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Abstract

We demonstrate that like in the forward cascade of three dimensional turbulence that displays

intermittency (lack of self-similarity) due to the concentration of energy dissipation in a small set

of fractal dimension less than three, the inverse cascade of two-dimensional turbulence can also

display lack of self-similarity and intermittency if the energy injection is constrained in a fractal

set of dimension less than two. A series of numerical simulations of two dimensional turbulence

are examined, using different forcing functions of the same forcing length-scale but different fractal

dimension D that varies from the classical D = 2 case to the point vortex case D = 0. It is shown

that as the fractal dimension of the forcing is decreased from D = 2, the self-similarity is lost and

intermittency appears. The present model thus provides a unique example that intermittency is

controlled and can thus shed light and provide test beds for multi-fractal models of turbulence.

I. INTRODUCTION

Turbulence is pervasive in natural and industrial flows. In his first statistical description

of turbulence Kolmogorov [1] argued that energy in turbulent flows cascades to smaller and

smaller scales in such a way that there is a constant flux of energy from the large scales

where energy is injected to the small viscous scales where energy is dissipated. Assuming

further that this process is self-similar leads to the prediction that the different moments of

velocity differences

Sp(r) ≡
〈∣∣∣r

r
· (u(x+ r)− u(x))

∣∣∣p〉 (1)

separated by a distance r = |r| scale like Sp ∝ rp/3 with the case p = 3 being an exact result

(without the absolute value in equation 1). There is a mass of evidence however from the

past years that this result is not exact; self-similarity is broken and the powers of velocity

differences scale with different exponents Sp(r) ∝ rζp where ζp ̸= p/3. This breaking of

self-similarity is referred to as intermittency. It appears because as the cascade develops

towards smaller scales, energy is concentrated in a set that occupies a smaller and smaller

fraction of the domain volume so that finally energy dissipation is concentrated in a fractal

set of dimension smaller than three [2]. Modern theory of turbulence attempts to understand

quantitatively the origin of intermittency and predict these exponents [3, 4].

∗ alexakis@phys.ens.fr

2



In two dimensions on the other hand, due to the presence of a second invariant, enstrophy,

the energy cascades in an inverse way from small to large scales [5]. This behavior was

first predicted by Kraichnan–Leith–Batchelor (KLB) theory (see [6–8]). What was equally

interesting was that the inverse cascade of energy in two dimensions is in fact self-similar

so that all moments of velocity differences scale with r with exponents ζp = p/3 [9]. This is

explained by the fact that larger eddies extract energy from an ensemble of smaller eddies

averaging out this way any extreme events. This behavior, as we argue in this work, does

not always have to be the case. If the energy injection in two dimensional turbulence is not

space filling but is restricted in a set of dimension D smaller than two, then as energy moves

up in scale it can occupy larger and larger area fraction so that only at large scales it is

concentrated in a two-dimensional set.

Fractal forcing has been employed extensively in three dimensional turbulence with the

use of fractal grids in simulations and wind tunnel experiments in order to enhance tur-

bulence [10–14]. In nature, atmospheric and oceanic flows driven by winds over rough

topography [15, 16] resemble two-dimensional turbulence driven by a fractal forcing. Fur-

thermore, quasi-two-dimensional flows are believed to transition to an inverse cascade in a

critical manner [4]. In such flows the energy injected in the two-dimensional manifold ap-

pears in a set of smaller dimension occupying a fraction of the domain area that approaches

zero as criticality is approached [17, 18].

In this work we show using an extensive set of numerical simulations that indeed inter-

mittency can appear in the inverse cascade of energy when the energy-injection mechanism

is restricted to a set of fractal dimension D < 2. This model does not only give new insights

in two-dimensional turbulence but also provides a unique example that intermittency can

be controlled and can thus provide test beds for multi-fractal models of turbulence.

II. NUMERICAL SIMULATIONS

We begin by considering the incompressible flow in a double periodic square domain of

side 2πL. In terms of the vorticity ω the two dimensional Navier-Stokes equation can be

written as

∂tω + u · ∇ω = ν∇2ω + α∇−2ω + fω (2)

3



N 512 1024 2048 4096

λ 16 32 64 128

Reα 4.4× 104 2.8× 105 1.8× 106 1.1× 107

TABLE I. Resolution N , scale separation λ = L/ℓf and hypo-viscous Reynolds number Reα.

FIG. 1. Demonstration of how a fractal set of box-counting dimension 1/2 is formed. At every

step (down) the initial set is split in 4 equal sub-sets out of which subset 1 and 3 are disregarded.

After N steps there are n = 2N sets left of length ℓ = L/4N . Therefore the number of ‘boxes’ of

length ℓ required to cover the remaining sets are n = (L/ℓ)D with D = 1/2.

where the velocity u is linked to ω by ω = ∇×u, ν is the viscosity and α is a hypo-viscosity

used to absorbs energy arriving at the largest scales at a rate ϵα = α⟨|∇−1u|2⟩. The curl

of the forcing is given by fω that injects energy at a rate ϵ at a lengthscale ℓf . Given the

functional form of fω, there are three independent non-dimensional control numbers: the

Reynolds number Re = ϵ1/3ℓ
4/3
f /ν, the hypo-viscous Reynolds number Reα = ϵ1/3ℓ

−8/3
f /α

and the domain to forcing scale ratio λ = L/ℓf . This system of equations was solved

numerically using the pseudo-spectral code ghost [19] with 2/3 de-aliasing and second

order Runge-Kutta method for the time advancement. Since we are interested in the inverse

cascade the Reynolds number was kept fixed to a small value Re = 10. This value of Re

is sufficiently large to allow for the development of the inverse cascade but suppresses the

forward enstrophy cascade and any intermittency related to it. As a result the smallest

scales in the system are given by ℓf and energy in these scales is concentrated close to the

forcing. The hypo-viscous Reynolds number Reα was set to Reα = 20λ8/3 so that the large

scale dissipation lengthscale ℓα remains fixed and close to the domain size ℓα ≃ L. Five

different resolutions N were used varying λ as given in the table I.

Finally, five different forcing functions of different fractal dimension D are considered.
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FIG. 2. Top panels: Random forcing function for different dimension D at resolution N = 512.

Lower panels: Vorticity of the flow for the same cases as above at steady state.

The first one corresponding to D = 2 is the classical random forcing where all Fourier modes

of wave-vectors k satisfying |k| ≃ 1/ℓf are forced with random phases. The D = 1 forcing

corresponds to four vertical and four horizontal vortex lines with Gaussian profiles of width

ℓf randomly placed in the domain. Similarly D = 0 corresponds to eight point-vortexes with

Gaussian profile of width ℓf randomly placed in the domain. The D = 3/2 and D = 1/2

correspond to Cantor sets that are constructed as follows. For D = 3/2 a dense set of

horizontal and vertical vortex-lines are uniformly placed in the domain. This set is split in

four equal subsets from which subset one and three are removed. The remaining sets are

then split again in four from which again subset one and three are removed and so on, as

demonstrated in figure 1, until no further splitting can be done. The resulting box-counting

dimension is D = 3/2 [20, 21]. For D = 1/2 we start with point-vortexes placed along one

vertical and one horizontal line and we follow the same procedure leading this time to a

box-counting dimension D = 1/2.

For all forcing functions the the forcing lengthscale ℓf was fixed so that energy injection

was around a similar wavenumber kf ≃ 1/ℓf . Furthermore, in all cases the amplitude of

the forcing function was varied randomly delta-correlated in time, fixing thus the energy

injection rate ϵ. In addition, the forcing pattern moved is space following a slow random
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FIG. 3. Left: Energy spectra for the highest resolution runs. The dashed lines give the forcing

spectrum. The straight dotted line gives the k−5/3 scaling. Right: Energy flux for the same cases.

walk. The forcing function thus is written as

fw = A(t)fD([x− x∗(t)]/ℓf ) (3)

where fD(x) gives the functional form A(t) random and delta correlated and x∗(t) follows a

random walk. The random displacement in space makes at long timescales all points in space

are equivalent. The time scale of the random displacement is smaller than the eddy turnover

time so that the forcing appears fixed within the survival time of the eddies. We note that

although the instantaneous forcing is very in-homogeneous. Homogeneity is recovered in a

statistical sense only when averaging over very long time scales where the random shifting

has lead the forcing to cover the hole domain. In-homogeneity and non-steadiness has been

claimed to alter the properties of the cascade even in three-dimensional turbulence in [22]

where a fractal forcing was also used.

A color plot of a realisation of the forcing functions for the five forcing functions is shown

in the upper panels of figures 2. For this figure we used the smallest λ (largest ℓf ) so that

the point-vortexes in the left panel are clearly visible.
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FIG. 4. The panels show tanh(0.01ω) obtained from simulations at steady state at the highest

resolution N = 4096 for fractal forcing dimension D = 2 (left) and D = 0 (right). Despite that

all flows are forced at the same length-scale and with the same energy injection rate the resulting

structures are visibly different.

III. RESULTS

All forcing functions lead to an inverse cascade of energy marked by an energy spectrum

close to k−5/3 (left panel of figure 3) and a negative flux of energy

Π(k) = ⟨u<
k · (u · ∇u)⟩ (4)

(where u<
k indicates the field u filtered so that only wavenumbers with |k| ≤ k are kept)

shown in the lower panel of figure 3. The flux is negative approximately constant in the

range 0.01kf < k < 0.2kf .

Although all the five cases have an inverse cascade they do not have the same turbulent

statistical behavior. This can already be seen in the vorticity plots shown in the lower

panels of figure 2. Turbulence, marked by intense vorticity regions, is uniformly spread in

the domain for the D = 2 case but as D is decreased intense vorticity regions occupy a

smaller area fraction but with larger intensity. This behavior can be seen more pronounced

in the high resolution cases N = 4096 shown in figure 4 where color–plot of tanh(0.01ω) are

displayed for the two extreme cases D = 2 and D = 0. In the D = 2 no particular structure

can be identified other than some large scale vortexes. In the D = 0 case one can easily see

clusters of vortexes of different sizes and at the same time regions with almost no activity.

Clearly, the two flows differ.
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FIG. 5. Top: The probability distribution function of δu(r) normalized by its variance σu =

S2(r)
1/2 for different values of r and for different values of D. The curves have been shifted

vertically for clarity. Bottom: area fraction of points with δu(r) > σu as a function of r for all D.
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FIG. 6. The left panel shows K(r) for the flows at highest λ for the five different forcing functions.

The right panel shows K(r) for D = 0 and four different values of λ.
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In order to quantify this observation we plot in figure 5 the probability distribution

function (p.d.f.) of velocity differences for all cases for different values of r starting from

the largest r = L/4 to the forcing scale r = L/128 = ℓf . In the D = 2 case the p.d.f.s are

close to Gaussian for all examined r. Furthermore, no significant change is observed as r is

varied: ie they are self-similar. For smaller values of D on the other hand the p.d.f.s deviate

from the Gaussian distribution having larger tails. Most importantly, as smaller values of

r are considered the deviations from Gaussianity become stronger with distributions more

peeked and with stronger tails. In other words self-similarity is lost. The bottom panel

shows the area fraction of point that have |δu(r)| larger than the variance σu = S2(r)
1/2 as a

function of r showing that the area fraction is decreasing with L/r indicating that breaking

of self-similarity is linked to the fact that intense regions occupy a smaller area fraction as

smaller scales are examined.

A quantitative way to measure this lack of self-similarity, is to measure the kurtosis

K(r) = S4(r)/S
2
2(r). Kurtosis gives a measure of how heavy-tailed is the distribution of

δu. K(r) = 3 corresponds to a Gaussian distributed field while larger values correspond to

fields of wider distribution. If the distribution is self-similar K(r) will be independent of r.

In figure 6 we plot the Kurtosis for different cases. The top panel shows K(r) for the flows

at highest λ = 128 (highest resolution) for the five different forcing functions. For D = 2,

K(r) is almost flat and close to 3, indicating that δu follows a self-similar, nearly-Gaussian

distribution. As the dimension of the forcing is decreased K(r) takes larger and larger

values in the small r range, with the D = 0 case having more than an order of magnitude

larger K(ℓf ) than a Gaussian field. The lower panel shows the case D = 0 for the different

values of λ. As λ and Reα are increased the non-self-similar behavior extends to a larger

range of r with the deviation from Gaussianity increasing. Therefore this amounts to a

phenomenon that persists and extends as larger scale separation between the forcing scale

and the dissipation scale is achieved. This implies that in the limit of large Reα and λ new

power-laws can form as the flow statistics transition from the highly intermittent behavior

at the forcing stale ℓf to the nearly Gaussian statistics at the box-scale L.

To test this possibility in figure 7 we plot Sp(r)
1/p up to order p = 6 for the different

flows. For all D the scaling S
1/3
3 (r) ∝ r1/3 (indicated by the orange dashed line) appears to

be reasonably satisfied in a range of scales rmin < r < rmax (inertial range) marked by the

vertical doted lines. Furthermore, for the D = 2 case all structure functions appear to also
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satisfy S
1/p
p (r) ∝ S

1/3
3 (r) demonstrating self-similarity. This is no longer the case however,

for smaller values of D. As D is decreased the slopes of S
1/p
p (r) for larger values of p deviate

from the r1/3 scaling and appear to become less steep indicating absence of self-similarity.

The deviation from self-similarity can be measured by calculating the exponents ζp. The

fitting range for these exponents is rather-small but we note that as figure 6 demonstrates

this range will increase as as larger domains are examined. We measured the exponents by

using the extended self-similarity assumption [23] that extends the range that a power-law

behavior is observed. In extended self-similarity method Sp(r) is fitted as Sp(r) ∝ S3(r)
ζ′p

instead of Sp(r) ∝ rζp . Assuming the theoretically predicted linear scaling of the third

moment S3(r) ∝ r one then obtains ζp = ζ ′p. The lower panels of figure 7 show S
1/p
p (r)

plotted as a function of S
1/3
3 (r) where it has been normalized by S

1/3
3 (r) to intensify the
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differences.

The measured exponents up to p = 6 are shown in figure 8. For D = 2 the exponents

follow the linear scaling ζp = p/3. As D is decreased, the exponents with p < 3 increase

while exponents with p > 3 decrease. The flow thus becomes more intermittent as D is

decreased with the high order moments being dominated by a few but strong events in the

tail of the distribution. In particular, for D = 0 the exponents appear to become almost

constant as large values of p are approached, something that has to be verified however with

larger resolutions and larger values of p.

IV. CONCLUSIONS

In this work we have shown, that the inverse cascade of energy can display intermit-

tent features provided that the forcing function injects energy in a fractal set of dimension

smaller than two. Intermittency is demonstrated by long tails in the distribution of the ve-

locity differences at small scales caused by the forcing, that as larger scales are approached

they flatten out becoming closer to Gaussian. This behavior was shown to persist as larger

domains (larger λ) are considered. Most importantly it is shown that the strength of in-

termittency caused by the fractal forcing is sensitive on its dimension and thus it provides

a way to create a cascade for which the intermittency can be varied from self-similar to

strongly intermittent. The overall picture that emerges is that larger eddies that occupy a

certain area fraction are forced by smaller eddies that occupy a smaller area fraction that

0 2 4 6
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0.5

1.0

1.5

2.0

ζ p

d=0
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d=2

FIG. 8. Scaling exponents ζp measured using the Extended Self-Similarity method.
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themselves are forced by even smaller eddies occupying an even smaller area fraction and

so on up to the forcing scale (to paraphrase Richardson’s poem). There is thus a non-self-

similar cascade process that connects the strongly intermittent forced scales to the Gaussian

large scales. Given the simplicity of the present model, ideas about the behavior and origin

of intermittency can thus be put in the test using it.

There are thus various limitations of the present results that we would like to discuss.

Although, the present results demonstrated the existence of intermittency in 2D flows when

fractaly forced, we have not examined how universal these result are (given the dimensional-

ity of the forcing). In this work we have used a particular type of fractal forcing. However the

fractal dimension alone does describe all the geometrical properties of the forcing and other

geometrical parameters as well as properties of its time evolution can also become impor-

tant. Various extensions of it can thus be considered in order to identify the key ingredients

besides the dimension, that determine the statistical properties of the resulting flows. For

example, in the present study the pattern of the forcing moved is space as a slow random

walk. As such large eddies that sweep through the forcing location lead to the generation of

a streak of forcing-scale size eddies instead of a single eddie. This behavior could be altered

if the random shifting of the forcing is faster or if the location of the forcing moves with the

flow. Such alterations in the forcing can increase or decrease the number of eddies generated

by the forcing and change the resulting statistics. Another possible variation of the present

model is to change the mono-fractality of the forcing. Here we employed only mono-fractal

forcing. Bi-fractal, or multi-fractal forcing can also be considered by adding with appropri-

ate weight different fractal forcing functions. This could lead to an intermittent behavior

that is closer to the three dimensional cascade.

Another aspect that should be further investigated is the role Re and Reα. Here we

limited our-selves in low Re values. It would be interesting to investigate if the present

results persist as Re is increased. Also, the effect of hypo-viscosity used in this work should

also be investigated examining larger or smaller powers of the inverse laplacian.

Of course, although numerical simulations are invaluable at this state, a theoretical frame-

work that will lead to clear predictions about fractaly forced two dimensional turbulence

is still missing. Furthermore the realization of laboratory experiments of two dimensional

turbulence forced by fractal forcing (as for example stirring with thin rods) would be very

useful.
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Finally, one cannot but wonder, how a fractal forcing can affect intermittency properties

in three dimensional turbulence.
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