomes
the last. This process can be used in neuroscience where n(t, s) describes the probability to find a
neuron with time s elapsed since the last discharge [18, 14, 15, 3]. When the firing rate depends
on the N last events, we find the N -times renewal equation as proposed for N = 2 in [17]. The
2-times renewal equation has also been used for establishing the efficacy of contact tracing during
an epidemic spread [8]. In these applications, the variable si refers to age but in many other areas
multiple structures occur with different velocities, leading to more general equations under the form

∂tn+

N∑
i=1

∂si
[
gi([s]N )n

]
+ pN ([s]N , nN )nN = 0.

See [1] for instance. Our analysis could cover such general settings but for the sake of simplicity, we
keep the forms (1.1)–(1.2).

In neuroscience, this aspect is tightly related to more elaborate descriptions of the stochastic processes
underlying neural activity, in particular the Hawkes and Wold processes.

Relation to the Hawkes and Wold processes Our generalization of renewal equations to infinite-
times shares similarities with the language of Hawkes process, as they appear in computational neu-
roscience [16], genome analysis [19] and financial analysis [2] etc. It is likely that infinite-times re-
newal equations can be also used in these questions. A Hawkes process can be understood as a point
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process N = {Ti}i∈Z where Ti ∈ R is the time when the i-th renewal happens. For this process,
and in the simplest form, the renewal rate at time t is defined as

∑
i∈Z h(t − Ti)1Ti<t, which implies

that the renewal rate may depend on the infinite renewal times in the past. Among the numerous
results dealing with Hawkes processes, let us mention their distribution [5] and their long time con-
vergence [6, 13].

Apart from Hawkes processes, Wold processes are also connected to (1.1), where a particle renewal
rate depends on a fixed number of renewals in the past (see [5]). They could possibly correspond to
the finite-times renewal equation. However, the possibility of a Wold process depending on infinite
renewal times in the past is still largely open.

Content of the paper. In order to study the problem (1.1), we need to recall, following [17], properties
of the N -times renewal equation, such as the L1 non-expansion property and L∞ bounds. Especially
we prove a tightness estimate (Lemma 3.2) uniformly in dimension N , which facilitates later weak
convergence results (Theorem 6.6).

Based on these results, our first goal is to prove that there is a limit as N →∞ of the N -times renewal
equation. On the one hand, in the spirit of the BBGKY hierarchy in particles systems, see [4], this limit
can be understood as a hierarchy of marginals n(K)

∞ each of them satisfying an equation depending
on the next one, see Theorem 4.1. We call them ’hierarchy solution’, see Definition 6.2. On the other
hand, using the Kolmogorov extension theorem, it can also be understood as a measure n∞ in infinite
dimensions (Theorem 6.6), which satisfies in a weak sense the infinite-dimensional equation (Defini-
tion 6.3). These two points of view turn out to be equivalent and our main result is well-posedness of
solutions of Equation (1.1).

Our second goal is to study the long time behaviour of these solutions to the infinite dimensional
problem. For that, we use two different approaches. For the N -times renewal equation, we can
use the Doeblin method to prove their exponential L1-convergence, see Theorem 3.3. But as the
dimension goes to infinity, the L1-convergence rate will go to zero. However, if the renewal rate pN
converges fast enough to p∞, one can prove some uniformity-in-time convergence as N → ∞ and
also some uniformity in N of the long term behaviour, still in L1, see Theorem 5.1. The L1 topology
is hardly compatible with working with the infinite dimensional measure n∞. Therefore we also use
the Monge-Kantorovich distance to work in the weak topology of measures. We establish a long term
convergence result for finite systems (Theorem 7.1) as well as infinite systems (Theorem 7.3). Again,
these results are uniform in N and rely on some, uniform in N , smallness condition on a Lipschitz
norm of pN .

Outline of the paper. In Section 3, we prove several properties for the finite-times renewal equa-
tions. Departing from these results for finite-times renewal equations, we use two approaches to
handle the weak solution of the infinite-times renewal equation, where the first approach is in Sec-
tion 4-5 involving strong topology is the ’hierarchy solution’, and the second approach, in Section 6-7,
involves weak topology and ’measure solutions’ thanks to the Kolmogorov extension theorem and
Monge-Kantorovich distance.
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2 Notations

General notations. As mentioned earlier, we consider variables which satisfy si ≤ si+1, and thus
we introduce the domains

CN = {0 ≤ s1 ≤ ... ≤ sN}, C∞ = {0 ≤ s1... ≤ sN ≤ ...}. (2.1)

We use the notation [s]N to denote the vector (s1, ..., sN ) ∈ CN , si is the i-th entry in [s]N , d[s]N to
denote the Lebesgue measure on CN . More generally, we set

[s]K,N = (sK , ..., sN ) ∈ CN−K+1 for K ≤ N.

In the same way, [s]∞ corresponds to an infinite vector. We use τ as the shift operator, where

τ(s1, s2, ..., sN ) = (0, s1, s2, ..., sN−1), τ(s1, s2, ..., sN , ...) = (0, s1, s2, ..., sN , ...) (2.2)

For K,N = 1, 2, ...,∞ with K ≤ N , we use nN to denote the solution of the N -dimensional problem,
while n(K)

N denotes the first K marginal of nN

n
(K)
N (t, [s]K) =

∫
sK≤sK+1≤...≤sN

nN (t, s1, ..., sN ) d[s]K+1,N . (2.3)

It is obvious that the marginals satisfy, for K < N ,

n
(K)
N (t, [s]K) =

∫ ∞
sK

n
(K+1)
N (t, s1, ..., sK+1) dsK+1. (2.4)

We use µN to denote a measure on CN , and in particular µ∞ is a measure on C∞. We also use µ(K) to
denote the K marginal of a distribution µ.

Definition 2.1 (Consistent sequences). A sequence of measure (µN )N≥1 is said to be consistent if its
marginals satisfy µK = µ

(K)
N for all K < N . In case of a measure µ∞, it means µ(K)

∞ =
∫∞
0
µ
(K+1)
∞ dsK+1 for

all K ≥ 1.

We frequently use several functions, among them let us mention, for N = 1, 2, ...,∞ the moment
function (for tightness)

σN ([s]N ) =

N∑
i=1

si
2i
. (2.5)

In a given a measurable space X , we useM(X ) to denote the space of signed measures with finite
total measure, and we denote the total variation norm (TV-norm) on M(X ) as ‖ · ‖M1 instead of
‖·‖TV . The set of probability measures is denoted by P(X ), which is a subset of M(X ). We use
Cw([a, b];M(X )) to define the space of continuous functions with values in M(X ) endowed with
its weak topology and we use the naming weakly continuous. We use Cib(X ) to define the space of
bounded ith-differentiable functions.
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Assumptions and weak solutions. We assume the particular form of the renewal rate,

pN =

N∑
i=1

ϕi(s1, ..., si), ϕi > 0,

∞∑
i=1

‖ϕi‖∞ ≤ a+ <∞, (2.6)

where ‖·‖∞ is the L∞ norm. We also define

εK,N :=

N∑
i=K+1

‖ϕi‖∞, εK := εK,∞. (2.7)

We also need a lower control and we assume

0 < a− ≤ pN ([s]N ) ≤ a+. (2.8)

Definition 2.2 (Weak solution of the N-times renewal equation). We say that nN ∈ C
(
[0,+∞);L1(CN )

)
is a weak solution of the N-times renewal equation (1.2) if for all T > 0 and all test functions ψ ∈ C1

b ([0, T ]×
CN ), with τ [s] as the shift operator defined in (2.2),∫ T

0

∫
CN
nN (t, [s]N )

[
− ∂tψ(t, [s]N )−

N∑
i=1

∂siψ(t, [s]N ) +
(
ψ(t, [s]N )− ψ(t, τ [s]N )

)
pN ([s]N )

]
d[s]Ndt

=−
∫
CN
ψ(T, [s]N )nN (T, [s]N )d[s]N +

∫
CN
ψ(0, [s]N )nN (0, [s]N )d[s]N .

(2.9)

For the infinite case, we give definitions in the corresponding sections.

We use NN ([s]N−1) to denote the boundary data of the N -times problem

NN (t, [s]N−1) =

∫ +∞

sN−1

nN (t, [s]N )pN ([s]N )dsN , N∞([s]∞) = p∞([s]∞)n∞([s]∞). (2.10)

We note that N∞ does not involve an integration since there is no history variable to forget after a
renewal. We use n∗N to denote the stationary solution of the N -dimensional problem, while n∗,(K)

N

refers to its first K marginal.

3 The N -times renewal equation

Since we see the infinite-times renewal equation as the limit of theN -times equation, our first purpose
is to prove uniform estimates inN for the solutions of Equation (1.2). We complete Equation (1.2) with
an initial data which is a probability density

nN (0, [s]N ) ≥ 0,

∫
CN
nN (0, [s]N ) d[s]N = 1, nN (0, [s]N ) is supported in CN . (3.1)
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The approaches to the well-posedness of the 2-times renewal equation apply here, see [17]. For any
1 ≤ N < +∞, any pN satisfying Assumption (2.8) and any initial data nN (0) supported in CN ,
Equation (1.2) has a unique weak solution nN (t) in the sense of Definition 2.2. In particular, solutions
belong to C

(
[0,+∞);L1(CN )

)
and the properties (3.1) are propagated, for all times t > 0, we still have

nN (t, [s]N ) ≥ 0,

∫
CN
nN (t, [s]N ) d[s]N = 1, nN (t, [s]N ) is supported in CN . (3.2)

3.1 Marginales in Equation (1.2)

We are going to prove uniform in N estimates for the marginales of nN based on the equation they
satisfy, namely ∂tn

(K)
N +

K∑
i=1

∂sin
(K)
N + pK([s]K)n

(K)
N + E

(K)
N (t, [s]K) = 0,

n
(K)
N (t, s1 = 0, [s]2,K) =

∫∞
0

[
pKn

(K)
N + E

(K)
N

]
(t, [s]2,K , u)du,

(3.3)

with the coupling term

E
(K)
N (t, [s]K) =

N∑
i=K+1

∫ ∞
sK+1=0

...

∫ ∞
sN=0

ϕi([s]i)nN (t, [s]N ) d[s]K+1,N .

We prefer to write the coupling terms above in terms of the marginales

E
(K)
N (t, [s]K) =

N∑
i=K+1

∫ ∞
sK+1=0

...

∫ ∞
si=0

ϕi([s]i)n
(i)
N (t, [s]i) d[s]K+1,i, (3.4)

and we have a pointwise bound

0 ≤ E(K)
N (t, [s]K) ≤

(
N∑

i=K+1

‖ϕi‖∞

)
n
(K)
N (t, [s]K), (3.5)

and we conclude the L1 estimate

‖E(K)
N (t, ·)‖L1(CK) ≤ εK,N :=

N∑
i=K+1

‖ϕi‖∞. (3.6)

3.2 Uniform L∞ estimates

In order to prove the L∞ estimates, which are uniform in N , we introduce a subsolution. With defi-
nition (2.7) for εK , we consider the stationary solution nK([sK ]) > 0 of the K-times renewal equation

K∑
i=1

∂sinK +
(
εK + pK([s]K)

)
nK = 0,

nK(s1 = 0, [s]2,K) =
∫∞
u=0

[
pK([s]2,K , u) + εK

]
nK([s]2,K , u)du.
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Lemma 3.1 (Locally uniform L∞ bounds). We assume (2.6), (3.1) and that for some K ≤ N

n
(K)
N (0, [s]K) ≤ CKnK([s]K). (3.7)

Then, for all t > 0, we also have
n
(K)
N (t, [s]K) ≤ CKeεKtnK([s]K). (3.8)

Proof. Departing from (2.4), the K marginal also satisfies
∂tn

(K)
N +

K∑
i=1

∂sin
(K)
N + pK([s]K)n

(K)
N ≤ 0,

n
(K)
N (t, s1 = 0, [s]2,K) ≤

∫∞
0

[
pK([s]2,K , u) +

N∑
i=K+1

‖ϕi‖∞
]
n
(K)
N (t, [s]2,K , u)du.

This shows that n(K)
N is a subsolution of the following equation∂tnK +

K∑
i=1

∂sinK + pK([s]K)nK = 0,

nK(s1 = 0, [s]2,K) =
∫∞
u=0

[
pK([s]2,K , u) + εK

]
nK([s]2,K , u)du.

(3.9)

and thus is less than CKeεKtnK which is a solution.

3.3 Uniform tightness estimate

A first step to prove that this family of probability measures {nN (t)}N weakly converges, we establish
tightness. For that purpose, the use of the weight function σN defined by (2.5) is crucial in achieving
a balance between dimension and control of the decay of solutions at infinity. It helps to prioritize the
first several variables while it also takes account properly all variables so that the derived estimates
are uniform in N .

Lemma 3.2. With Assumptions (2.8) and (3.1), for all t ≥ 0, we have,∫
CN
σN ([s]N )nN (t, [s]N )d[s]N ≤ e−

a−t
2

∫
CN
σN ([s]N )nN (0, [s]N )d[s]N + (1− e−

a−t
2 )

2

a−
.

Proof. Based on Definition 2.2 of weak solutions and using the density argument, we can use σN as a
test function and write,

d

dt

∫
CN
σN ([s]N )nN (t, [s]N )d[s]N +

∫
CN
σN ([s]N )pN ([s]N )nN (t, [s]N )d[s]N

=

N∑
i=1

∫
CN
nN (t, [s]N )

∂σN
∂si

([s]N )d[s]N +

∫
CN−1

σN (0, [s]2,N )nN (t, 0, [s]2,N )d[s]2,N .

Since the boundary condition gives

nN (t, 0, [s]2,N ) =

∫ ∞
0

pN ([s]2,N , u)nN (t, [s]2,N , u)du,
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we have

d

dt

∫
CN
σN ([s]N )nN (t, [s]N )d[s]N +

∫
CN
σN ([s]N )pN ([s]N )nN (t, [s]N )d[s]N

=

N∑
i=1

2−i
∫
CN
nN (t, [s]N )d[s]N +

∫
CN−1

σN (0, [s]2,N )

∫ ∞
0

pN ([s]2,N , u)nN (t, [s]2,N , u)dud[s]2,N .

Using the normalization condition for nN , we further write

d

dt

∫
CN
σN ([s]N )nN (t, [s]N )d[s]N +

∫
CN
σN ([s]N )pN ([s]N )nN (t, [s]N )d[s]N

≤1 +
1

2

∫
CN
σN ([s]2,N , u)pN ([s]2,N , u)nN (t, [s]2,N , u)d[s]2,Ndu.

Then we replace u with sN to write the equation as

d

dt

∫
CN
σN ([s]N )nN (t, [s]N )d[s]N +

∫
CN
σN ([s]N )pN ([s]N )nN (t, [s]N )d[s]N

≤1 +
1

2

∫
CN
σN ([s]N )pN ([s]N )nN (t, [s]N )d[s]N .

Consequently

d

dt

∫
CN
σN ([s]N )nN (t, [s]N )d[s]N +

1

2

∫
CN
σN ([s]N )pN ([s]N )nN (t, [s]N )d[s]N ≤ 1.

With Assumption (2.8), we have,

d

dt

∫
CN
σN ([s]N )nN (t, [s]N )d[s]N ≤ −

a−
2

∫
CN
σN ([s]N )nN (t, [s]N )d[s]N + 1.

Use the Gronwall lemma and we conclude.

3.4 Steady states and long term behavior

Following recent literature [3, 17], we use Doeblin’s method (see Appendix A) to build a steady state
for the N -times renewal equation. For that purpose, given t∗ > 0 and with the notations of Assump-
tion (2.8), we define the numbers

αN (t∗) := aN−

∫
0≤sN≤t∗

1

(N − 1)!
sN−1N e−sNa+dsN ,

λN (t∗) := − ln(1− αN (t∗))

t∗
, cN (t∗) :=

1

1− αN (t∗)
.

(3.10)

By a standard calculation, we can see that 0 < αN (t∗) < 1 for all t∗ > 0. Consequently we have
λN (t∗) > 0 and cN (t∗) > 1. Our main result is
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Theorem 3.3 (Steady state, convergence and tightness). Fix the dimension N and assume (2.8), (3.1).
Then, the solution nN (t, [s]N ) of Equation (1.2) satisfies

nN (t, [s]N ) ≥ aN−e−sNa+ , for s1 ≤ ... ≤ sN ≤ t. (3.11)

Also, nN (t, [s]N ) converges exponentially in the L1-norm to the unique stationary state n∗N ([s]N ) and, for all
t∗ > 0 we have

‖nN (t)− n∗N‖L1(CN ) ≤ cN (t∗)e−λN (t∗) t‖nN (0)− n∗N‖L1(CN ), ∀ t ≥ 0. (3.12)

Furthermore, the tightness estimate holds∫
CN
σN ([s]N )n∗N (d[s]N ) ≤ 2

a−
. (3.13)

At this stage, the steady state n∗N is a L1 function and it satisfies the equation
N∑
i=1

∂sin
∗
N + pNn

∗
N = 0,

n∗N (0, [s]N−1) =

∫
pN ([s]N )n∗N ([s]N−1, sN )dsN , n∗N is supported in CN .

(3.14)

It is possible to prove better regularity but, being interested in the limit N →∞, we do not go in this
direction.

Remark 3.4. Although Theorem 3.3 gives the long time behavior of each N -times equation, the convergence
rate λN in (3.12) is not uniform in N , which brings essential difficulties to study the long time behavior for the
infinite-times problem. This issue is studied in Sections 5 and 7.

Proof. First step. The estimate (3.11). We use the definition (2.10) of the boundary renewal fluxNN (t, [s]N−1)
defined by the boundary condition. By the method of characteristics for Equation (1.2), we can write
the expression of nN (t, [s]N ) as

nN (t, [s]N ) = e−
∫ s1
0 pN (u,[s−s1+u]2,N )duNN (t− s1, [s− s1]2,N ) for t ≥ s1,

and, changing variables in definition (2.10) of the boundary condition, we have

NN (t− s1, [s− s1]2,N ) =

∫
sN≤s′1

nN (t− s1, [s− s1]2,N , s
′
1 − s1)pN ([s− s1]2,N , s

′
1 − s1)ds′1.

which gives, on CN and for t ≥ s1,

nN (t, [s]N ) =e−
∫ s1
0 pN (u,[s−s1+u]2,N )du∫
sN≤s′1

nN (t− s1, [s− s1]2,N , s
′
1 − s1)pN ([s− s1]2,N , s

′
1 − s1)ds′1

We can now use Assumption (2.8) to derive from the above equation the lower bound

nN (t, [s]N ) ≥ a−e−s1a+
∫
sN≤s′1

nN (t− s1, [s− s1]2,N , s
′
1 − s1)ds′1, t ≥ s1. (3.15)
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This procedure is essential toward estimate (3.11), which states a lower bound for nN (t) indepen-
dently of nN (t′) for t′ < t. In the following iterations, at each step we integrate one more variable
until we find the total integral on nN which is known to be equal to 1.
Second step. Iterations. For the second iteration, we use Equation (3.15) to control from below nN (t −
s1, [s − s1]2,N , s

′
1 − s1). This means we replace t by t − s1, [s]N by ([s − s1]2,N , s

′
1 − s1) and, since

the notation s′1 is used, we call s′2 the integration variable in the right hand side of (3.15). This gives,
for t− s1 ≥ s2 − s1

nN (t− s1, [s− s1]2,N , s
′
1 − s1) ≥ a−e−(s2−s1)a+

∫
sN≤s′1≤s′2

nN (t− s2, [s− s2]3,N , [s
′ − s2]2)d[s′]2.

Combining this equation with (3.15), we find

nN (t, [s]N ) ≥ a2−e−s2a+
∫
sN≤s′1≤s′2

nN (t− s2, [s− s2]3,N , [s
′ − s2]2)d[s′]2, for t ≥ s2. (3.16)

As one can see, we have now integrated in the last two variable of nN .

Repeat this iteration and we will eventually have,

nN (t, [s]N ) ≥ aN−e−sNa+
∫
sN≤s′1≤...≤s′N

nN (t− sN , [s′ − sN ]N )d[s′]N for t ≥ sN ,

where for the previous data nN (t− sN ) we integrate over the entire admissible set CN . By the proba-
bility normalization (3.2), we infer∫

sN≤s′1≤...≤s′N
nN (t− sN , [s′ − sN ]N )d[s′]N = 1.

Consequently we have obtained the desired lower bound (3.11).
Third step. Using the Doeblin method. Given t∗ > 0 and an initial data nN (0) satisfying (3.1), we
use (3.11) to conclude that for any time t∗

nN (t∗, [s]N ) ≥ aN−e−sNa+1sN≤t∗1CN . (3.17)

We may now apply the Doeblin method (see Appendix A).

Firstly, we need to show that the total mass of nN (t) is conserved by the evolution which is the
statement (3.2) (see [17] for a proof). Secondly, we need to show that there exist a positive constant α
and a probability measure ν regardless of initial data nN (0) normalized as a probability, such that

nN (t∗, [s]N ) ≥ αν.

To write the lower bound (3.17) as the form of αν, we first calculate the total measure of this lower
bound, ∫

CN
aN−e

−sNa+1sN≤t∗d[s]N = aN−

∫
0≤sN≤t∗

1

(N − 1)!
sN−1N e−sNa+dsN =: αN (t∗). (3.18)

Since the total measure of the lower bound is αN (t∗), we can write

nN (t∗, [s]N ) ≥ αN (t∗)
aN−e

−sNa+1sN≤t∗1CN
αN (t∗)

, (3.19)

10



where 1
αN (t∗) is a normalizing factor and

aN− exp (−sNa+)1sN≤t∗1CN
αN (t∗) is a probability density by Equa-

tion (3.18). Now we may apply the Doeblin method. We conclude that there is a steady state n∗N and
that for any initial data nN (0), the corresponding solution satisfies, with λN (t∗) introduced in (3.10)

‖nN (t)− n∗N‖L1(CN ) ≤
1

1− αN (t∗)
e−λN (t∗)t‖nN (0)− n∗N‖L1(CN ), ∀t ≥ 0.

Here t∗ can be chosen as any positive constant.
Fourth step. Tightness. Since the steady state is also a solution of the evolution equation, we may use
the result of Lemma 3.2 for n∗N ([s]N ), and let t→∞. The announced result follows.

4 Hierarchy model as the strong limit N → +∞

It seems difficult to give a meaning to the boundary condition as N → ∞ and to determine an ap-
propriate notion of derivative in infinite dimensions. To avoid these difficulties, we propose to only
define the K-marginales of the solution of the infinite-times renewal equation. Then we can write a
form of BBGKY hierarchy as in classical kinetic theory, [4].

For that purpose, we assume that, for all N , the initial data are consistent and, in the sense of Defini-
tion 2.1, there is a consistent family n0,(K)

∞ such that

sup
K
‖n(K)

N (0)− n0,(K)
∞ ‖L1(CK) → 0 as N →∞. (4.1)

Our strategy is as follows. Suppose that the limits exist in a strong enough norm

n(K)
∞ (t, [s]K) = lim

N→∞
n
(K)
N (t, s1, s2, ...sK), K = 1, 2, ... (4.2)

The support property and the tightness bound in Lemma 3.2 for the N -times equation give

n(K)
∞ ≥ 0 is supported in CK and

∫
CK

n(K)
∞ (t, [s]K)d[s]K = 1.

In this limit, we obtain an infinitely coupled hierarchy system, for K = 1, 2, ...
∂tn

(K)
∞ +

K∑
i=1

∂sin
(K)
∞ + pK([s]K)n(K)

∞ + E(K)
∞ (t, [s]K) = 0,

n
(K)
∞ (t, s1 = 0, s2, ...sK) =

∫∞
u=0

[
pKn

(K)
∞ + E

(K)
∞
]
(t, s2, ..., sK , u)du,

n
(K)
∞ (t = 0, [sK ]) = n

0,(K)
∞ ([sK ]).

(4.3)

The coupling term E
(K)
∞ (t, [s]K) is obtained passing formally to the limit in the expression (3.4), and

reads

E(K)
∞ (t, [s]K) =

∞∑
i=K+1

∫ ∞
sK+1=0

...

∫ ∞
si=0

ϕi([s]i)n
(i)
∞ (t, [s]i) d[s]K+1,i, (4.4)
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‖E(K)
∞ (t, ·)‖L1(CK) ≤

∞∑
i=K+1

‖ϕi‖∞‖n(i)∞ ‖L1(Ci).

This hierarchy is our definition of the solution to the infinite-times equation, which is characterized
by the following theorem.

Theorem 4.1 (Strong convergence and uniqueness for the hierarchy). With Assumptions (2.6), (3.1),
(4.1), we have
(i) For all T > 0 and K ∈ N, the sequence

{
n
(K)
N

}
N

is a Cauchy sequence in C
(
[0, T ];L1(CK)

)
and thus it

has a consistent limit n(K)
∞ ∈ C

(
(0,∞);L1(CK)

)
.

(ii) E(K)
N (t, [s]K)→ E

(K)
∞ (t, [s]K) in C

(
(0, T );L1(CK)

)
as N →∞.

(iii)
{
n
(K)
∞
}
K

is the unique consistent weak solution of the hierarchy (4.3)–(4.4).
(iv) Assuming also (3.7), then n(K)

∞ (t, [s]K) ≤ CK n̄(K)([s]K)eεKt for all t > 0.

The consistency property in (iii) allows us to define later a solution on C∞, see Section 6. Here, we
again refer to weak solutions with an obvious extension of Definition 2.2 for eachK, see Definition 6.2.

Notice that we also establish, see (4.7), the following error estimates

‖nN (t)− n(N)
∞ (t)‖L1(CN ) ≤ ‖nN (0)− n(N)

∞ (0)‖L1(CN ) + 2εN t. (4.5)

Proof. First step. Cauchy sequence. For N1 ≤ N2, we set m(t) := n
(N1)
N2

(t)− nN1(t). It satisfies∂tm+

N1∑
i=1

∂sim+ pN1
([s]N1

)m = E
(N1)
N2

,

m(t, s1 = 0, [s]2,N1) =
∫∞
u=0

[
pN1m− E

(N1)
N2

]
(t, [s]2,N1 , u)du.

As a consequence, we also have∂t|m|+
N1∑
i=1

∂si |m|+ pN1
([s]N1

)|m| ≤ |E(N1)
N2
|,

|m|(t, s1 = 0, [s]2,N1) ≤
∫∞
u=0

[
pN1 |m|+ |E

(N1)
N2
|
]
(t, [s]2,N1 , u)du.

Integrating this inequality gives

d

dt

∫
CN1

|m(t, [s]N1
)|d[s]N1

≤ 2

∫
CN1

|E(N1)
N2
|d[s]N1

. (4.6)

We now estimate |E(N1)
N2
| using (3.6) and conclude

2

∫
CN1

|E(N1)
N2
|d[s]N1

≤
N2∑

i=N1+1

‖ϕi‖∞ = 2εN1,N2
.

From this, recalling (4.6) and the definition of m, we immediately conclude that

‖n(N1)
N2

(t)− nN1
(t))‖L1(CN1

) ≤ ‖n
(N1)
N2

(0)− nN1
(0)‖L1(CN1

) + 2εN1,N2
t, (4.7)
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and marginals being controlled by the total norm, we also have

‖n(K)
N2

(t)− n(K)
N1

(t))‖L1(CK) ≤ ‖n
(N1)
N2

(0)− nN1
(0)‖L1(CK) + 2εN1,N2

t,

Thanks to Assumptions (2.6), (4.1), this shows that the sequences (n
(K)
N )N are Cauchy sequences and

thus have limits n(K)
∞ as stated in (i). Then, (4.5) follows immediately from (4.7).

Second step. Error estimate for E(K)
N . This estimate follows from Assumption (2.6). Departing from (3.4)

we have, fixing a J < N (large enough)

|E(K)
N − E(K)

∞ | ≤
N∑

i=K+1

‖ϕi‖∞
∫
sK≤sK+1≤...

|n(i)N − n
(i)
∞ |d[s]K+1,i +

∞∑
i=N+1

‖ϕi‖∞
∫
sN≤sN+1≤...

n(i)∞ d[s]N+1,i

≤
J∑

i=K+1

‖ϕi‖∞
∫
sK≤sK+1≤...

|n(i)N − n
(i)
∞ |d[s]K+1,i + 3εJ .

For all ε > 0 we may first choose J so that εJ ≤ ε and then, N large enough so that the first term on
the right hand side is also less that ε. This proves (ii).

Third step. Uniqueness. To prove uniqueness is the same as showing that all the n(K)
∞ vanish when for

all the n0,(K)([s]K) vanish. Notice that here n(K)
∞ is the difference between two probability and thus

has mass controlled by 2, not 1.

We have 
∂t|n(K)

∞ |+
K∑
i=1

∂si |n(K)
∞ |+ pK([s]K)|n(K)

∞ | ≤ |E(K)
∞ (t, [s]K)|,

|n(K)
∞ (t, s1 = 0, [s]2,K)| ≤

∫∞
u=0

[
pK |n(K)

∞ |+ |E(K)
∞ |

]
(t, [s]2,K , u)du,

n
(K)
∞ (t = 0, [s]K) = 0.

Therefore, integrating, we obtain

d

dt

∫
CK
|n(K)
∞ |d[s]K +

∫
CK

pK([s]K)|n(K)
∞ |d[s]K

≤
∫
CK
|E(K)
∞ (t, [s]K)|d[s]K +

∫
0≤s2≤...≤sK

|n(K)
∞ (t, s1 = 0, [s]2,K)|d[s]2,K ,

and ∫
0≤s2≤...≤sK

|n(K)
∞ (t, s1 = 0, s2, ...sK)|d[s]2,K =

∫
CK

[
pK([s]K)|n(K)

∞ |+ |E(K)
∞ (t, [s]K)|

]
d[s]K ,

so that we have

d

dt

∫
CK
|n(K)
∞ |d[s]K ≤ 2

∫
CK
|E(K)
∞ (t, [s]K)|d[s]K ≤ 4

∑
i=K+1

‖ϕi‖∞.
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Finally, for all J < K, we conclude∫
CJ
|n(J)∞ (t)|d[s]J ≤

∫
CK
|n(K)
∞ |d[s]K ≤ 4tεK → 0 as K →∞.

Therefore all marginales n(J)∞ vanish.

Fourth step. L∞ bound. This follows directly from passing to the limit in the L∞ bound for nK as
stated in Proposition 3.1.

The proof of Theorem 4.1 is complete.

5 Uniform-in-time limit as N →∞ by the Doeblin method

5.1 Idea and main result

Theorem 4.1 establishes the hierarchy solution {n(K)
∞ (t)}K to the infinite-times equation (4.3). Such

a solution is obtained via a local-in-time limit of the N -times model nN (t) as expressed in (4.5). Here
we are interested in a stronger uniform-in-time limit, under an additional smallness condition on εN .
Firstly, we aim to show that

sup
t∈[0,+∞)

‖nN (t)− n(N)
∞ (t)‖L1(CN ) → 0, as N →∞. (5.1)

This estimate requires a long time control which we obtain using the Doeblin condition (to be intro-
duced in (5.6)).

Secondly, since we have a uniform-in-time approximation, then the stationary solution of the infinite-
times equation can be approximated by that of the N -times equation, thus showing that

‖n∗N − n∗,(N)
∞ ‖L1(CN ) → 0, as N →∞. (5.2)

Finally, for the N -times equation, its long time behavior has been characterized in Section 3.4. Every
solution converges to the unique steady state in L1 norm with an exponential rate λN . However, such
a rate λN degenerates to 0 as N goes to infinity, which prevents us to deduce the long time behavior
of the infinite-times equation directly. Nevertheless, under our smallness condition on εN , it turns
out that the degeneracy of λN can be compensated to get for each N -marginal

n(N)
∞ (t)→ n∗,(N)

∞ , in L1(CN ) as t→∞. (5.3)

Guided by these observations, we state the following results.

Theorem 5.1. Assume (3.1), (2.6) and (2.8). Additionally, assume that the renewal rate converges fast enough
in the following sense

εN = o

(
1

N

(
a−
a+

)N)
, as N →∞, εN :=

∞∑
i=N+1

‖φi‖∞. (5.4)

Then, the convergence results (5.1)–(5.3) hold and the steady state infinite hierarchy n∗,(N)
∞ is unique.
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To prove this theorem, we first give a general framework in subsection 5.2, which motivates results on
the uniform-in-time limit and its consequences with an abstract smallness condition in subsection 5.3.
In fact Theorem 5.1 is a specific version of the more general and precise Theorem 5.5. To get the
specific condition (5.4), in subsection 5.4 we study carefully the constants in subsection 3.4.

5.2 A framework towards uniform-in-time approximation

We start with a local-in-time control on the K marginal of the solution nN of (1.2) with a consistent
family of initial probability densities. From the proof of (4.7) in Section 4, with N1 = K,N2 = N , we
infer the control for all t ≥ 0 and τ ≥ 0,

‖nK(t+ τ)− n(K)
N (t+ τ)‖L1(CK) ≤ ‖nK(τ)− n(K)

N (τ)‖L1(CK) + 2εK,N t, (5.5)

Now we try to utilize the Doeblin condition to give a uniform-in-time bound. We say the K-times
problem satisfies the Doeblin condition if there exists t∗K > 0, αK ∈ (0, 1) and a probability density
νK such that

nK(t∗K) ≥ αKνK , (5.6)

independently of the initial probability density nK(0).

Remark 5.2. In Section 3.4, the Doeblin condition (5.6) is established under Assumption (2.8), with concrete
expressions on the constants α and t∗. In this subsection, we do not assume (2.8) but work with the more
abstract condition (5.6). We establish concretely this condition using Assumption (2.8) in subsection 5.4.

Proposition 5.3. Given K, suppose the K-times problem satisfies the Doeblin condition (5.6). Then with
Assumptions (2.6) and (2.7), we have the uniform estimates

lim sup
k→∞

‖nK(kt∗K)− n(K)
N (kt∗K)‖L1(CK) ≤ 2

t∗KεK,N
αK

, (5.7)

lim sup
t→+∞

‖nK(t)− n(K)
N (t)‖L1(CK) ≤ 4

t∗KεK,N
αK

. (5.8)

Proof of Proposition 5.3. Firstly, we prove that, for all τ ≥ 0,

‖nK(t∗K + τ)− n(K)
N (t∗K + τ)‖L1(CK) ≤ (1− αK)‖nK(τ)− n(K)

N (τ)‖L1(CK) + 2εK,N t
∗
K . (5.9)

To do so, we denote by S(K)
t the semi-group associated with the K-times problem. Using the Doeblin

Theorem, we have

‖nK(t∗K + τ)− S(K)
t∗K

(
n
(K)
N (τ)

)
‖L1(CK) ≤ (1− αK)‖nK(τ)− n(K)

N (τ)‖L1(CK).

Then, applying the control (5.5) to S(K)
t∗K

(
n
(K)
N (τ)

)
and nN (t∗K + τ), we have

‖S(K)
t∗K

(
n
(K)
N (τ)

)
− n(K)

N (t∗K + τ)‖L1(CK) ≤ ‖n
(K)
N (τ)− n(K)

N (τ)‖L1(CK) + 2εK,N t
∗
K = 2εK,N t

∗
K .

We combine the above two estimates via the triangle inequality to obtain

‖nK(t∗K + τ)− n(K)
N (t∗K + τ)‖L1(CK) ≤ (1− αK)‖nK(τ)− n(K)

N (τ)‖L1(CK) + 2εK,N t
∗
K .
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Secondly, we iterate (5.9) to obtain

‖nK(kt∗+ τ)−n(K)
N (kt∗+ τ)‖L1(CK) ≤ (1−αK)k‖nK(τ)−n(K)

N (τ)‖L1(CK) + 2t∗εK,N

(
k−1∑
i=0

(1− αK)i

)

and, this gives

‖nK(kt∗ + τ)− n(K)
N (kt∗ + τ)‖L1(CK) ≤ (1− αK)k‖nK(τ)− n(K)

N (τ)‖L1(CK) + 2
t∗KεK,N
αK

. (5.10)

Choosing τ = 0, the inequality (5.8) follows immediately.

Thirdly, for τ ∈ (0, t∗K) we use the control (4.7) to obtain

‖nK(τ)− n(K)
N (τ)‖L1(CK) ≤ ‖nK(0)− n(K)

N (0)‖L1(CK) + 2τεK,N

≤ ‖nK(0)− n(K)
N (0)‖L1(CK) + 2

t∗KεK,N
αK

.

Combined with (5.10), it gives

‖nK(kt∗K + τ)− n(K)
N (kt∗K + τ)‖L1(CK) ≤ (1− αK)k‖nK(0)− n(K)

N (0)‖L1(CK) + 4
t∗KεK,N
αK

. (5.11)

And then (5.8) follows.

A steady state n∗K for the K problem can be built via the Doeblin method as in Section 3.4. By Propo-
sition 5.3, we immediately deduce an estimate between the steady states.

Corollary 5.4 (Distance between the steady states). Under the same condition as in Proposition 5.3, assume
for K < N the steady states for the N -times and the K-times problem exist. Then we have

‖n∗K − n
∗,(K)
N ‖L1(CK) ≤ 2

t∗KεK,N
αK

. (5.12)

Note that the bounds in Proposition 5.3, albeit uniform-in-time, might not be meaningful as N →∞.
This motivates us to look into the quantity

2
t∗KεK,N
αK

≤ 2
t∗KεK
αK

,

where εK is defined in (2.7). A uniform-in-time limit as N →∞ would be obtained if we can choose
αN , t

∗
N such that

2
t∗NεN
αN

→ 0, as N →∞. (5.13)

Here the decay property of the renewal rate plays a central role. As we discuss it later, generically
t∗N/αN diverges to infinity as N → ∞. Thus we need that εN decays fast enough to compensate the
divergence of t∗N/αN .
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5.3 Uniform-in-time limit and consequences

Before giving concrete conditions to ensure (5.13), we first improve Theorem 4.1 when (5.13) is satis-
fied.

Theorem 5.5. Assume (2.6) and that for each K the Doeblin condition (5.6) is satisfied with αK , t∗K > 0. If
additionally (5.13) is true, then we have

(i) (Uniform-in-time limit) Assume the initial data satisfy (4.1). Then for eachK, n(K)
N (t) is a Cauchy sequence

in Cb([0,+∞), L1(CK)), whose limit n(K)
∞ (t) is the hierarchy solution to the infinite-times equation (4.3).

Moreover, we have a uniform-in-time approximation

sup
t∈[0,+∞)

‖nN (t)− n(N)
∞ (t)‖L1(CN ) → 0, as N →∞. (5.14)

(ii) (Limit of the steady state) AsN goes to infinity, n∗,(K)
N has a unique (strong) limit n∗,(K)

∞ , which is a steady
state of the infinite-times hierarchy and we have the error estimate

‖n∗N − n∗,(N)
∞ ‖L1(CN ) ≤ 2

t∗NεN
αN

→ 0, as N →∞. (5.15)

(iii) (Long term behavior for the infinite-times equation) For a general solution of the infinite-times equation
n∞(t), its every marginal converges in time to the marginal of n∗∞. For every N , we have

n(N)
∞ (t)→ n∗,(N)

∞ , in L1(CN ) as t→∞. (5.16)

(iv) (Uniqueness) The steady state solution n∗,(N)
∞ of the infinite-times equation, as defined above, is unique.

Proof. First part. Uniform-in-time limit. Fixed K ∈ N. Note that the L1 norm of a function can control
the L1 norm of its marginal. Precisely, for K ≤ N1 ≤ N2, we have

‖n(K)
N1

(t)− n(K)
N2

(t)‖L1(CK) ≤ ‖n
(N1)
N1

(t)− n(N1)
N2

(t)‖L1(CN1
) = ‖nN1

(t)− n(N1)
N2

(t)‖L1(CN1
),

for each t ≥ 0. Thus we get

sup
t∈[0,+∞)

‖n(K)
N1

(t)− n(K)
N2

(t)‖L1(CK) ≤ sup
t∈[0,+∞)

‖nN1
(t)− n(N1)

N2
(t)‖L1(CN1

). (5.17)

Thanks to the uniform-in-time bound (5.11), we obtain

sup
t∈[0,+∞)

‖nN1
(t)− n(N1)

N2
(t)‖L1(CN1

) ≤ ‖nN1
(0)− n(N1)

N2
(0)‖L1(CN1

) + 4
t∗N1

εN1

αN1

,

combining which with (5.17) we deduce for K ≤ N1 ≤ N2

sup
t∈[0,+∞)

‖n(K)
N1

(t)− n(K)
N2

(t)‖L1(CK) ≤ ‖nN1
(0)− n(N1)

N2
(0)‖L1(CN1

) + 4
t∗N1

εN1

αN1

. (5.18)

As N1 → ∞, the first term goes to zero due to the assumption on initial data (4.1), and the second
term vanishes thanks to (5.13), hence, (5.18) shows that for fixed K, {n(K)

N (t)}N is a Cauchy sequence
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in Cb
(
[0,+∞), L1(CK)

)
, which has a limit n(K)

∞ (t). As in Theorem 4.1, we can check that the limit n(K)
∞

is a consistent solution to the hierarchy problem (4.3)–(4.4).

Moreover, we can obtain a more concrete estimate. Fix K = N1 = N in (5.18) and let N2 goes to
infinity, and we deduce

sup
t∈[0,+∞)

‖nN (t)− n(N)
∞ (t)‖L1(CK) ≤ ‖nN (0)− n0,(N)

∞ ‖L1(CN ) + 4
t∗NεN
αN

, (5.19)

and (5.14) follows thanks to (4.1) and (5.13),.

Second part. Limit of the steady state. The existence and uniqueness of n∗N are ensured by the Doeblin
theorem. For K ≤ N1 ≤ N2 we have immediately

‖n∗,(K)
N1

− n∗,(K)
N2

‖L1(CK) ≤ ‖n∗N1
− n∗,(N1)

N2
‖L1(CN1

) ≤ 2
t∗N1

εN1

αN1

, (5.20)

as in Corollary 5.4, that is passing to the limit in (5.7).

Thanks to (5.13), (5.20) implies that for fixed K, {n∗,(K)
N }N is a Cauchy sequence in L1(CK). Denote

its limit as n∗,(K)
∞ . Then we fix K,N1 and let N2 goes to infinity in (5.20) to derive a concrete error

estimate

‖n∗,(K)
N1

− n∗,(K)
∞ ‖L1(CK) ≤ 2

t∗N1
εN1

αN1

,

which goes to zero as N1 goes to infinity by (5.13). Taking K = N1 we deduce (5.15).

Similar to Theorem 4.1, we can see that n∗,(K)
∞ is a steady solution to the infinite-times hierarchy

problem via passing the limit in the weak formulation.

Third part. Long term behavior for the infinite-times equation. For a solution to the infinite problem n∞(t),
we can construct the solution nN (t) to the N problem with initial data n0,(N)

∞ . Using the triangle
inequality, we have for N ≥ K,

‖n(K)
∞ (t)−n∗,(K)

∞ ‖L1(CK) ≤ ‖n(N)
∞ (t)− n∗,(N)

∞ ‖L1(CN )

≤ ‖n(N)
∞ (t)− nN (t)‖L1(CN ) + ‖nN (t)− n∗N‖L1(CN ) + ‖n∗N − n∗,(N)

∞ ‖L1(CN )

≤ 4
t∗NεN
αN

+ ‖nN (t)− n∗N‖L1(CN ) + 2
t∗NεN
αN

,

where we have used (5.19) and (5.15). For N large enough, the two error terms can be made as small
as we wish using Assumption (5.13) . Finally, applying the Doeblin theorem to the N problem, we
know that ‖nN (t)− n∗N‖L1(CN ) → 0 for all t large enough. Therefore the proof is completed.

Fourth part. In part (iii) we have just established that every solution converges to n∗∞ in the long time.
Hence, n∗∞ is the unique steady state for the infinite-times problem.

5.4 Towards a uniform Doeblin condition

Theorem 5.5 differs from Theorem 5.1 in its abstract Doeblin assumption (5.13). We now give a con-
crete conditions to ensure (5.13).
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Proposition 5.6. Assume (2.8), then we can choose t∗N > 0 and αN ∈ (0, 1) such that the condition (5.6)
holds with

αN
t∗N
≥ a−

2N

(
a−
a+

)N−1
. (5.21)

Combining Theorem 5.5 with Proposition 5.6, we get Theorem 5.1.

Proof of Theorem 5.1. Choose αN and t∗N satisfying (5.21) by Proposition 5.6. Then thanks to Assump-
tion (5.4) on the decay of εN , the condition (5.13) holds. Hence, we can apply Theorem 5.5 to derive
all the conclusions of Theorem 5.1.

Proof of Proposition 5.6. By Theorem 3.3, Equation (3.19) and Definition (3.10), for any t∗ > 0, we can
choose α = αN (t∗) > 0 satisfying the Doeblin condition (5.6) with

αN (t∗)

t∗
=

(a−)N

t∗

∫ t∗

0

1

(N − 1)!
sN−1e−sa+ds. (5.22)

Now we want to find a suitable t∗ such that the right hand side of (5.22) is relatively large and easy
to compute. To do so, we rewrite (5.22) via a change of variable in the integral

αN (t∗)

t∗
=

(a−)N

a+t∗
1

(a+)N−1

∫ t∗

0

1

(N − 1)!
(a+s)

N−1e−sa+d(a+s)

= a−

(
a−
a+

)N−1
1

τ

∫ τ

0

1

(N − 1)!
s̃N−1e−s̃ds̃,

with τ = a+t
∗. Then we choose t∗N = N/a+, i.e., τ = N , to get

αN (t∗N )

t∗N
= a−

(
a−
a+

)N−1
1

N

∫ N

0

1

(N − 1)!
s̃N−1e−s̃ds̃ ≥ a−

2N

(
a−
a+

)N−1
,

where we use the following inequality for incomplete gamma functions (c.f. survey [12, Section 5.1,
Equation (5.6)] and [22]) ∫ N

0

1

(N − 1)!
s̃N−1e−s̃ds̃ ≥ 1

2
.

With these choices of t∗N and αN (t∗N ), Proposition 5.6 is proved.

The quantity αN/t∗N is closely related to the exponential convergence rate λN of the N -times model
given in Theorem 3.3. Indeed, by (3.10), we have for αN small

λN = − ln(1− αN )

t∗N
≈ αN

t∗N
.

With this in mind, we may interpret (5.13) as using the fast decay of εN to compensate the degeneracy
of λN . And Proposition 5.6 gives some hints on how λN deteriorates.

Such a degeneracy is essential for the convergence rate in the strong norm. Intuitively, for the N -
times model, one needs to spike for at least N times to forget the initial dependence, which explains

the factor 1
N in (5.21). The other factor

(
a−
a+

)N−1
, which dominates as it is exponential, might look

less straightforward, which may reflect the effect of the heterogeneity of the renewal rate.

19



6 Measure solution on C∞ as the weak limit N → +∞

So far, the infinite-times renewal equation is understood as the hierarchy (4.3), and well-posedness is
established in Theorem 4.1 for L1 initial data. We now generalize the notion of solution to measures,
define a notion of weak formulation and prove its well-posedness.

Recall that the hierarchy solution studied in Section 4 satisfies the consistency condition, for each t ≥ 0,

n(K)
∞ (t, [s]K) =

∫ ∞
sK

n(K+1)
∞ (t, [s]K+1)dsK+1.

Then, the Kolmogorov extension theorem, see Appendix B, allows us to build an infinite-dimensional
measure n∞(t) ∈ P(C∞) for each t ≥ 0, such that for each K the measure n(K)

∞ (t) is exactly the K
marginal of n∞(t) on CK . In this way, we give a precise meaning to the infinite-dimensional object
n∞(t). As far as topology is concerned, we use the following weak topology.

Definition 6.1 (Weak topology and weakly continuous function valued inM(C∞)).
(i) Given a sequence of elements {fj}j inM(C∞), we say it weakly converges to an element f ∈ M(C∞), if
for each K ≥ 1, the K marginals {f (K)

j }j weakly converges to f (K) inM(CK).
(ii) Based on this weak topology, we say that f(t, [s]∞) is an element in Cw

(
[0,+∞);M(C∞)

)
if for each

K ≥ 1 we have f (K) ∈ Cw
(
[0,+∞);M(CK)

)
.

We then define a notion of weak measure solution (see Definition 6.3) for the infinite-times renewal
equation (1.1), and n∞(t) defined above is a weak measure solution. It is equivalent to the solution of
the Hierarchy system built in Section 4, see Lemma 6.4. Such a definition offers another viewpoint to
treat the hierarchy system as a unified object in infinite dimension, which facilitates the convergence
proof in the Monge-Kantorovich distance, see Section 7.2.

6.1 Weak solution of infinite-times renewal equation on C∞

We first recall the definition of weak solutions for hierarchy model (4.3)–(4.4).

Definition 6.2 (Weak hierarchy solution). Given n(K)
∞ (t) ∈ Cw

(
[0,+∞);P(CK)

)
for all K ≥ 1, a consis-

tent family, {n(K)
∞ }K is a weak solution of Equation (4.3), if for all positive T > 0, positive integer K and all

test functions ψ ∈ C1
b

(
[0, T ]× CK

)
, we have,

−
∫ T

0

∫
CK
n(K)
∞ (t, d[s]K)

(
∂tψ(t, [s]K) +

K∑
i=1

∂siψ(t, [s]K) + pK([s]K)
(
ψ(τ [s]K)− ψ([s]K)

))
dt

=

∫ T

0

∫
CK

E(K)
∞ (t, d[s]K)

(
ψ(t, τ [s]K)− ψ(t, [s]K)

)
d[s]Kdt (6.1)

+

∫
CK

ψ(0, [s]K)n(K)
∞ (0, d[s]K)−

∫
CK

ψ(T, [s]K)n(K)
∞ (T, d[s]K).

Recalling Definition 4.4, the term E
(K)
∞ is now written,

E(K)
∞ (t, d[s]K) =

+∞∑
i=K+1

∫
sK≤sK+1≤...≤si

n(i)∞ (t, [s]K , d[s]K+1,i)ϕi([s]i),

20



and by Assumption (2.6), we have the following decomposition,

pK([s]K) +

∞∑
i=K+1

ϕi([s]i) = p∞([s]∞).

Using these relations, we can write Equation (6.1) in terms of n∞. This leads us to define the following
equivalent notion of weak solution in Cw

(
[0,+∞);M(C∞)

)
, where we can also define analogously

the weak solution of finite-times equation with measure data.

Definition 6.3 (Weak solution of the infinite-times renewal equation). Given n∞(0) ∈ P(C∞), an el-
ement n∞ ∈ Cw

(
[0,+∞);P(C∞)

)
is a weak solution of the infinite-times renewal Equation (1.1), if for

arbitrary T ≥ 0, integer K ≥ 1 and arbitrary test function ψ ∈ C1
b

(
[0, T ]× CK

)
we have,

−
∫ T

0

∫
C∞
n∞(t, d[s]∞)

(
∂tψ(t, [s]K) +

K∑
i=1

∂siψ(t, [s]K) + p∞([s]∞)
(
ψ(t, τ [s]K)− ψ(t, [s]K)

))
dt

=

∫
C∞

ψ(0, [s]K)n∞(0, d[s]∞)−
∫
C∞

ψ(T, [s]K)n∞(T, d[s]∞).

(6.2)

Lemma 6.4 (Equivalence Lemma). Assume the renewal rate satisfies (2.6). Let n∞ ∈ Cw
(
[0,+∞);M(C∞)

)
a weak solution of the infinite-times renewal Equation (1.1), then the family of marginals {n(K)

∞ }K is a weak
solution of the hierarchy model (4.3); Let {n(K)

∞ }K a weak solution of the hierarchy model, then its Kolmogorov
extension n∞ is a weak solution of the infinite-times renewal equation.

This lemma is an obvious consequence of the equivalence between Equations (6.1) and (6.2) in the
definitions of weak solutions.

For the hierarchy solution with L1 initial data, we have obtained well-posedness via the limitN →∞
from N -times model in Theorem 4.1. This result can be readily extended to the case with measure
initial data. Based on the equivalence above, this also means the infinite-times renewal equation (1.1)
has a unique weak solution in Cw

(
[0,+∞);P(C∞)

)
, treated as an infinite dimensional measure as in

Definition 6.3.

Theorem 6.5 (Well-posedness of the measure solution). Assume (2.6) and consider a consistent hierarchy

of initial distributions {n0,(K)
∞ }K , where, for all K,

(
n
0,(K+1)
∞

)(K)

= n
0,(K)
∞ ∈ P(CK). Then, we have

(i) The hierarchy system (4.3)-(4.4) has a unique weak solution {n(K)
∞ (t)}K in the sense of Definition 6.2.

(ii) Equivalently, the infinite-times equation (1.1) has a unique weak solution n∞(t) in the sense of Defini-
tion 6.3. Here the initial data n0∞ ∈ P(C∞) is the Kolomorgov extension of {n0,(K)

∞ }K .
(iii) Let nN (t) be the solution of the N -times equation, with renewal rate pN as (2.6) and initial data n0,(N)

∞ ∈
P(CN ). Then for every marginal we have local-in-time strong convergence. More precisely, for every fixed
T > 0 and K ∈ N+, we have, we the notations of Section 2,

sup
0≤t≤T

‖n(K)
N (t)− n(K)

∞ (t)‖M1(CK) → 0, as N →∞.

The proof for part (i) and (iii) of Theorem 6.5 is identical to that of Theorem 4.1, except that the L1

norm is replaced by the total variation norm for measures. Part (ii) follows from the equivalence in
Lemma 6.4.
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6.2 Weak limit N →∞ via tightness

A more direct proof of the limit N → ∞ in the finite-times equation can be obtained by the method
of tightness, which can also be used for other purposes (e.g. Proposition 6.9). Here the limit holds in
the weak sense of measures, which is natural in the measure setting. With correct assumptions on the
initial data, this result is a consequence of the strong convergence for marginals in Theorem 6.5.

Theorem 6.6 (Weak Limit). Assume (2.6) and (2.8) and give an initial data n∞(0) ∈ P(C∞) such that∫
C∞

+∞∑
i=1

|si|
2i

n∞(0, d[s]∞) < +∞. (6.3)

Let n∞(t) be the unique measure solution to the infinite-times equation in the sense of Definition 6.3. Let nN (t)

be the corresponding solutions to the N -times equation with initial data n(N)
∞ (0) ∈ P(CN ). Then we have the

following weak limits as N →∞.

(i) For all t ≥ 0, integer K ≥ 1 and test function φ ∈ C0
b (CK),∫

CN
nN (t, d[s]N )φ([s]K)→

∫
C∞

n∞(t, d[s]∞)φ([s]K), as N → +∞. (6.4)

(ii) For all T ≥ 0, integer K ≥ 1 and test function ψ ∈ C0
b

(
[0, T ]× CK

)
,∫ T

0

∫
CN
nN (t, d[s]N )ψ(t, [s]K)dt→

∫ T

0

∫
C∞

n∞(t, d[s]∞)ψ(t, [s]K)dt, as N → +∞. (6.5)

A first step towards this result is to prove the tightness of the family {nN}N .

Lemma 6.7. Given a sequence of probability measures {nN}N≥1, , nN ∈ P(CN ) with the uniform bound,∫
CN

N∑
i=1

|si|
2i

nN (d[s]N ) ≤ C0 < +∞, ∀N ∈ N+. (6.6)

Then, we can find a subsequence {nNj}j≥1 and an infinite dimensional measure n∞ ∈ P(C∞), such that the
following weak limit holds, for every K-marginal

n
(K)
Nj
→ n(K)

∞ , weakly in P(CK), as Nj goes to infinity. (6.7)

Proof. The uniform bound (6.6) implies that for each K-marginal∫
CK

( K∑
i=1

1

2i
|si|
)
n
(K)
N (d[s]K) ≤

∫
CN

( N∑
i=1

1

2i
|si|
)
nN (d[s]N ) ≤ C0 < +∞, (6.8)

is uniformly bounded for N ≥ K. Therefore {n(K)
N } is a tight sequence in P(CK), which allows us to

extract a subsequence {nNj}j≥1 such that, for a probability measure n(K)
∞ on CK ,

n
(K)
Nj
→ n(K)

∞ , weakly in P(CK), as Nj goes to infinity. (6.9)
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Starting with K = 1, by a diagonal argument, we can extract a new subsequence, still denoted as
{nNj}, such that (6.9) holds for every K ≥ 1.

It remains to define n∞. To do so, we claim that by our diagonal construction, the following consis-
tency relation holds (

n(K+1)
∞

)(K)
= n(K)

∞ , (6.10)

Indeed, by (6.9) we have for all ψ([s]K+1) ∈ C0
b (CK+1)∫

CK+1

ψ([s]K+1)n
(K+1)
Nj

(d[s]K+1)→
∫
CK+1

ψ([s]K+1)n(K+1)
∞ (d[s]K+1), as Nj goes to infinity.

Taking ψ that depending only on the first K variables [s]K in the above equation, and using (6.9) for
n
(K)
Nj

we obtain (6.10). Thanks to (6.10) we apply the Kolmogorov extension theorem to obtain an

infinite dimensional measure n∞ ∈ P(C∞), such that n(K)
∞ is indeed the K-marginal of n∞.

Lemma 6.7 gives a tightness criteria for a sequence of finite-dimensional measures {nN} where each
nN is in P(CN ). It naturally induces a tightness criteria for a sequence of measures in P(C∞), where
the weak limit is in the sense of Definition 6.1.

Corollary 6.8 (Tightness on C∞). For a sequence of infinite dimensional measures {n∞,j}j of P(C∞), sup-
pose the uniform bound holds ∫

C∞

+∞∑
i=1

|si|
2i

n∞,j(d[s]∞) ≤ C0 < +∞, ∀j.

Then we can extract a subsequence that weakly converges to some n∞ ∈ P(C∞) in the sense of Definition 6.1.

Now we can prove Theorem 6.6.

Proof of Theorem 6.6. Thanks to the uniform moment estimate in Lemma 3.2 and the initial bound (6.3),
we obtain that the uniform-in-N bound (6.6) holds for nN (t) at each time t ≥ 0. Hence, for a fixed
time t we can apply Lemma 6.7 to obtain a subsequence for which (6.4) holds at time t. Then, by a
diagonal argument, we can further extract a subsequence such that (6.4) holds for all t ∈ [0,+∞)∩Q,
a countable many points. At this stage, we could not identify the limit measure as the solution to the
infinite problem yet.

To extend this convergence to arbitrary t ∈ [0,+∞), it suffices to show that if (6.4) holds for {tn}
with tn → t as n → ∞, then (6.4) also holds for t. This will follow from an equi-continuity estimate.
Precisely, we shall show for a fixed K ≥ 1 and ψ ∈ C0

b (CK), the map

t 7−→
∫
CN
nN (t, d[s]N )ψ([s]K) (6.11)

is equi-continuous for N ≥ K. To this end we shall use the weak formulation (2.9), which however
needs ψ ∈ C1

b (CK). Indeed, for ψ ∈ C1
b (CK), (2.9) implies that the map (6.11) is Lipschitz continuous

with uniform-in-N Lipschitz constants, since the renewal rate has a uniform upper bound (2.8). For
general ψ ∈ C0

b (CK), we can still obtain the equi-continuity via a density argument.
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Now we have the limit for each time t ≥ 0. By the dominated convergence theorem we derive the
integrated-in-time limit (6.5). These allows us to pass the limit in the weak formulation from (2.9)
to (6.2). Hence, by the uniqueness in Theorem 6.5, we can identify the limit measure as the solution
to the infinite-times problem. It follows that the subsequential convergence can be improved to the
convergence for the full sequence.

6.3 Steady states of the infinite-time renewal equation

By tightness, we can also show the existence of a steady state to the infinite-times equation.

Proposition 6.9. Assume (2.6) and (2.8). Then there exists a steady state for the infinite-times renewal equa-
tion.

From Definition 6.3, a steady state n∗∞ ∈ P(C∞) satisfies∫
C∞

n∞(t, d[s]∞)
( K∑
i=1

∂siψ([s]K) + p∞([s]∞)
(
ψ(τ [s]K)− ψ([s]K)

))
= 0, (6.12)

for all K ≥ 1 and ψ([s]K) ∈ C1
b (CK).

Proof. Theorem 3.3 gives that for each N ≥ 1 the N -times equation has a unique steady state n∗N , and
that these steady states satisfy a uniform moment bound (3.13). This allows us to apply Lemma 6.7
to subtract a weakly convergent subsequence of n∗N in the sense of (6.7), whose limit gives a steady
state to the infinite-times equation.

The long term convergence of the evolution problem to the steady state is studied in Section 5 and
Section 7. In both sections the uniqueness of the steady state is obtained, but additional assumptions,
such as (5.6) and (5.21), on the renewal rates are needed.

7 Exponential convergence to steady state in Monge-Kantorovich
distance

For the N -times equation, we have shown the exponential convergence to the steady state via the
Doeblin method, in L1 or the total variation distance (Theorem 3.3). However, the total variation
distance does not work for the infinite-times equation, as illustrated by the following example.

Consider two Dirac masses δ[s1]∞ and δ[s2]∞ concentrated respectively at

[s1]∞ = (k1, 2k1, ..., Nk1, ...), [s2]∞ = (k2, 2k2, ..., Nk2, ...),

with two positive real numbers k1 6= k2. Let n1∞(t) and n2∞(t) be the solution to the infinite-times
equation (1.1) with initial data δ[s1]∞ and δ[s2]∞ , respectively. We claim that the total variation distance
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between n1∞(t) and n2∞(t) will always remain 2. Indeed, as a finite number of jumps do not change
the tail behavior, the support of n1∞(t) and n2∞(t) will lie in disjoint subsets of C∞. More precisely

supp n1∞(t) ⊆ {[s]∞ ∈ C∞ : ∃N s.t. sn+1 − sn = k1, ∀n ≥ N},
supp n2∞(t) ⊆ {[s]∞ ∈ C∞ : ∃N s.t. sn+1 − sn = k2, ∀n ≥ N}.

As k1 6= k2, the support of n1∞(t) of n2∞(t) are disjoint therefore the total variation distance

‖n1∞(t)− n2∞(t)‖M1(C∞) = ‖n1∞(t)‖M1(C∞) + ‖n2∞(t)‖M1(C∞) = 2.

In consistency with this example, we also see that the convergence rate in L1 for theN -times equation
degenerates as N → ∞ (Section 5.4). In Section 5 this is compensated by a fast-decay assumption
on the renewal rate, to obtain long time convergence for each N -marginal. However the result is
qualitative and there is no convergence rate.

As discussed above, to obtain exponential convergence, we need a proper metric other than the total
variation. This leads us to use the Monge-Kantorovich distance (M.-K. in short). The M.-K. distance
can be applied to PDEs, [9] and, in particular, to structured equations such as the renewal equation,
see [10]. Often, a special design of the transport cost is needed to fit the structure of a particular
problem.

For the N -times equation, we find a suitable cost function, such that the exponential convergence
of the M.-K. distance can be obtained, with a uniform-in-N rate (i.e. does not degenerate as N →
∞.). This naturally extends to the exponential convergence to the steady state for the infinite-times
equation. The N -times case and the infinite-times case are discussed in Section 7.1 and Section 7.2,
respectively, together with certain assumptions needed for the renewal rate.

7.1 Uniform convergence to steady state in Monge-Kantorovich distance

Given a distance V ([s]N , [s
′]N ) on CN (possibly N = ∞, see section 7.2), also called a cost function,

we can define the corresponding M.-K. transport distance between two probability measures nN and
mN in P(CN ) as 

TV (nN ,mN ) := inf
ωN∈H(nN ,mN )

∫∫
V ([s]N , [s

′]N )ωN (d[s]N , d[s′]N ),

H(nN ,mN ) = {ωN ∈ P
(
CN × CN

)
with marginals nN and mN}.

(7.1)

For more on optimal transport and the M.-K. distance, see e.g. [23, 20].

We are now going to prove the uniform-in-dimension exponential convergence, in the sense of the
M.-K. distance. Specifically, the convergence rate does not rely on the dimension of the system, while
being related to a variant of the Lipschitz constant for pN ([s]N ).

A key ingredient of the result is to consider the following cost function

VN,β,a([s]N , [s
′]N ) :=

N∑
i=1

|si − s′i| ∧ a
(1 + β)i

≤ a

β
, (7.2)

where a, β > 0 are two parameters. Intuitively, it gives less importance to earlier spike times by a
factor 1

1+β , and a truncation is imposed to make the cost function bounded. We shall see later in the
proof how these designs make a uniform-in-N convergence rate possible.
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Theorem 7.1 (Exponential contraction in M-K distance). For the N -times renewal equation, we assume
that the renewal rate satisfies (2.8) and that we can choose β, a > 0 and δ > 0 such that∣∣∣pN ([s]N )− pN ([s′]N )

∣∣∣ ≤ δ VN,β,a([s]N , [s
′]N ), for all [s]N , [s

′]N ∈ CN , (7.3)

and δ > 0 is small enough in the sense

γ :=
βa−
1 + β

− aδ

β
> 0. (7.4)

Then, for two solutions to the N -times equation nN (t) and mN (t), the following exponential contraction holds

TVN,β,a(nN (t),mN (t)) ≤ TVN,β,a(nN (0),mN (0))e−γt, (7.5)

where TVN,β,a is the M.-K. distance induced by the cost function (7.2). In particular, (7.5) implies the exponen-
tial convergence to the steady state with rate γ > 0.

The constant δ in (7.3) can be understood as the Lipschitz constant of pN ([s]N ) relative to VN,β,a([s]N , [s
′]N ).

It is supposed to be small enough to ensure the convergence rate γ > 0 in (7.4). In particular, if we
can find fixed β, a > 0 and δ > 0 such that (7.3)-(7.4) hold for all N ≥ 1, then long term exponential
convergence holds for the N -times equation, with a uniform-in-N convergence rate γ > 0.

We first present the proof of Theorem 7.1, after which we will discuss explicit conditions on the
renewal rate to ensure (7.3)-(7.4) and give examples.

Proof of Theorem 7.1. Step 1. The coupling evolution. We use the coupling method. Given two initial data
nN (0) and mN (0), and one initial coupling ωN (0) ∈ H(nN (0),mN (0)) (see (7.1) for the definition), we
want to determine an evolution of the coupling measure wN (t). In other words, for each time t, ωN (t)
is a coupling between nN (t) and mN (t). By definition of the M.-K. distance (7.1) we have,

TVN,β,a
(
nN (t),mN (t)

)
≤
∫
CN×CN

VN,β,a([s]N , [s
′]N )ωN (t, d[s]N , d[s′]N ) =: TVN,β,a(ωN ), (7.6)

where we define TVN,β,a(ωN ) as the transport cost of coupling measure ωN . The evolution of ωN (t)
shall be constructed in such a way that we can estimate the right hand side of (7.6).

To find such a proper coupling ωN (t), we choose a strategy following [10]. We define ωN (t) as the
weak solution of the following equation

∂tωN (t, [s]N , [s
′]N )+

N∑
i=1

(
(∂si + ∂s′i)ωN (t, [s]N , [s

′]N )
)

+ max
{
pN ([s]N ), pN ([s′]N )

}
ωN (t, [s]N , [s

′]N )

=δ0(s1)δ0(s′1)

∫∫
min

{
pN ([s]2,N , u), pN ([s′]2,N , u

′)
}
ωN (t, [s]2,N , du, d[s′]2,N , du

′)

+ δ0(s1)

∫ (
pN ([s]2,N , u)− pN ([s′]N )

)
+
ωN (t, [s]2,N , du, [s

′]N ) (7.7)

+ δ0(s′1)

∫ (
pN ([s]N )− pN ([s′]2,N , u

′)
)
+
ωN (t, [s]N , [s

′]2,N , du
′).
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In terms of weak solution, this means we want find a ωN (t) such that, for arbitrary 0 ≤ T < +∞ and
test function ψ ∈ C1

b

(
[0, T ]× CN × CN

)
,∫ T

0

∫∫
CN×CN

ψ(t, [s]N , [s
′]N )ωN (t, d[s]N , d[s′]N )dt

=

∫ T

0

∫∫
CN×CN

N∑
i=1

( ∂

∂si
+

∂

∂s′i

)
ψ(t, [s]N , [s

′]N )ωN (t, d[s]N , d[s′]N )dt

+

∫ T

0

∫∫
CN×CN

([
ψ(t, τ [s]N , τ [s′]N )− ψ(t, [s]N , [s

′]N )
]

min
{
pN ([s]N ), pN ([s′]N )

}
+
[
ψ(t, τ [s]N , [s

′]N )− ψ(t, [s]N , [s
′]N )

](
pN ([s]N )− pN ([s′]N )

)
+

+
[
ψ(t, [s]N , τ [s′]N )− ψ(t, [s]N , [s

′]N )
](
pN ([s′]N )− pN ([s]N )

)
+

)
ωN (t, d[s]N , d[s′]N )dt.

(7.8)

Microscopic description. The above equation can be seen as the evolution of the probability distribution
for a stochastic process on CN ×CN . Given a particle at ([s]N , [s

′]N ), it will jump to (τ [s]N , τ [s′]N ) with
rate min{pN ([s]N ), pN ([s′]N )}, jump to (τ [s]N , [s

′]N ) with rate
(
pN ([s]N ) − pN ([s′]N )

)
+

and jump to
([s]N , τ [s′]N ) with rate

(
pN ([s′]N ) − pN ([s]N )

)
+

(we recall the shift operator τ is defined by Equa-
tion (2.2)). Considering the marginal distribution, we can see that given a particle at [s]N , it will jump
to τ [s]N with rate pN ([s]N ), because,

min{pN ([s]N ), pN ([s′]N )}+
(
pN ([s]N )− pN ([s′]N )

)
+

= pN ([s]N ). (7.9)

Existence of evolution. The existence of a solution to Equation (7.8) is similar to that in [10, Section 4],
which uses a prior tightness estimate to treat the coupling of the two-times equation.

Proof strategy for Theorem 7.1. Working under the microscopic description above, we can see that if a
coupled particle at ([s]N , [s

′]N ) jumps to (τ [s]N , τ [s′]N ), the transport cost will decay as follows,

VN,β,a(τ [s]N , τ [s′]N ) ≤ 1

1 + β
VN,β,a([s]N , [s

′]N ). (7.10)

This is essentially the reason of the exponential convergence in the M.-K. distance. Meanwhile, we
also need to control the asynchronous jump from ([s]N , [s

′]N ) to (τ [s]N , [s
′]N ) or ([s]N , τ [s′]N ), with

rate
∣∣pN ([s]N )−pN ([s′]N )

∣∣. This is done by controlling
∣∣pN ([s]N )−pN ([s′]N )

∣∣ using VN,β,a([s]N , [s
′]N ),

thanks to Assumption (7.3).

Step 2. Estimate of M.-K. distance. We now estimate the M.-K. distance in the spirit of controlling
asynchronous jump mentioned above.

Although VN,β,a is not C1, we can still use it as a test function in (7.8), by regularization arguments.

Also, the directional derivative term
(
∂
∂si

+ ∂
∂s′
i

)
VN,β,a([s]N , [s

′]N ) vanishes because VN,β,a([s]N , [s
′]N )
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depends only on each si − s′i, and we find

d

dt

∫∫
CN×CN

VN,β,a([s]N , [s
′]N )ωN (t, d[s]N , d[s′]N )

=

∫∫
CN×CN

([
VN,β,a(τ [s]N , τ [s′]N )− VN,β,a([s]N , [s

′]N )
](
pN ([s]N ) ∧ pN ([s′]N )

)
+
[
VN,β,a(τ [s]N , [s

′]N )− VN,β,a([s]N , [s
′]N )

](
pN ([s]N )− pN ([s′]N )

)
+

+
[
VN,β,a([s]N , τ [s′]N )− VN,β,a([s]N , [s

′]N )
](
pN ([s′]N )− pN ([s]N )

)
+

)
ωN (t, d[s]N , d[s′]N ).

(7.11)

For the second last line in Equation (7.11), using 0 ≤ VN,β,a ≤ a
β and (7.3), we write∣∣∣VN,β,a(τ [s]N , [s

′]N )− VN,β,a([s]N , [s
′]N )

∣∣∣ ≤ a

β
,∣∣∣VN,β,a([s]N , τ [s′]N )− VN,β,a([s]N , [s

′]N )
∣∣∣ ≤ a

β
,

(pN ([s]N )− pN ([s′]N ))+ + (pN ([s′]N )− pN ([s]N ))+ ≤ δVN,β,a([s]N , [s
′]N ).

For the third last line in Equation (7.11), we notice that

VN,β,a(τ [s]N , τ [s′]N )− VN,β,a([s]N , [s
′]N ) =

β

1 + β
VN,β,a([s]N , [s

′]N ),

pN ([s]N ) ∧ pN ([s′]N ) ≥ a−.

Combining equations above, we can write Equation (7.11) as

d

dt

∫
CN×CN

VN,β,a([s]N , [s
′]N )ωN (t, d[s]N , d[s′]N )

≤−
∫∫
CN×CN

βa−
1 + β

VN,β,a([s]N , [s
′]N )ωN (t, d[s]N , d[s′]N )

+

∫∫
CN×CN

aδ

β
VN,β,a([s]N , [s

′]N )ωN (t, d[s]N , d[s′]N ).

Recalling the definition of TVN,β,a(ωN ) in Equation (7.6), this leads to,

d

dt
TVN,β,a

(
ωN (t)

)
≤ TVN,β,a

(
ωN (t)

)(
− βa−

1 + β
+
aδ

β

)
= −γTVN,β,a

(
ωN (t)

)
,

with γ > 0 defined in (7.4). By Gronwall’s inequality and (7.1) we have

TVN,β,a
(
nN (t),mN (t)

)
≤ TVN,β,a

(
ωN (t)

)
≤ e−γtTVN,β,a

(
ωN (0)

)
= e−γt

∫∫
VN,β,a([s]N , [s

′]N )ωN (0, d[s]N , d[s′]N ).

Finally, taking the infimum among all initial coupling wN (0) ∈ H(n(0),m(0)) in the right of the above
equation, we conclude the proof by definition of the M.-K. distance (7.1).
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To give an explicit and sufficient condition to satisfy Assumptions (7.3)-(7.4), we first define some
constants. For β > 0, we define the weighted maximum Lipschitz constant of ϕi([s]i) LN and and the
weighted maximum of fluctuation FN asLN (β) := max1≤i≤N sup[s]i,[s′]i(1 + β)i |ϕi([s]i)−ϕi([s

′]i)|
|si−s′i|

,

FN (β) := max1≤i≤N sup[s]i,[s′]i(1 + β)i
∣∣∣ϕi([s]i)− ϕi([s′]i)∣∣∣. (7.12)

Lemma 7.2. Under Assumptions (2.6) and (2.8) and for arbitrary 1 ≤ N ≤ +∞, if we have a proper β > 0
and a small enough a > 0 such that,

FN (β) <
a−β

2

1 + β
, and aLN (β) <

a−β
2

1 + β
, (7.13)

then Assumptions (7.3)-(7.4) hold with δ and γ defined as,

δ := max{FN (β)

a
, LN (β)}, γ :=

βa−
1 + β

− FN (β) ∨ aLN (β)

β
. (7.14)

Proof. Indeed, by Assumption (2.8) we have

|pN ([s]N )− pN ([s′]N )|
VN,β,a([s]N , [s′]N )

≤
∑N
i=1 |ϕi([s]i)− ϕi([s′]i)|∑N
i=1

1
(1+β)i (|si − s

′
i| ∧ a)

≤ max
1≤i≤N

{ |ϕi([s]i)− ϕi([s′]i)|
1

(1+β)i (|si − s
′
i| ∧ a)

}
≤ FN (β)

a
∨ LN (β) := δ.

Then the expression (7.14) of δ, and thus (7.3)-(7.4), follow.

While the Assumption (7.13) may seem restrictive, we give an explicit example here for N = +∞,
and the examples of N < +∞ can be readily derived from it. It also serves as an example for the
Assumption (7.15) in Theorem 7.3. This explicit example is

p∞([s]∞) =
+∞∑
i=1

(a− ∨ si) ∧ Ca−
(1 + β)i

.

Here C > 1 must satisfy a proper condition that we explain later. In this example, there is a subtle
trade-off between the fluctuation of ϕi([s]i) relative to [s]i, and the exponential decay of this fluctu-
ation relative to i. With the notation (7.12) extended to N = ∞, we have F∞(β) = (C − 1)a− and
L∞(β) ≤ 1. When C − 1 is large, the assumption C − 1 ≤ β2

1+β requires that the parameter β is also
large. More generally, given any positive Lipschitz function f(s) defined for s ≥ 0, we can use the
renewal rate as the following where ε is a small enough positive number,

p∞([s]∞) =

+∞∑
i=1

1

(1 + β)i

[(
a− ∨ f(si)

)
∧
( β2

1 + β
+ 1− ε

)
a−

]
.

29



7.2 Exponential convergence for measure solutions in C∞

We now extend the exponential convergence result in Section 7.1 to the infinite-times renewal equa-
tion.

Theorem 7.3. (Exponential Convergence of Measure Solutions) Assume the renewal rate satisfies (2.6)
and (2.8). We also assume that we can choose β, a > 0 and δ > 0 such that for arbitrary [s]∞, [s

′]∞ ∈ C∞,∣∣∣p∞([s]∞)− p∞([s′]∞)
∣∣∣ ≤ δ V∞,β,a([s]∞, [s

′]∞) and γ :=
βa−
1 + β

− aδ

β
> 0. (7.15)

Then for the infinite-times equation, given two different initial probability distributions n∞(0),m∞(0) ∈
P(C∞), we have the corresponding global-in-time solutions n∞(t) and m∞(t) as in Definition 6.3. The two
solutions satisfy the following exponential convergence of M.-K. distance,

TV∞,β,a
(
n∞(t),m∞(t)

)
≤ TV∞,β,a

(
n∞(0),m∞(0)

)
e−γt.

Notice that by replacing the N < +∞ in the Assumptions (7.3)-(7.4) of Theorem 7.1 with N = +∞,
we recover Assumption (7.15) of Theorem 7.3.

In principle, Theorem 7.3 can be proved via taking the limit N → ∞ in Theorem 7.1, using the local-
in-time strong convergence in Theorem 6.5. However, here we rather want to give a direct proof in the
same way to the finite-times case. To this end, we treat the solution as an infinite dimension measure
as in Definition 6.3, which is equivalent to the hierarchy viewpoint thanks to Lemma 6.4.

Proof of Theorem 7.3. We extend the coupling method in Theorem 7.3 to the infinite-times case. First
we want to build an evolution of the coupling measure ω∞(t) ∈ Cw

(
[0,+∞);M(C∞ × C∞)

)
, which

generalizes (7.8) to the infinite-times case. The existence of ω∞(t) can be obtained by letting N → ∞
for the N -times coupling measure ωN (t) given in the proof of Theorem 7.1, generalizing the local-in-
time strong limits in Theorem 4.1 and 6.5 to the coupling measures ωN (t).

Based on the arguments above, we have an element ω∞ ∈ Cw
(
[0,+∞);P(C∞ × C∞)

)
satisfying,

d

dt

∫∫
C∞×C∞

V∞,β,a([s]∞, [s
′]∞)ω∞(t, d[s]∞, d[s′]∞)

=

∫∫
C∞×C∞

+∞∑
i=1

( ∂

∂si
+

∂

∂s′i

)
V∞,β,a([s]∞, [s

′]∞)ω∞(t, d[s]∞, d[s′]∞)

+

∫∫
C∞×C∞

([
V∞,β,a(τ [s]∞, τ [s′]∞)− VN,β,a([s]∞, [s

′]∞)
]

min
{
p∞([s]∞), p∞([s′]∞)

}
+
[
V∞,β,a(τ [s]∞, [s

′]∞)− V∞,β,a([s]∞, [s
′]∞)

](
p∞([s]∞)− p∞([s′]∞)

)
+

+
[
V∞,β,a([s]∞, τ [s′]∞)− V∞′,β,a([s]∞, [s

′]∞)
](
p∞([s′]∞)− p∞([s]∞)

)
+

)
ω∞(t, d[s]∞, d[s′]∞).

Using the same method as in Theorem 7.1 we find,

TV∞,β,a
(
n∞(t),m∞(t)

)
≤ TV∞,β,a

(
n∞(0),m∞(0)

)
e−γt.

This concludes the proof.
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8 Conclusion and discussions

In Section 7 we revisit the problem of long time behavior via a rather different approach. In particular,
by using a suitable Monge-Kantorovich distance (instead of the strong L1-distance), we can give a
uniform-in-N convergence rate. However, we still need more assumptions on the renewal rate than
(2.6) and (2.8). On the one hand, the question of long time behavior in more general cases, seems a
difficult task; One the other hand, there has been many results (for example [13, 6]) about the long
time behaviour of the Hawkes process, which is formally similar to a particular kind of infinite-times
equations. We can ask if there are other types of assumptions, different from (2.6) and (2.8), where
there are other formulations facilitating the proof of convergence for infinite-times equations.

Concerning the possible nonlinearity in renewal equations, we can ask what kinds of nonlinearity
would be suitable and meaningful for this topic. After a suitable choice of nonlinearity, questions
about well-posedness and long-time behaviour could also be raised.

The formulation of hierarchy system (4.3) is similar to the BBGKY hierarchy, while rather than infinite
particles, we couple an infinite number of state variables here. However we can still ask if it’s possible
to have some kinds of ’propagation of chaos’ in the infinite-times equation. Since in the present
formulation it’s necessary that s1 ≤ s2 ≤ ..., the possibility of ’propagation of chaos’ may be searched
for based on some additional reformulations. Meanwhile in a heuristic way, we could regard the state
variables s1 ≤ s2 ≤ ... as an infinite number of particles with a strict order structure. This could be
a starting point of exploring how to use infinite-dimensional PDE to describe a particle system with
heterogeneous particles.

A Doeblin Theorem

Definition A.1. (Markov semi-group). Let (X ,A) be a measure space and Pt : P(X ) → P(X ) be a linear
semi-group. We say that Pt is a Markov semi-group if Ptµ ≥ 0 for all µ ≥ 0 and

∫
X
Ptµ =

∫
X
µ for all P(X ).

In other words, (Pt) preserves the subset of probability measure P(X ).

Definition A.2. (Doeblin’s condition). Let Pt : P(X )→ P(X ) be a Markov semi-group. We say that (Pt)
satisfies Doeblin’s condition if there exist t0 > 0 and ν ∈ P(X ) such that

Pt0µ ≥ αν, ∀µ ∈ P(X ) (A.1)

And then we state the Doeblin Theorem.

Theorem A.3. (Extended Doeblin’s Theorem). Let Pt : P(X ) → P(X ) be a Markov semi-group that
satisfies Doeblin’s condition. Then the semigroup has a unique equilibrium µ∗ ∈ P(X ), Moreover, for all
µ ∈ P(X ) we have

‖Ptµ− 〈µ〉µ∗‖M1 ≤ 1

1− α
e−λt‖µ− 〈µ〉µ∗‖M1 , ∀t ≥ 0 (A.2)

with 〈µ〉 :=
∫
X
µ and λ = − ln(1−α)

t0
.

When the semi-group maps L1 into itself, the same result holds with L1 in place of P . Then, µ∗ ∈ L1 and ν is
automatically an L1 function.

For a proof of Doeblin’s theorem, the readers may see [11]. With a slight modification, we can prove
the extended Doeblin’s theorem.
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B The Kolmogorov extension Theorem

Denote by RN the set of Borel sets in RN with N = 1, 2, ...,∞, as a σ-algebra. Specifically, we define
RN to be the set of Borel sets generated by the product topology on RN, where we use N instead of
∞ as the superscript to emphasize the countable dimension on the space RN.

Theorem B.1 (Kolmogorov’s extension theorem). Assume we are given a sequence of probability measures
µN on (RN ,RN ) that is consistent, which means µ(N)

N+1 = µN . Then, there is a unique probability measure
µ∞ on (RN,RN) such that for any K,

µ(K)
∞ = µK . (B.1)

Its proof can be found in [21, 7] for instance. We can use this extension theorem to construct a solution
of infinite-times renewal equation from a hierarchy solution. This construction is thus a part of the
equivalence between the two kinds of solution as shown in Lemma 6.4.
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