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Faster List Decoding of AG Codes

Peter Beelen∗ Vincent Neiger†

Abstract

In this article, we present a fast algorithm performing an instance
of the Guruswami-Sudan list decoder for algebraic geometry codes. We
show that any such code can be decoded in Õ(s2ℓω−1µω−1(n+g)+ ℓωµω)
operations in the underlying finite field, where n is the code length, g is the
genus of the function field used to construct the code, s is the multiplicity
parameter, ℓ is the designed list size and µ is the smallest positive element
in the Weierstrass semigroup of some chosen place.

1 Introduction
Context and main result. Algebraic geometry (AG) codes form a large
class of error-correcting codes that became famous for providing asymptotically
good families of codes surpassing the Gilbert-Varshamov bound. Such codes
are constructed using algebraic curves defined over a finite field, say Fq where
q is the cardinality of the field. Instead of considering algebraic curves defined
over Fq, one can also use the language of function fields with full constant field
Fq; we follow the latter viewpoint in this article. Section 2 gives some more
background on AG codes and function fields; for a detailed introduction, the
reader may refer to [17].

Decoding algorithms for AG codes have been studied since the late 80’s. One
important such decoder is the well-known Guruswami-Sudan (GS) list-decoder,
that can be used to decode any AG code.

Consider an AG code constructed from a function field F of genus g, with
underlying finite field Fq and code length n. The design of the GS decoder fur-
ther asks that one chooses a list size ℓ and multiplicity parameter s, which are
such that s ≤ ℓ. It was shown in [2] that such an AG code can be decoded using
a particular instance of the GS decoder using Õ(sℓωµω−1(n+ g)) operations in
Fq, where µ is the smallest positive element in the Weierstrass semigroup at
some chosen rational place P∞ of F . Here, the “soft-O” notation Õ(·) is similar
to the “big-O” notation O(·), but hides factors logarithmic in the parameters
s, ℓ, µ, n, g. This complexity result is achieved under the mild assumption that
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one has already carried out some precomputations, yielding objects which de-
pend on the code but not on the received word. These objects can therefore be
reused as such, with no additional computation, in each subsequent call to the
decoder (see [2, Section VI] for more details).

To the best of our knowledge, this complexity result is the best known one
for this decoding task in general. More precisely, any other implementation of
the GS decoder has a complexity bound which is similar or worse, with one
exception in the specific context of Reed-Solomon (RS) codes. Indeed, in this
case the above complexity from [2] becomes Õ(sℓωn), while there are known list
decoders for these codes whose complexity is in Õ(s2ℓω−1n) [4, Section IV] [9,
Sections 2.4 to 2.6]; recall that s ≤ ℓ.

The main goal of this paper is to refine the exploitation of efficient uni-
variate polynomial matrix computations in the algorithmic framework from [2].
We will show that this indeed is possible, leading to our main result: any AG
code can be list decoded, using an instance of the GS list decoder, in complexity
Õ(s2ℓω−1µω−1(n+g)+ℓωµω). This complexity bound holds under mild assump-
tions about precomputations, similar to those of [2] mentioned above. Since
µ ≤ g + 1, the term ℓωµω is in O(ℓωµω−1g), and therefore this new complex-
ity bound improves upon the best previously known bound Õ(sℓωµω−1(n+ g)).
Moreover, for Reed-Solomon codes one has µ = g+1 = 1 and also ℓ ≤ sn, so that
the new complexity bound becomes Õ(s2ℓω−1n), matching the best previously
known bound in this specific case.

Overview of the approach. The GS list decoding algorithm consists of two
main steps: the interpolation step, in which one seeks a polynomial Q(z) ∈
F [z] satisfying certain interpolation properties; and the root finding step, in
which one computes roots of the polynomial Q(z). The second step is generally
considered as computationally easier than the first step. In this paper, we
keep the root finding algorithm described in [2, Algorithm 6], yet with a minor
refinement of the complexity analysis to ensure that it does not become the
dominant step after our improvement of the interpolation step. Specifically,
Section 5.2 shows a simple modification of the analysis from [2] leading to the
complexity estimate Õ(sℓµω−1(n+g)), improving upon the one Õ(ℓ2µω−1(n+g))
reported in [2].

We also keep the overall structure of the interpolation step [2, Algorithm 7,
Steps 1 to 9], which performs two main tasks: first build a basis B of some Fq[x]-
module of interpolant polynomials, and then find a small degree such interpolant
Q(z) thanks to a suitable Fq[x]-module basis reduction procedure. The main
novel ideas for obtaining our result are the following:

• For applying basis reduction to B, we rely on the algorithm from [14]
for computing so-called shifted Popov forms. The same choice was made
in [2], where it was motivated by the fact that this algorithm supports
any shift, whereas earlier similarly efficient algorithms [5, 16, 6] focus
on the unshifted case. Here, we have an additional motivation for this
choice: a key towards our complexity improvement lies in the fact that
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the complexity of this basis reduction algorithm is sensitive to some type
of average degree of the input polynomial matrix.

• We describe a new algorithm to build a polynomial matrix B whose av-
erage degree is small, and whose rows generate all possible interpolating
polynomials Q(z). Our construction directly provides a matrix whose
rows are Fq[x]-linearly independent, whereas the matrix built in [2] has
redundant rows and therefore requires additional computations to obtain
a basis of its Fq[x]-row space, which furthermore typically does not have
small average degree. In our case, this small average degree is ensured
through the combination of two ingredients. The first one is a new de-
scription of a generating set of the module of interpolants (see Sections 3.1
to 3.3) which leads to a matrix B with many zero entries in each row (like
in [2]), and also such that the nonzero entries are restricted to the first µs
columns (unlike in [2] where they can be found in all columns). The sec-
ond ingredient is an iterative computation of blocks of rows of B, avoiding
any degree growth at each stage via the computation of matrix remain-
ders in polynomial matrix divisions by well-chosen matrix quotients (see
Sections 3.4 and 4.2).

• A core tool in our construction of B is a generalization of [2, Algorithm 4]
which, given some function a ∈ Я(A), finds a polynomial matrix repre-
sentation of the multiplication map f ∈ Я(B) 7→ af ∈ Я(A + B) (see
Section 2 for definitions and notation). The version in [2] was for A = 0,
and we show how to generalize it to any divisor A without impacting the
asymptotic complexity.

Outline. Section 2 presents the main definitions and preliminary results used
throughout the paper. Section 3 focuses on bases for the module of interpolant
polynomials, starting with a versatile description of a family of such bases,
then showing a polynomial matrix representation of an explicit choice of such
a basis, and finally gathering some properties that constructively prove the
existence a basis matrix B with small average degree. Section 4 describes the
above-mentioned generalization of [2, Algorithm 4], and a complete algorithm
for efficiently constructing B. Finally, Section 5 summarizes the resulting list
decoder and proves the announced overall complexity bound.

Perspectives. After this work, the obvious perspective is to seek further com-
plexity improvements beyond Õ(s2ℓω−1µω−1(n+ g) + ℓωµω). Remark that any
improvement concerning the exponents of ℓ, s, or n would directly imply an
improvement of the state-of-the-art complexity for the case of Reed-Solomon
codes; a perhaps more accessible target would be to reduce the dependency
on the genus g or on the quantity µ. Although our emphasis here is on the
complexity of the decoder for a fixed code, allowing to perform some precom-
putations that depend only on this code, another natural direction for further
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work is to carry out a complexity analysis for these precomputations. This in-
volves notably the computation of Apéry systems as introduced in [12], which
relates directly to active research topics such as the computation of bases of
Riemann-Roch spaces (see for example [8] and the literature overview in [3,
Section 7]).

2 Preliminaries
In this section we review some necessary concepts and notations about function
fields, AG codes, the GS list decoder, and algorithms for polynomial matri-
ces (i.e. matrices over Fq[x]). We largely use the same notation as in [2] and
definitions from [17].

2.1 Function fields and AG codes
Let a function field F of genus g and full constant field Fq be given. A divisor
A =

∑
i niAi of F is a formal Z-linear combination of places Ai of F , such that

finitely many of these places have a nonzero coefficient. Then the support of A,
denoted by supp(A) is the set of all places Ai of F such that ni ̸= 0. A divisor A
is called effective if for all i it holds ni ≥ 0. This is commonly denoted by A ≥ 0.
The degree of a place Ai of F is defined as the dimension of the residue field
FAi of the place Ai, viewed as an Fq-vector space. If a place of F has degree
one, it is called a rational place of F . The degree of a divisor A =

∑
i niAi,

is then simply defined as deg(A) =
∑

i ni deg(Ai), where deg(Ai) denotes the
degree of the place Ai.

The Riemann-Roch space of a divisor A is given by

L(A) = {f ∈ F \ {0} | (f) +A ≥ 0} ∪ {0},

where (f) denotes the divisor of f . Divisors of nonzero functions are called
principal divisors. The Riemann-Roch space L(A) is a finite dimensional vector
space over Fq, whose dimension will be denoted by l(A). The dimension of
L(A) is the topic of the theorem of Riemann-Roch [17, Theorem 1.5.15]. In
particular, it implies that l(A) ≥ deg(A)+1−g and that equality holds whenever
deg(A) ≥ 2g−1. Moreover l(A) = 0 if deg(A) < 0 since the degree of a principal
divisor is zero.

Now let P1, . . . , Pn be distinct rational places of F and write D = P1+ · · ·+
Pn. Given any divisor G such that supp(D)∩ supp(G) = ∅, one defines the AG
code

CL(D,G) = {(f(P1), . . . , f(Pn)) | f ∈ L(G)},

where L(G) denotes the Riemann-Roch space of the divisor G. The dimension
of the code equals l(G)− l(G−D), the functions in L(G−D) being precisely all
function in L(G) that give rise to the zero codeword. In particular, CL(D,G) is
the zero code if deg(G) < 0. Moreover, the theorem of Riemann-Roch implies
that dim(CL(D,G)) = n, i.e. CL(D,G) = Fn

q , whenever deg(G) ≥ n + 2g − 1.
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Because of this, we may assume 0 ≤ deg(G) ≤ n + 2g − 1 and in particular
deg(G) ∈ O(n+ g).

Further we denote by P∞ an additional rational place of F not occurring
in the divisor D. (At first sight this seems to restrict the length of the AG
code CL(D,G), since apparently not all rational places can occur in D, but as
explained in [2, Section II.B] this is not the case: if needed, a small degree exten-
sion of the constant field will always produce “new” rational places from which
P∞ can be chosen; a similar observation about P∞ was made independently in
[11].) We denote by µ ∈ Z>0 the smallest positive element in the Weierstrass
semigroup of P∞ and by x ∈ F a function that has pole order µ at P∞, but
otherwise is without poles. Note that µ ≤ g+1, since the Weierstrass semigroup
has g gaps; in fact µ ≤ g as soon as the set of these gaps is not {1, . . . , g}.

For any divisor A of F , let Я(A) =
⋃∞

m=−∞ L(mP∞ +A) and let Я = Я(0).
As in [12], for any nonzero a ∈ Я(A) we denote by δA(a) the smallest integer
m such that a ∈ L(mP∞ + A), i.e. δA(a) = −vP∞(a) − vP∞(A) and let δ(a) =
δ0(a) = −vP∞(a). We will take as convention that δA(0) = −∞. Note that for
any a ∈ Я(A) and b ∈ Я(B), one has δA+B(ab) = δA(a) + δB(b). We will use
the quantity δA(a) to indicate the “size” of an element a ∈ Я(A); it generalizes
the degree of a univariate polynomial. For example, the following known result,
see for example [2, Lemma V.3] for a proof, indicates the size of interpolating
functions in Я(A):

Lemma 2.1 ([2, Lemma V.3]). Let A be a divisor and E = E1 + · · ·+ EN for
distinct rational places E1, . . . , EN of F different from P∞ such that supp(A)∩
supp(E) = ∅. For any (w1, . . . , wN ) ∈ FN

q there exists an a ∈ Я(A) with

δA(a) ≤ deg(E) + 2g − 1− deg(A)

such that a(Ej) = wj for j = 1, . . . , N .

Since by definition, the function x only has a pole in P∞, we have x ∈ Я\Fq.
Hence, we can view Я(A) as a free Fq[x]-module. Following [12] and using the
same notation as in [2], we consider a specific kind of basis of Я(A) as Fq[x]-
module, called an Apéry system of Я(A).

Definition 2.2. For a divisor A and an integer i = 0, . . . , µ−1, let y(A)
i ∈ Я(A)

be a function satisfying:

1. δA(y
(A)
i ) ≡ i mod µ,

2. if a ∈ Я(A) and δA(a) ≡ i mod µ, then δA(y
(A)
i ) ≤ δA(a).

Further we define yi = y
(0)
i .

Using the theorem of Riemann-Roch, it is not hard to show the following
lemma, see for example [2, Lemma III.3] for details:

Lemma 2.3 ([2, Lemma III.3]). For any divisor A it holds that

−deg(A) ≤ δA(y(A)
i ) ≤ 2g − 1− deg(A) + µ,

for i = 0, . . . , µ− 1.
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As mentioned in [12], y(A)
0 , . . . , y

(A)
µ−1 is an Fq[x]-basis of Я(A). Given a ∈

Я(A), it is therefore possible to write a as an Fq[x]-linear combination of these
basis elements, and in fact the Fq[x]-coefficients of this combination are unique.
As demonstrated in [2, Lemma III.4], there is a very explicit upper bound for
the degree of these occurring coefficient polynomials:

Lemma 2.4 ([2, Lemma III.4]). If a =
∑µ−1

i=0 aiy
(A)
i ∈ Я(A), where ai ∈ Fq[x]

and A is a divisor, then

deg(ai) ≤
1

µ

(
δA(a)− δA(y(A)

i )
)
≤ 1

µ

(
δA(a) + deg(A)

)
.

2.2 The Guruswami-Sudan list decoder
The key idea in the Guruswami-Sudan list decoding algorithm for CL(D,G) [7]
is to find a polynomial Q(z) =

∑ℓ
t=0 z

tQt ∈ F [z], nonzero of degree at most
ℓ, that vanishes with multiplicity at least s at each point (Pi, ri), where r =
(r1, . . . , rn) ∈ Fn

q is the received word. The idea is that if the coefficients Qt ∈ F
are chosen in suitable subspaces of F and r has small enough Hamming distance
from the sent codeword (f(P1), . . . , f(Pn)), then Q(f) is the zero element in F
(see Theorem 2.5). This can then be used to recover f from Q by finding the
roots of Q in F .

For the remainder of this paper fix s, ℓ ∈ Z>0 with s ≤ ℓ, where s is the
multiplicity parameter and ℓ the designed list size of the Guruswami-Sudan list
decoder. The corresponding list decoding radius will be denoted by τ .

More specifically, as in [2], we restrict ourselves to the setting where Q =∑ℓ
t=0 z

tQt with Qt ∈ Я(−tG) and define δG(Q) = maxt δ−tG(Qt). Further,
given a received word r = (r1, . . . , rn) ∈ Fn

q , we define

Ms,ℓ,r =

{
Q =

ℓ∑
t=0

ztQt ∈ F [z]
∣∣ Qt ∈ Я(−tG),

Q has a root of multiplicity at least s at (Pj , rj) for all j
}
.

(2.1)

In this setting, one has the following result, which is the crux of the correctness
of the Guruswami-Sudan list decoder [7]:

Theorem 2.5 (Instance of Guruswami-Sudan). Let r ∈ Fn
q be a received word

and Q ∈Ms,ℓ,r with δG(Q) < s(n− τ). If f ∈ L(G) is such that the Hamming
distance between r and (f(P1), . . . , f(Pn)) is at most τ , then Q(f) = 0.

For algorithmic purposes, it is convenient to give a description ofMs,ℓ,r that
is as explicit as possible. For the remainder of this article let Gt = (t−s)D− tG
for 0 ≤ t < s and Gt = −tG for s ≤ t ≤ ℓ. From [2] we quote the following:
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Theorem 2.6 ([2, Theorem IV.4 and Remark IV.7]). Let R ∈ Я(G) be such
that R(Pj) = rj for 1 ≤ j ≤ n. Then

Ms,ℓ,r =

ℓ⊕
t=0

(z −R)tЯ(Gt) (2.2)

=

s−1⊕
t=0

(z −R)tЯ(Gt)⊕
ℓ⊕

t=s

zt−s(z −R)sЯ(Gt). (2.3)

In [2], the first description (Equation (2.2)) was used to obtain a decoding
algorithm for CL(D,G) with complexity Õ(ℓω+1µω−1(n + g)), while the sec-
ond description (Equation (2.3)) improved this to Õ(sℓωµω−1(n+ g)). We will
see in Section 3 that one ingredient in our improvement is to use yet another
description of Ms,ℓ,r.

2.3 Reminders on univariate polynomial matrices
In this paper, we will make use of a few classical notions on univariate polynomial
matrices. For brevity, since only the univariate case will be encountered, we will
just write “polynomial matrix”.

For a polynomial matrix A = [ai,j ]i,j ∈ Fq[x]
m×ν , its degree is defined as

maxi,j deg(ai,j) and denoted by deg(A); its column degrees is the tuple formed
by the degrees of each of its columns. In the square case m = ν, the matrix A
is said to be nonsingular if det(A) ̸= 0, and unimodular if det(A) ∈ Fq \ {0}.

We refer to [10, 1] for the classical notions of Popov forms and reduced forms,
row degrees and pivot indices, as well as their shifted generalizations.

We will use the following result on the feasibility of polynomial matrix divi-
sion with remainder, and on the complexity of performing such divisions using
a Newton iteration-based approach.

Lemma 2.7. Let A and B be matrices in Fq[x]
m×m with B nonsingular. Then

there exists a matrix R ∈ Fq[x]
m×m such that A−R is a left multiple of B and

deg(R) < deg(B). There is an algorithm PM-Rem which, on input A and B,
returns such a matrix R using Õ(mω(deg(A) + deg(B))) operations in Fq.

Proof. The existence of R such that A − R is a left multiple of B is proved
in [10, Theorem 6.3-15, page 389]. This reference also ensures that B−1R is
a so-called strictly proper matrix fraction, which implies deg(R) < deg(B) as
showed for example in [10, Lemma 6.3-10, page 383]. To find R, one may start
with computing a Popov form P ∈ Fq[x]

m×m of B, which costs Õ(mω deg(B))
[16, Theorem 21]. In particular, B and P are left-unimodularly equivalent, so
that left multiples of B are the same as left multiples of P . Thus R can be found
as a remainder in the division of A by P , since deg(P ) ≤ deg(B). Since P is
column reduced, to find this remainder we can apply [14, Algorithm 1]: this boils
down to one truncated expansion at order O(deg(A)) of the inverse of an m×m
matrix (whose constant term is invertible), and two multiplications of two m×m
matrices of degree in O(deg(A)+deg(P )). Hence the total cost Õ(mω(deg(A)+
deg(P ))), which concludes the proof since deg(P ) ≤ deg(B).
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3 The interpolant module Ms,ℓ,r and polynomial
matrix representations of it

We now study the module Ms,ℓ,r more in depth. First we generalize Theo-
rem 2.6 to get more flexibility on the choice of generators for Ms,ℓ,r, and we
make such an explicit choice (Section 3.1). Then we introduce several maps and
the corresponding Fq[x]-matrices (Section 3.2). This allows us to describe a ba-
sis ofMs,ℓ,r as an Fq[x]-module, and to represent this module as the Fq[x]-row
space of an explicit polynomial matrix Bs,ℓ,r in Fq[x]

m×m, form = µ(ℓ+1) (Sec-
tion 3.3). Finally, in Section 3.4, we deduce another basis matrix Ps,ℓ,r which is
less explicit than Bs,ℓ,r, but computationally easier to construct and manipu-
late. Throughout, it is assumed that the received vector is r = (r1, . . . , rn) ∈ Fn

q

and that R ∈ Я(G) is a function satisfying R(Pj) = rj for 1 ≤ j ≤ n as well as
the bound from Lemma 2.1, δG(R) ≤ n+ 2g − 1− deg(G).

3.1 A more flexible description of Ms,ℓ,r

In Theorem 2.6, two ways to describe the module Ms,ℓ,r were given. We now
indicate a more general shape for alternative descriptions for Ms,ℓ,r.

Theorem 3.1. For s ≤ t ≤ ℓ, let ft(z) =
∑t−s

i=0 ftiz
t−s−i ∈ F [z], where fti ∈

Я(iG) and degz(ft) = t− s, hence in particular ft0 ∈ Fq \ {0}. Then

Ms,ℓ,r =

s−1⊕
t=0

(z −R)tЯ(Gt)⊕
ℓ⊕

t=s

ft(z)(z −R)sЯ(Gt).

Proof. Using Equation (2.2) in Theorem 2.6, and since by definition Gt = −tG
for t ≥ s, it is sufficient to show that

Ms,ℓ,r =

s−1⊕
t=0

(z −R)tЯ(Gt)⊕
ℓ⊕

t=s

(z −R)tЯ(−tG)

is equal to

M :=

s−1⊕
t=0

(z −R)tЯ(Gt)⊕
ℓ⊕

t=s

ft(z)(z −R)sЯ(−tG).

We first prove the inclusion “Ms,ℓ,r ⊇M”. For this we show, for t = s, . . . , ℓ,
the inclusion ft(z)(z − R)sЯ(−tG) ⊆

⊕t
k=s(z − R)kЯ(−kG). This follows

from ft(z) ∈
⊕t

k=s(z − R)k−sЯ((t − k)G), which itself comes from using the
binomial formula on ft(z) =

∑t−s
j=0(z − R + R)t−s−jftj . Indeed, this yields

ft(z) =
∑t

k=s(z−R)k−sf̃tk where, for s ≤ k ≤ t, f̃tk =
∑t−k

j=0

(
t−s−j
k−s

)
Rt−k−jftj

is in Я((t− k)G).
Now we prove the inclusion “Ms,ℓ,r ⊆ M”. For this we show, for each t =

s, . . . , ℓ, the inclusion (z−R)tЯ(−tG) ⊆
⊕t

k=s fk(z)(z−R)sЯ(−kG). Similarly
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to the above, it is enough to prove (z − R)t−s ∈
⊕t

k=s fk(z)Я((t − k)G). We
proceed by induction on t ∈ {s, . . . , ℓ}, showing that (z−R)t−s =

∑t
k=s fk(z)αtk

for certain αtk ∈ Я((t− k)G). The property is obvious for t = s, since fs(z) =
fs0 ∈ Fq \ {0}. Let t ∈ {s+ 1, . . . , ℓ} and assume the property holds from s to
t− 1. Then

(z −R)t−s =
1

f̃tt

ft(z)− t−1∑
j=s

(z −R)j−sf̃tj


=

1

f̃tt
ft(z) +

t−1∑
k=s

fk(z)

−1
f̃tt

t−1∑
j=k

αjkf̃tj


which proves the property for t, since f̃tt ∈ Fq\{0} and αjkf̃tj ∈ Я((t−k)G).

As a first observation, the second description in Theorem 2.6 is now an easy
consequence of Theorem 3.1 (which we proved using only the first description
in Theorem 2.6). To obtain a faster decoder, we will start from the following
description of the interpolant module.

Corollary 3.2. For s ≤ t ≤ ℓ, let gt(z) =
∑t−s

i=0

(
i+s−1

i

)
Rizt−s−i ∈ F [z]. Then

Ms,ℓ,r =
⊕s−1

t=0 (z −R)tЯ(Gt)⊕
⊕ℓ

t=s gt(z)(z −R)sЯ(Gt).

Proof. We only need to check that ft(z) = gt(z) is a valid choice in Theorem 3.1.
The first condition

(
i+s−1

i

)
Ri ∈ Я(iG) follows from R ∈ Я(G). The second

condition degz(gt(z)) = t− s is obvious.

In this description, the polynomial gt(z)(z −R)s has at most s+ 1 nonzero
coefficients, as we will see in the next lemma (Lemma 3.3) which gives an ex-
plicit formula for these coefficients. In fact, looking back at the description in
Equation (2.3), the polynomial zt−s(z − R)s also has at most s + 1 nonzero
coefficients. Yet, the advantage of gt(z)(z −R)s over zt−s(z −R)s is the range
of monomials that may appear with nonzero coefficients. Apart from the com-
mon leading term zt, for the latter these monomials are zt−s, zt−s+1, . . . , zt−1,
whereas for the former they are 1, z, . . . , zs−1 independently of t. As we will
see in Sections 3.3 and 3.4, this particular location of nonzero coefficients is
instrumental in our approach for building an Fq[x]-basis of Ms,ℓ,r which has
small average column degree.

Lemma 3.3. For s ≤ t ≤ ℓ, let gt(z) =
∑t−s

i=0

(
i+s−1

i

)
Rizt−s−i. Then zt −

gt(z)(z −R)s has degree at most s− 1. Moreover, for 0 ≤ j < s, the coefficient
of zj in gt(z)(z −R)s equals γt,jRt−j, where

γt,j =

s∑
i=s−j

(
s

i

)(
t− j − i+ s− 1

s− 1

)
(−1)i. (3.1)
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Proof. Using a classical power series expansion formula in z−1, we obtain that

zt = (z −R)szt−s

(
1− R

z

)−s

= (z −R)s
∑
i≥0

(
i+ s− 1

i

)
Rizt−s−i.

This shows that

zt − gt(z)(z −R)s = zt − (z −R)s
∑

i≥t−s+1

(
i+ s− 1

i

)
Rizt−s−i,

Hence the polynomial zt− gt(z)(z−R)s has degree at most s− 1. To prove the
second part of the lemma, one can simply expand the product gt(z)(z − R)s,
yielding that for 0 ≤ j < s the coefficient of zj in gt(z)(z−R)s equals γt,jRt−j ,
just as indicated.

3.2 Inclusion and multiplication maps, and their matrices
In this subsection we study two types of Fq[x]-module homomorphisms: the first
type are inclusion maps of submodules in a module, while the second type are
maps of multiplication by some R ∈ Я(G).

We will also consider matrices over Fq[x] which represent these maps, as this
will help us describe and compute bases ofMs,ℓ,r as an Fq[x]-module. Note that,
if the ranks as Fq[x]-modules of the domain and codomain of the considered map
are the same, then this map can, after choosing bases, be represented by a square
Fq[x]-matrix.

We start with the maps derived from the inclusions Я(Gt) ⊆ Я(−tG) for
0 ≤ t < s; these inclusions follow from Gt = (t− s)D − tG ≤ −tG.

Definition 3.4. For 0 ≤ t < s, the map ıt : Я(Gt)→ Я(−tG) is defined as the
natural inclusion map of Я(Gt) in Я(−tG). We denote by Dt ∈ Fq[x]

µ×µ the
matrix of ıt with respect to the ordered Fq[x]-bases (y

(Gt)
0 , . . . , y

(Gt)
µ−1 ) for Я(Gt)

and (y
(−tG)
0 , . . . , y

(−tG)
µ−1 ) for Я(−tG).

Remark 3.5. In this paper, such matrices of maps are considered in a row-wise
manner. For example, in this definition, the ith row of Dt yields the expression
of ıt(y

(Gt)
i ) as an Fq[x]-linear combination of the mentioned basis of Я(−tG).

For deriving complexity estimates, we will use the following bound on the
degree of any single entry of Dt.

Lemma 3.6. The matrix Dt is nonsingular and deg(Dt) is in O(s(n+ g)/µ).

Proof. Since ıt is an injection, Dt is nonsingular. Let [pij ]0≤i,j<µ be the en-
tries of Dt, so that y(Gt)

i =
∑µ−1

j=0 pijy
(−tG)
j for 0 ≤ i < µ and deg(Dt) =
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maxij deg(pij). Using Lemmas 2.3 and 2.4 we see that

deg(pij) ≤
1

µ
(δ−tG(y

(Gt)
i )− tdeg(G))

≤ 1

µ
(δGt

(y
(Gt)
i )− tdeg(G))

≤ 1

µ
(2g − 1 + µ− deg(Gt)− tdeg(G))

=
1

µ
(2g − 1 + µ+ (s− t)n) ∈ O(s(n+ g)/µ).

We will also use the following, similarly defined inclusion maps and matrices,
where we have defined Ht = −sD − tG for 0 ≤ t < s.

Definition 3.7. For 0 ≤ t < s, the map ȷt : Я(Ht) → Я(−tG) is defined as
the natural inclusion map of Я(Ht) in Я(−tG). We denote by Et ∈ Fq[x]

µ×µ

the matrix of ȷt with respect to the Fq[x]-bases (y
(Ht)
0 , . . . , y

(Ht)
µ−1 ) for Я(Ht) and

(y
(−tG)
0 , . . . , y

(−tG)
µ−1 ) for Я(−tG).

This matrix Et satisfies properties similar to those of Dt.

Lemma 3.8. The matrix Et is nonsingular and deg(Et) is in O(s(n+ g)/µ).

Proof. The proof can be directly adapted from that of Lemma 3.6.

We now turn our attention to the maps of multiplication by some R ∈ Я(G).

Definition 3.9. For 1 ≤ t ≤ ℓ, we let the multiplication map Rt : Я(−tG) →
Я(−(t−1)G) be defined by Rt : f 7→ Rf . We denote by Rt ∈ Fq[x]

µ×µ the matrix
of Rt with respect to the ordered Fq[x]-bases (y

(−tG)
0 , . . . , y

(−tG)
µ−1 ) for Я(−tG) and

(y
(−(t−1)G)
0 , . . . , y

(−(t−1)G)
µ−1 ) for Я(−(t− 1)G).

Although this definition is valid for any R ∈ Я(G), recall that here we
consider specifically R such that δG(R) ≤ n+ 2g − 1− deg(G). This allows us
to bound the degree of any single entry of Rt, as follows.

Lemma 3.10. The matrix degree of Rt is in O((n+ g)/µ).

Proof. Using Lemma 2.3, we see that for any 0 ≤ i, t < µ,

δ−(t−1)G(Ry
(−tG)
i ) = δG(R) + δ−tG(y

(−tG)
i ) ≤ δG(R) + 2g − 1 + tdeg(G) + µ.

Let [pij ]0≤i,j<µ be the entries of Rt, so that Ry(−tG)
i =

∑µ−1
j=0 pijy

(−(t−1)G)
j for

0 ≤ i < µ and deg(Rt) = maxij deg(pij). Then from Lemma 2.4 and the fact
that δG(R) ≤ n+ 2g − 1− deg(G), we obtain

deg(pij) ≤
1

µ

(
δ−(t−1)G(Ry

(−tG)
i ) + deg(−(t− 1)G)

)
≤ 1

µ
(δG(R) + 2g − 1 + tdeg(G) + µ− (t− 1) deg(G))

= 1 +
1

µ
(δG(R) + 2g − 1 + deg(G)) ≤ 1 +

1

µ
(n+ 4g − 2) .
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In what follows we will also use this notation:

Definition 3.11. For 0 ≤ t ≤ ℓ and 0 ≤ j ≤ ℓ, the matrix R(t,j) ∈ Fq[x]
µ×µ is

defined as

R(t,j) =

 RtRt−1 · · ·Rj+1 for 0 ≤ j < t;
the µ× µ identity matrix I for j = t;
the µ× µ zero matrix 0 for t < j ≤ ℓ.

The definition of the Rt’s implies that, for 0 ≤ j ≤ t, R(t,j) is the matrix of
the following map of multiplication by Rt−j :

Rj+1 ◦Rj+2 ◦ · · · ◦Rt : Я(−tG)→ Я(−jG), f 7→ Rt−jf,

in the ordered bases (y
(−tG)
0 , . . . , y

(−tG)
µ−1 ) for Я(−tG) and (y

(−jG)
0 , . . . , y

(−jG)
µ−1 )

for Я(−jG). Similarly if j ≤ t < s, then DtR
(t,j) is the matrix of the map

Rj+1 ◦Rj+2 ◦ · · · ◦Rt ◦ ıt : Я(Gt)→ Я(−jG), f 7→ Rt−jf,

in the ordered bases (y
(Gt)
0 , . . . , y

(Gt)
µ−1 ) for Я(Gt) and (y

(−jG)
0 , . . . , y

(−jG)
µ−1 ) for

Я(−jG).

3.3 A first polynomial matrix basis of Ms,ℓ,r

From Theorem 3.1, one may deduce a basis of Ms,ℓ,r as an Fq[x]-module.

Lemma 3.12. Ms,ℓ,r is an Fq[x]-module of rank m := µ(ℓ + 1), and admits
the following basis:{

(z −R)ty(Gt)
i | 0 ≤ t < s, 0 ≤ i < µ

}
⋃ {

ft(z)(z −R)sy(Gt)
i | s ≤ t ≤ ℓ, 0 ≤ i < µ

}
,

for any family of polynomials {ft(z) ∈ F [z] | s ≤ t ≤ ℓ} as in Theorem 3.1.

Proof. Let B be the claimed basis of Ms,ℓ,r. Since ⟨y(Gt)
0 , . . . , y

(Gt)
µ−1 ⟩Fq [x] =

Я(Gt) for 0 ≤ t ≤ ℓ, from Theorem 3.1 it follows both that B ⊆ Ms,ℓ,r and
that any element of Ms,ℓ,r is an Fq[x]-linear combination of polynomials in B;
whence ⟨B⟩Fq [x] =Ms,ℓ,r. To prove that B is a basis, it remains to show that
its elements are Fq[x]-linearly independent. Let (αt,i)0≤i<µ,0≤t<k ∈ Fq[x]

m be
a tuple such that∑

0≤t<s,0≤i<µ

αt,i(z −R)ty(Gt)
i +

∑
s≤t≤ℓ,0≤i<µ

αt,ift(z)(z −R)sy(Gt)
i = 0.

Since ft(z)(z − R)s has degree t, the polynomials {(z − R)t | 0 ≤ t < s} ∪
{ft(z)(z−R)s | s ≤ t ≤ ℓ} form a basis of the F -vector space F [z]degz≤ℓ. Thus,
from the above identity we deduce that

∑
0≤i<µ αt,iy

(Gt)
i = 0 for 0 ≤ t ≤ ℓ. By

definition of the y(Gt)
i ’s, this implies αt,i = 0 for all t and i. Hence the rows of

B form a basis ofMs,ℓ,r, and the rank ofMs,ℓ,r is the cardinality m of B.
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To represent such a basis of Ms,ℓ,r as a matrix Bs,ℓ,r over Fq[x], we see
Ms,ℓ,r as a submodule of the free Fq[x]-module

⊕
0≤t≤ℓ z

tЯ(−tG) of rank m,

with basis zjy(−tG)
k , 0 ≤ t ≤ ℓ, 0 ≤ k < µ. The following Fq[x]-module isomor-

phism will be useful for describing Bs,ℓ,r:

φℓ : Fq[x]
1×m →

ℓ⊕
t=0

ztЯ(−tG)

[p0,0 · · · p0,µ−1 | · · · | pℓ,0 · · · pℓ,µ−1] 7→
ℓ∑

t=0

µ−1∑
k=0

pt,ky
(−tG)
k zt

. (3.2)

Then, the rows of Bs,ℓ,r are the preimages by φℓ of the elements of the basis of
Ms,ℓ,r described in Lemma 3.12. Choosing specifically for ft(z) the polynomial
gt(z) described in Section 3.1, and using the maps and matrices defined in
Section 3.2, we obtain the following explicit description of Bs,ℓ,r.

Definition 3.13. Let m = µ(ℓ + 1). The matrix Bs,ℓ,r ∈ Fq[x]
m×m is defined

by blocks as Bs,ℓ,r = [D 0
R I ] where

• I is the (m− µs)× (m− µs) identity matrix;

• 0 is the (µs)× (m− µs) zero matrix;

• D ∈ Fq[x]
(µs)×(µs) is defined by blocks as

D =
[
γt,jDtR

(t,j)
]
0≤t<s,0≤j<s

=


D0

−D1R1 D1

D2R2R1 −2D2R2 D2

...
. . .


where γt,j = (−1)t−j

(
t
j

)
for 0 ≤ t < s, 0 ≤ j < s;

• R ∈ Fq[x]
(m−µs)×(µs) is defined by blocks as

R =
[
γt,jR

(t,j)
]
s≤t≤ℓ,0≤j<s

=

γs,0R
(s,0) · · · γs,s−1R

(s,s−1)

...
...

γℓ,0R
(ℓ,0) · · · γℓ,s−1R

(ℓ,s−1)


where γt,j for s ≤ t ≤ ℓ, 0 ≤ j < s is defined in Equation (3.1).

Theorem 3.14. The matrix Bs,ℓ,r from Definition 3.13 is a basis of Ms,ℓ,r,
seen as an Fq[x]-submodule of

⊕
0≤t≤ℓ z

tЯ(−tG). More precisely, indexing the
rows of Bs,ℓ,r from 0 to m − 1, for 0 ≤ t ≤ ℓ and 0 ≤ i < µ its row at index
tµ+ i is φ−1

ℓ ((z −R)ty(Gt)
i ) if t < s, and φ−1

ℓ (gt(z)(z −R)sy(Gt)
i ) if s ≤ t ≤ ℓ.

Page 13 of 26



Proof. This follows directly from the construction of Bs,ℓ,r and from the defi-
nition of Dt and R(t,j) in Section 3.2. Indeed, for 0 ≤ t ≤ ℓ and 0 ≤ i < µ, the
image by φℓ of the row tµ+ i of Bs,ℓ,r as built in Definition 3.13 is

t∑
j=0

(−1)t−j

(
t

j

)
Rt−jy

(Gt)
i zj = (z −R)ty(Gt)

i if t < s,

and zty(−tG)
i +

s−1∑
j=0

γt,jR
t−jy

(−tG)
i zj = gt(z)(z −R)sy(−tG)

i if s ≤ t ≤ ℓ,

where the last identity comes from Lemma 3.3.

Observe in particular the effect of our choice of polynomials gt(z) from Sec-
tion 3.1: only the left µs columns [DR ] of Bs,ℓ,r are nontrivial, while the remain-
ing columns [ 0I ] are standard basis vectors. A parallel can be drawn with the
remark on the monomials appearing in gt(z)(z−R)s, in Section 3.1. In contrast,
the two descriptions from [2] recalled in Theorem 2.6 lead to matrices which are
block-triangular as well, but with a lower triangular part which is either dense
(if using Equation (2.2)) or is a band matrix (if using Equation (2.3)). Although
in the latter case the number of nonzero blocks is the same as in Bs,ℓ,r, the fact
that these nonzero blocks are confined to the leftmost columns brings us closer
to knowing an Fq[x]-basis of Ms,ℓ,r with small average column degree, as we
are going to see in the next subsection.

3.4 A small-degree polynomial matrix basis of Ms,ℓ,r

Keeping the same notation as in the previous subsection, we deduce from the
matrix Bs,ℓ,r a whole collection of suitable matrices for representing bases of
Ms,ℓ,r as an Fq[x]-module, which all share the property that their rightmost
m − µs columns are the standard basis vectors [ 0I ]. It is within this collection
that we will find a Fq[x]-basis ofMs,ℓ,r with small average column degree, which
means that its shifted Popov form can be computed efficiently.

Theorem 3.15. For any matrix R̄ ∈ Fq[x]
(m−µs)×(µs) such that R−R̄ is a left

multiple of D, the matrix Ms,ℓ,r := [D 0
R̄ I

] ∈ Fq[x]
m×m is a basis ofMs,ℓ,r, seen

as an Fq[x]-submodule of
⊕

0≤t≤ℓ z
tЯ(−tG). In particular, if R̄ has degree in

O(s(n+g)/µ), then the sum of column degrees of Ms,ℓ,r is in O(s2(n+g)), and
the d-Popov form of Ms,ℓ,r can be computed in Õ(s2ℓω−1µω−1(n+ g) + ℓωµω)
operations in Fq for any shift d ∈ 1

µZ
(ℓ+1)µ.

Proof. The matrices Bs,ℓ,r and Ms,ℓ,r are left-unimodularly equivalent, since[
I 0
−Q I

] [
D 0
R I

]
=

[
D 0
R̄ I

]
where Q ∈ Fq[x]

(m−µs)×(µs) is the quotient matrix such that R = QD + R̄.
Hence the rows of Ms,ℓ,r form a basis ofMs,ℓ,r.
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The degree bounds in Section 3.2 and the construction of R(t,j) show that,
for 0 ≤ t < s and 0 ≤ j < s, both deg(Dt) and deg(R(t,j)) are in O(s(n+g)/µ).
Therefore the degree of D = [γt,jDtR

(t,j)]0≤t<s,0≤j<s is also in O(s(n+ g)/µ).
Then, under the assumption on deg(R̄) stated in the theorem, the first µs
columns of Ms,ℓ,r have degree in O(s(n+g)/µ), whereas its last m−µs columns
have degree 0. The claimed bound on the column degrees of Ms,ℓ,r follows.

Computing the shifted Popov form of Ms,ℓ,r, for any integer shift d ∈
Z(ℓ+1)µ, can then be performed in Õ(ℓωµω⌈ s

2(n+g)
ℓµ ⌉) operations in Fq [14, The-

orem 1.3]. It has been showed that the case of a shift d with fractional entries in
1
µZ

(ℓ+1)µ directly reduces to the case of an integer shift by both permuting the
matrix columns appropriately and rounding down the entries of d to integers; see
[15, Section III.A] [2, Theorem V.9] for the present case, and [13, Section 1.3.4]
for transforming more generally any module monomial ordering on Fq[x]

(ℓ+1)s

into a corresponding shift in Z(ℓ+1)µ. The inequality ⌈ s
2(n+g)
ℓµ ⌉ < s2(n+g)

ℓµ + 1
leads to the cost bound stated in the theorem.

Finally, in Theorem 3.17 we will make the above result more effective by
describing an explicit construction of such a small-degree matrix R̄, using re-
mainders in the matrix division of R modulo the matrices E0, . . . ,Es−1 defined
in Section 3.2. Here are some explanations why such a degree reduction is
needed, and not straightforward.

Remark 3.16. Observe that the matrix R, as defined in Section 3.3, may have
degrees too large for our purpose; that is, simply taking R̄ = R in the above
theorem is not interesting as deg(R) is most likely not in O(s(n + g)/µ). In
fact, by definition R has ℓ + 1 − s blocks of µ rows each with sµ columns, and
the degree of the ith block of rows is in O((s + i)n+g

µ ). In total, the dense
representation of R therefore uses

O

 ∑
1≤i≤ℓ+1−s

µ(µs)(s+ i)
n+ g

µ

 ⊆ O (ℓ2sµ(n+ g)
)

coefficients from Fq, and this asymptotic bound can be reached. Indeed, it is
reached already in the case of Reed-Solomon codes, where R(t,j) is a polynomial
in Fq[x], which is the power Rt−j of some polynomial R ∈ Fq[x] whose degree
is n − 1 generically. Thus, simply the size of the storage of R can already be
in conflict with our target complexity. This also implies that we must aim to
compute a smaller degree R̄ without computing all of R.

Theorem 3.17. For each s ≤ t ≤ ℓ and 0 ≤ j < s, there exists a matrix R̄(t,j)

such that R(t,j) − R̄(t,j) is a left multiple of Ej and deg(R̄(t,j)) < deg(Ej).
Then, the matrix R̄ = [γt,jR̄

(t,j)]s≤t≤ℓ,0≤j<s ∈ Fq[x]
(m−µs)×(µs) has degree in

O(s(n+ g)/µ) and is such that R− R̄ is a left multiple of D.

Proof. The existence of R̄(t,j) with the specified properties follows directly from
Lemma 2.7. The bound on deg(R̄) follows from deg(Ej) ∈ O(s(n+g)/µ), proved
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in Lemma 3.8. By construction, R− R̄ = [γt,j(R
(t,j) − R̄(t,j))]s≤t≤ℓ,0≤j<s is a

left multiple of

E =


E0

E1

. . .
Es−1

 ∈ Fq[x]
(µs)×(µs),

hence it remains to prove that E is itself a left multiple of D.
We now show that each row of E is a left multiple of D. Let 0 ≤ i < µ

and 0 ≤ t < s. Similarly to the considerations in Section 3.3, we observe that
the row tµ+ i of E corresponds to the polynomial zty(Ht)

i ∈ ztЯ(Ht), which is
in Ms,ℓ,r since any function in Я(Ht) = Я(−sD − tG) has valuation at least
s at each of the places P1, . . . , Pn. Since zty(Ht)

i has z-degree less than s, by
Theorem 2.6 it is in

⊕
0≤j<s(z−R)jЯ(Gj), which means that the row tµ+ i of

E is a left multiple of D.

4 Efficient construction of a polynomial matrix
basis of Ms,ℓ,r

4.1 Computing multiplication maps
Consider the following problem: given two divisors A and B and a function
a ∈ Я(A), compute the products y(B)

0 a, . . . , y
(B)
µ−1a ∈ Я(A+B), expressed in the

basis y(A+B)
0 , . . . , y

(A+B)
µ−1 . In order to do this, we generalize [2, Algorithm 4]. We

follow the same approach as in [2] for showing the correctness and complexity
of this generalization.

Definition 4.1. For any Q(z) ∈ F [z], for any rational place P ∈ PF that is not
a pole of any of the coefficients of Q(z), and for α ∈ Fq, we denote by Q(P, α)
the evaluation of Q(α) ∈ F at P .

Definition 4.2. Let A,B be divisors and let E = E1+· · ·+EN for distinct ratio-
nal places E1, . . . , EN of F different from P∞ such that supp(A)∩ supp(E) = ∅
and supp(B) ∩ supp(E) = ∅. For a ∈ Я(A), we define the Fq[x]-module

NA,B,E(a) = {Q = Q0 +Q1z ∈ Я(A+B)⊕ zЯ(B)

such that Q(P, a(P )) = 0 for all P ∈ supp(E)}.

In the following lemmas, we use the same notation A, B, E as in Defini-
tion 4.2.

Lemma 4.3. Let a ∈ Я(A). If Q = Q0 + zQ1 ∈ NA,B,E(a) with

max{δA+B(Q0), δB(Q1) + δA(a)} < deg(E)− deg(A+B),

then Q(a) = 0, i.e. Q ∈ (z − a)Я(B).
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Proof. Since Q ∈ NA,B,E(a), we have Q(a) ∈ Я(A+B). Hence by definition of
δA+B , we have Q(a) ∈ L(δA+B(Q(a))P∞ +A+B). Since for all Ej ∈ supp(E),
we have Q(a)(Ej) = 0 and supp(E) ∩ (supp(A) ∪ supp(B) ∪ {P∞}) = ∅, we
conclude that Q(a) ∈ L(δA+B(Q(a))P∞ +A+B − E). Moreover,

δA+B(Q(a)) ≤ max{δA+B(Q0), δA+B(Q1a)}
= max{δA+B(Q0), δB(Q1) + δA(a)}
< deg(E)− deg(A+B),

which ensures that the aforementioned Riemann-Roch space is trivial.

Like in [2], our generalization will use the notion of an x-partition of E. We
recall the definition, see also [2, Definition V.4]; the existence of an x-partition
of E was shown in [2, Lemma V.6].

Definition 4.4. If E = E1 + · · ·+EN , where E1, . . . , EN are distinct rational
places different from P∞, and U0, . . . , Uµ−1 are effective divisors satisfying

1. E = U0 + · · ·+ Uµ−1,

2. supp(Ui) ∩ supp(Uj) = ∅ for all i ̸= j,

3. |deg(Ui)− deg(Uj)| ≤ 1 for all i, j,

4. for any Ej , Ek ∈ supp(Ui) it holds that x(Ej) = x(Ek)⇔ Ej = Ek,

then we will say that U0, . . . , Uµ−1 is an x-partition of E.

Definition 4.5. For a polynomial matrix A ∈ Fq[x]
2µ×µ and nonzero polyno-

mials u0, . . . , uµ−1 ∈ Fq[x] \ {0}, we define

Hu(A) =
{
v ∈ Fq[x]

1×2µ | vA∗,k = 0 mod uk for 0 ≤ k < µ
}
,

where A∗,k is the column k of A.

Note that we have the following inclusion of Fq[x]-submodules:

(
∏

0≤k<µ uk)Fq[x]
1×2µ ⊆ Hu(A) ⊆ Fq[x]

1×2µ.

In particular, Hu(A) is a free Fq[x]-module of rank 2µ, and each of its bases
can be represented as a nonsingular 2µ× 2µ matrix over Fq[x].

Lemma 4.6. Let a ∈ Я(A). Let U0, . . . , Uµ−1 be an x-partition of E, and let
S = [Si,k] and T = [Ti,k] be matrices in Fq[x]

µ×µ such that

Si,k(x(Ej)) = y
(A+B)
i (Ej) and Ti,k(x(Ej)) = a(Ej)y

(B)
i (Ej) for Ej ∈ Uk.

If u = (u0, . . . , uµ−1) ∈ Fq[x]
µ, where uk =

∏
Ej∈supp(Uk)

(x − x(Ej)), then the
map

ψ :

µ−1∑
i=0

(siy
(A+B)
i + tizy

(B)
i ) 7→ (s0, . . . , sµ−1, t0, . . . , tµ−1)
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is an Fq[x]-isomorphism between NA,B,E(a) and Hu(A), where

A =

[
S
T

]
∈ Fq[x]

2µ×µ.

Proof. Clearly ψ is an Fq[x]-isomorphism between Я(A + B) ⊕ zЯ(B) and
Fq[x]

2µ, therefore it suffices to show that for any Q ∈ Я(A + B) ⊕ zЯ(B)
it holds that Q ∈ NA,B,E(a) if and only if ψ(Q) ∈ Hu(A), i.e. that for all
k = 0, . . . , µ − 1, Q(Ej , a(Ej)) = 0 for all Ej ∈ supp(Uk) if and only if
ψ(Q) · A∗,k = 0 mod uk. This is true since for every Ej ∈ Uk the following
identity holds, where α = x(Ej):

Q(Ej , a(Ej)) =

µ−1∑
i=0

(
si(α)y

(A+B)
i (Ej) + a(Ej)ti(α)y

(B)
i (Ej)

)
=

µ−1∑
i=0

(
si(α)Si,k(α) + ti(α)Ti,k(α)

)
= (ψ(Q) ·A∗,k)(α).

Lemma 4.7. In the context of Lemma 4.6, if P ∈ Fq[x]
(2µ)×(2µ) is the d-Popov

basis of Hu(A) = ψ(NA,B,E(a)), where deg(E) ≥ 2g + µ+ δA(a) + deg(A) and

d =
1

µ

(
δA+B(y

(A+B)
0 ) + deg(B), . . . , δA+B(y

(A+B)
µ−1 ) + deg(B),

δB(y
(B)
0 ) + δA(a) + deg(B), . . . , δB(y

(B)
µ−1) + δA(a) + deg(B)

)
∈ 1

µZ
2µ,

then exactly µ rows of P have d-degree less than 1
µ (deg(E)−deg(A)). Further-

more, if P̃ ∈ Fq[x]
µ×(2µ) is the submatrix of P consisting of these rows, then

for k = 0, . . . , µ− 1 the row k of P̃ is ψ(Yk), where

Yk = −ay(B)
k + zy

(B)
k ∈ (z − a)Я(B) ⊂ NA,B,E(a).

Consequently, if P̃ = [P1 P2], where P1 and P2 are in Fq[x]
µ×µ, then ay

(B)
k =∑µ−1

i=0 pk,iy
(A+B)
i , where (pk,0, . . . , pk,µ−1) is the row k of −P1.

Proof. We start with some observations on the matrix whose rows are ψ(Yk) for
k = 0, . . . , µ − 1. This is a µ × (2µ) matrix over Fq[x], whose rank is µ since
Y0, . . . , Yµ−1 are Fq[x]-linearly independent. By construction, its µ×µ rightmost
submatrix is the identity matrix. Writing Yk = −

∑µ−1
i=0 wiy

(A+B)
i +zy

(B)
k , where

wi ∈ Fq[x], the fact that Yk(a) = 0 implies

max
i
δA+B(wiy

(A+B)
i ) = δA+B

(
µ−1∑
i=0

wiy
(A+B)
i

)
= δA+B(ay

(B)
k ) = δB(y

(B)
k ) + δA(a).
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Consequently, degd(ψ(Yk)) =
1
µ (δB(y

(B)
k ) + δA(a) + deg(B)), and this d-degree

is reached at index µ + k. This shows that µ + k is the d-pivot index of the
row ψ(Yk). This property combined with the special shape (with an identity
submatrix) of the matrix formed by the ψ(Yk)’s ensure that this matrix is in
d-Popov form.

Furthermore, since for k = 0, . . . , µ− 1, ψ(Yk) is in Hu(A) with

degd(ψ(Yk)) <
1

µ
(δA(a) + 2g + µ) ≤ 1

µ
(deg(E)− deg(A)),

where the strict inequality is due to Lemma 2.3, then at least µ rows of P have
d-degree less than 1

µ (deg(E)− deg(A)), because P is d-row reduced.

Now, for any Q = Q0 + zQ1 ∈ NA,B,E(a), where Q0 =
∑µ−1

i=0 siy
(A+B)
i ∈

Я(A+B) and Q1 =
∑µ−1

i=0 tiy
(B)
i ∈ Я(B) with si, ti ∈ Fq[x], it holds that

degd(ψ(Q)) = max

{
max

i

(
deg(si) +

δA+B(y
(A+B)
i ) + deg(B)

µ

)
,

max
i

(
deg(ti) +

δB(y
(B)
i ) + δA(a) + deg(B)

µ

)}

=
1

µ
max{δA+B(Q0) + deg(B), δB(Q1) + δA(a) + deg(B)}.

It then follows from Lemma 4.3 that

degd(ψ(Q)) <
1

µ
(deg(E)− deg(A)) =⇒ Q ∈ (z − a)Я(B),

which means that at most µ rows of P can have d-degree less than 1
µ (deg(E)−

deg(A)), because (z − a)Я(B) has rank µ as an Fq[x]-module.
Thus, exactly µ rows of P have d-degree less than 1

µ (deg(E) − deg(A)),
which proves the first claim of the lemma. For the second claim, the above
observations show that the matrix formed by the ψ(Yk)’s is a left multiple UP̃
by a nonsingular µ×µ matrix U . Yet, since both P̃ and the matrix whose rows
are the ψ(Yk)’s are in d-Popov form, and since the rightmost µ × µ submatrix
of the latter is the identity matrix, the only possibility is U = Iµ, proving the
second claim. The last claim is obvious.

Theorem 4.8. Algorithm 1 is correct and costs Õ(µω−1(N + |deg(A)|)) oper-
ations in Fq.

Proof. Correctness is given by Lemma 4.7. For complexity, simply note that
the computational bottleneck lies in Step 8, in which case δA(a) ≥ − deg(A)
because a is nonzero and a ∈ L(δA(a)P∞ + A). By assumption, we have that
N = deg(E) ≥ deg(A) + δA(a) + 2g + µ, hence by Lemma 2.3

−deg(A) ≤ δA+B(y
(A+B)
i ) + deg(B) ≤ 2g − 1− deg(A) + µ

< deg(E)− 2 deg(A)− δA(a)
≤ deg(E)− deg(A) = N − deg(A)
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Algorithm 1 BasisProducts(A,B,E,a,x,y(A+B),y(B))

Input:

· divisors A and B,
· a divisor E = E1+ · · ·+EN , where E1, . . . , EN are pairwise distinct rational

places such that supp(E) ∩ (supp(A) ∪ supp(B) ∪ {P∞}) = ∅
· evaluations a = (aj)j=1,...,N , where aj = a(Ej) for a function a ∈ Я(A)

with known δA(a) and such that deg(E) ≥ deg(A) + δA(a) + 2g + µ,
· evaluations x = (xj)j=1,...,N , where xj = x(Ej) ∈ Fq,

· evaluations y(A+B) = (y
(A+B)
i,j )i=0,...,µ−1

j=1,...,N , where y(A+B)
i,j = y

(A+B)
i (Ej) ∈ Fq,

· evaluations y(B) = (y
(B)
i,j )i=0,...,µ−1

j=1,...,N , where y(B)
i,j = y

(B)
i (Ej) ∈ Fq.

Output: matrix [pk,i] ∈ Fq[x]
µ×µ of the Fq[x]-linear map f ∈ Я(B) 7→ af ∈

Я(A+B) with respect to the ordered Fq[x]-bases (y(B)
0 , . . . , y

(B)
µ−1) for Я(B)

and (y
(A+B)
0 , . . . , y

(A+B)
µ−1 ) for Я(A+B), meaning ay(B)

k =
∑µ−1

i=0 pk,iy
(A+B)
i

for all k ∈ {0, . . . , µ− 1}.
1: if a = 0 then return matrix 0 ∈ Fq[x]

µ×µ

2: U0, . . . , Uµ−1 ← an x-partition of E
3: S = [Si,k] ∈ Fq[x]

µ×µ ← matrix with Si,k(xj) = y
(A+B)
i,j for Ej ∈ Uk

4: T = [Ti,k] ∈ Fq[x]
µ×µ ← matrix with Ti,k(xj) = aj y

(B)
i,j for Ej ∈ Uk

5: u = [u0, . . . , uµ−1] ∈ Fq[x]
µ ← vector with uk =

∏
Ej∈Uk

(x− xj)
6: d ∈ 1

µZ
2µ ← 1

µ

(
δA+B(y

(A+B)
0 ) + deg(B), . . . , δA+B(y

(A+B)
µ−1 ) + deg(B),

δB(y
(B)
0 ) + δA(a) + deg(B), . . . , δB(y

(B)
µ−1) + δA(a) + deg(B)

)
7: P ∈ Fq[x]

(2µ)×(2µ) ← d-Popov basis ofHu(A) where A = [ ST ] ∈ Fq[x]
(2µ)×µ

8: [P1 P2] ∈ Fq[x]
µ×(2µ) ← the submatrix of P consisting of all rows with

d-degree less than 1
µ (deg(E)− deg(A)), where P1,P2 ∈ Fq[x]

µ×µ

9: return −P1
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and

−deg(A) ≤ δA(a) ≤ δB(y(B)
i ) + δA(a) + deg(B)

≤ 2g − 1 + µ+ δA(a)

≤ −1 + deg(E)− deg(A) < N − deg(A).

Since deg(uk) ≤ N/µ for k = 0, . . . , µ − 1, then the total complexity of the
algorithm is given by [2, Cor.V.10] as

Õ
(
µω−1 max{|deg(E)|, |deg(E)− deg(A)|, |deg(A)|}

)
⊆ Õ(µω−1(N + |deg(A)|))

operations in Fq.

4.2 Computing a small-degree Fq[x]-basis of Ms,ℓ,r

Theorem 4.9. Algorithm 2 is correct and costs Õ(ℓµω−1N + s2ℓµω−1(n+ g))
operations in Fq.

Proof. The correctness follows from the correctness of the called algorithms and
from the results in Section 3.4.

For complexity, let us first consider the total cost of the calls to BasisProd-
ucts; for completeness we also give at the same time the detailed verification
that the constraint on deg(E) required in the input of this algorithm is satisfied.

• For t = 0, . . . , s− 1, the call at Line 3 is for the divisor A = (s− t)D and
the function a = 1, and therefore costs Õ(µω−1(N + |deg((s − t)D)|)) =
Õ(µω−1(N + (s− t)n)) according to Theorem 4.8. Over the s iterations,
this cost is in Õ(sµω−1N+s2µω−1n). Furthermore the input requirements
of BasisProducts impose deg(E) ≥ deg((s− t)D) + δ(s−t)D(1) + 2g+ µ
for all t = 0, . . . , s− 1, hence we must ensure deg(E) ≥ sn+ 2g + µ; this
is implied by the input requirements of InterpolantPolMatBasis.

• The calls at Line 4 are for the divisor A = (s−t)D and the function a = 1.
Thus their total complexity fits within the one in the previous item, and
these calls do not bring any additional restriction on deg(E).

• Finally, the calls to BasisProducts at Line 9 are for the divisor A = G
and the function a = R, for each of the ℓ iterations. In total, this costs
Õ(ℓµω−1(N+|deg(G)|)) = Õ(ℓµω−1N+ℓµω−1(n+g)). These calls all add
the same constraint on deg(E), namely deg(E) ≥ deg(G)+δG(R)+2g+µ.
Since δG(R) ≤ n + 2g − 1 − deg(G) holds by construction of R (see the
output specification of [2, Algorithm 2]), this constraint is satisfied when
deg(E) ≥ n+4g+µ−1, and this inequality is indeed implied by the input
requirements of InterpolantPolMatBasis.
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Algorithm 2 InterpolantPolMatBasis(r, D,G,E,x,y(−tG),y(Gt),y(Ht))

Input:

· received word r ∈ Fn
q ,

· the code divisors D and G,
· a divisor E = E1+ · · ·+EN , where E1, . . . , EN are pairwise distinct rational

places not in {P∞} ∪ supp(G), with deg(E) ≥ sn+ 4g + µ− 1,
· evaluations x = (xj)j=1,...,N , where xj = x(Ej) ∈ Fq,

· evaluations y(−tG) = (y
(−tG)
i,j )i=0,...,µ−1

j=1,...,N for t = −1, 0, . . . , ℓ,

where y(−tG)
i,j = y

(−tG)
i (Ej) ∈ Fq,

· evaluations y(Gt) = (y
(Gt)
i,j )i=0,...,µ−1

j=1,...,N for t = 0, . . . , s− 1,

where Gt = (t− s)D − tG and y(Gt)
i,j = y

(Gt)
i (Ej) ∈ Fq,

· evaluations y(Ht) = (y
(Ht)
i,j )i=0,...,µ−1

j=1,...,N for t = 0, . . . , s− 1,

where Ht = −sD − tG and y(Ht)
i,j = y

(Ht)
i (Ej) ∈ Fq.

Output: a matrix Ms,ℓ,r := [D 0
R̄ I

] ∈ Fq[x]
m×m as in Theorem 3.15: Ms,ℓ,r is a

basis ofMs,ℓ,r seen as an Fq[x]-submodule of
⊕

0≤t≤ℓ z
tЯ(−tG) and deg(R̄)

has degree in O(s(n+ g)/µ).
1: ▷ Compute matrices Dt and Et in Fq[x]

µ×µ, see Definitions 3.4 and 3.7
2: for t = 0, . . . , s− 1 do
3: Dt ← BasisProducts((s− t)D,Gt, E, (1, . . . , 1),x,y

(−tG),y(Gt))
4: Et ← BasisProducts(sD,Ht, E, (1, . . . , 1),x,y

(−tG),y(Ht))

5: ▷ Compute matrices R1, . . . ,Rℓ in Fq[x]
µ×µ, see Definition 3.9

6: R ∈ Я(G)← Interpolate(r, D,G,x,y(G)) ▷ [2, Algorithm 2]
7: r̂ ∈ FN

q ← Evaluate(R,E,G,x,y(G)) ▷ [2, Algorithm 1]
8: for t = 1, . . . , ℓ do
9: Rt ← BasisProducts(G,−tG,E, r̂,x,y(−(t−1)G),y(−tG))

10: ▷ Compute matrix D ∈ Fq[x]
(µs)×(µs), see Definition 3.13

11: D = [D(t,j)]0≤t<s,0≤j<s ← Diag(D0, . . . ,Ds−1), where D(t,j) ∈ Fq[x]
µ×µ

12: for t = 1, . . . , s− 1 do
13: for j = t− 1, . . . , 0 do D(t,j) ←D(t,j+1)Rj+1

14: for j = t− 1, . . . , 0 do D(t,j) ← (−1)t−j
(
t
j

)
D(t,j)

15: ▷ Compute matrix R̄ ∈ Fq[x]
((ℓ+1−s)µ)×(µs), see Definition 3.13 and Theorem 3.17

16: R̄ = [R̄(t,j)]s≤t≤ℓ,0≤j<s ← zero matrix with blocks R̄(t,j) ∈ Fq[x]
µ×µ

17: for j = 0, . . . , s− 1 do
18: R̄(s,j) ← PM-Rem(RsRs−1 · · ·Rj+1,Ej) ▷ algorithm from Lemma 2.7
19: for t = s+ 1, . . . , ℓ do R̄(t,j) ← PM-Rem(RtR̄

(t−1,j),Ej)
20: for t = s, . . . , ℓ do R̄(t,j) ← γt,jR̄

(t,j) ▷ γt,j defined in Equation (3.1)

21: return [D 0
R̄ I

] ∈ Fq[x]
((ℓ+1)µ)×((ℓ+1)µ)
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The interpolation at Line 6 costs Õ(µω−1(N+g)), by [2, Lemma V.12]. The
evaluation at Line 7 costs Õ(µN + δG(R) + deg(G)), by [2, Lemma V.2]; our
assumption on deg(E) implies that this is in Õ(µN).

The costly part of the computation of D at Lines 10 to 14 is the matrix
products at Line 13. For each t = 1, . . . , s − 1, we start from Dt which has
degree in O(s(n+ g)/µ) (see Lemma 3.6), and then we multiply iteratively for
j = t−1, . . . , 0 by Rj whose degree is in O((n+g)/µ) (see Lemma 3.10). Thus,
altogether we perform about s2

2 multiplications of two µ× µ matrices of degree
in O(s(n+ g)/µ), for a total cost of Õ(s3µω−1(n+ g)).

The costly part of the computation of R̄ at Lines 15 to 20 is the matrix prod-
ucts and matrix remainders at both Lines 18 and 19. Consider a fixed iteration
j, for some j ∈ {0, . . . , s−1}. The above recalled bound on deg(Rt) ensures that
the product RsRs−1 · · ·Rj+1 at Line 18 can be computed in Õ(s2µω−1(n+g)),
and has degree in O(s(n + g)/µ). Then, since deg(Ej) is in O(s(n + g)/µ) as
well (see Lemma 3.8), the matrix division with remainder at the same line costs
Õ(sµω−1(n + g)) and returns a matrix whose degree is in O(s(n + g)/µ) (see
Lemma 2.7). At Line 19 there are ≤ ℓ iterations, and similarly to Line 18, each
of them performs a matrix product and then a matrix division with remainder
which both cost Õ(sµω−1(n + g)), for a total of Õ(sℓµω−1(n + g)). Note that
degrees remain controlled since each of these iterations produces a matrix re-
mainder whose degree is less than deg(Ej), which is in O(s(n+g)/µ). Summing
over the iterations for j = 0, . . . , s− 1, and using s ≤ ℓ, we get a cost bound of
Õ(s2ℓµω−1(n+ g)) operations in Fq for Lines 15 to 20.

Finally, summing the costs of each analyzed part above yields the result.

5 Decoder with better complexity

5.1 The decoding algorithm
The overall decoding algorithm is the one in [2, Algorithm 7] with the first three
lines replaced by a call to InterpolantPolMatBasis, which provides Ps,ℓ,r

in complexity Õ(s2ℓµω−1(n+g)) according to Theorem 4.9; indeed one can take
N ∈ O(sn+ g + µ) ⊂ O(s(n+ g)). After that, two expensive computations re-
main. The first one asks to find the shifted Popov form of Ps,ℓ,r [2, Algorithm 7,
Line 5], which costs Õ(s2ℓω−1µω−1(n+g)+ℓωµω) operations in Fq according to
Theorem 3.15. The second one is the root finding step [2, Algorithm 7, Line 10],
whose complexity is in Õ(sℓµω−1(n+ g)) as detailed in Section 5.2. Hence the
overall cost bound Õ(s2ℓω−1µω−1(n+ g) + ℓωµω) for the list decoder.

Due to the modification of the first steps, the precomputed data slightly
differs from the one listed in [2, Section VI]. Here, we do not need to know the
evaluations of Я-module generators for Я(Gt), t = 0, . . . , ℓ, denoted by “g” in
the above reference. As a kind of replacement, we need the evaluations y(Gt) and
y(Ht) for t = 0, . . . , s− 1 and y(−tG) for t = 0, . . . , ℓ, as defined in the input of
InterpolantPolMatBasis. Observe that this algorithm also requires y(−tG)

for t = −1; but y(G) is already part of the precomputation in [2, Section VI]
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(denoted by y). Except for “g”, the rest of the precomputed data listed in [2,
Section VI] is kept as such.

5.2 The root finding step
In [2], an algorithm is given that finds all roots of the found polynomial Q(z) ∈
Ms,ℓ,r in complexity Õ(ℓ2µω−1(n+ g)). The term ℓ2 is at odds with our target
complexity. Fortunately, a slightly better complexity analysis shows that [2,
Algorithm 6] actually has complexity Õ(sℓµω−1(n+ g)). More precisely, in the
proof of [2, Proposition V.33], the ℓ2 term comes from the estimates Õ(µℓβ) ⊆
Õ(ℓ2µ(n + g)) and Õ(β degz(Q̂)) ⊆ Õ(ℓ2(n + g)), where β is chosen such that
β ≥ 2ℓ deg(G) + s(n− τ) and where degz(Q̂) = ℓ. In [2] the estimate deg(G) ∈
O(n+g) is used to show the mentioned inclusions. A third part of the complexity
analysis of [2, Algorithm 6] adds a term Õ(ℓµω−1(n + g)), yielding as total
complexity the mentioned Õ(ℓ2µω−1(n+ g)).

However, the root finding has as input a polynomial Q ∈ Ms,ℓ,r satisfying
δG(Q) < s(n − τ). In particular δ−ℓG(Qℓ) < s(n − τ), which implies that
Qℓ ∈ L(−ℓG+ sP∞). This implies that either −ℓ deg(G)+ sn ≥ 0, or Qℓ = 0 in
all cases. In the latter case one might as well have started the decoding algorithm
for a smaller value of designed list size ℓ. We may conclude that without loss
of generality one can assume ℓdeg(G) ≤ sn. This implies that β ∈ O(sn)
and therefore Õ(µℓβ) ⊆ Õ(sℓµn) and Õ(β degz(Q̂)) ⊆ Õ(sℓn). Leaving the
remaining part of the complexity analysis exactly the same as in the proof of
[2, Proposition V.33], we see that the root finding part can be handled using [2,
Algorithm 6] in complexity Õ(sℓµω−1(n+ g)).
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