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A CHARACTERIZATION OF STRICILY UNIMODAL DISTRIBUTION

FUNCTIONS BY IHEIR CONCENTRATION FUNCTIQNS1

Unimodal distribution functions

by Walter Hengartner and Radu Iheodorescu
Laval University

The purpose o£ this article is to prove that a distribution function' is
strictly unimodal if and only if its concentration function is strictly uni¬
modal .
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1. Introduction and main resuit

Let F be a (right continuous) distribution function on R = (-»,+«)

and set x' = inf (x:F(x)>0) and xM = sup {x:F(x)<l} . F is said to be

unimodal if and only if there exists at least one value x* x such that

F is convex on (-®,x*) and concave on (x*,+«) ; x* is called a mode of

F . In this case F = a H * + (l-a)A , where 0 s a s 1 is the saltus of

F at x = x* , H *(x) = lO for x < x* , H„*(x) = 1 for x £ x* , and

A is an absolutely continuous unimodal distribution function with the same

mode x = x* ; clearly A* has at most one relative strict maximum which is, |
if it exists, at x = x* . A characterization of unimodal distribution func- ]
tions by their characteristic functions was given by A . Ja. Hincin (see,

e.g., [2, p.92], Theorem 4.5.1)} F is unimodal with mbde x* = 0 if and

only if its characteristic function f . has the form f(t) = (1/t) y g(u)du ,

o

t e ]R , where g is a characteristic function.

Further let sup {F(x+£)-F~(x) :xeIR} for f > 0 ^and Qp(£) = 0 j
otherwisei where F~ dénotés the left limit of F ? be the (Lévy) concentra¬

tion function of F . Clearly Qp is a distribution function. If there is-"
no anibiguity we shall simply write Q instead of Qp . It is known (see, e.g.

[l,p.4-9] that Q is subadditive, Q(0) = sup (F(x)-F~(x):xe~R} , and that

for every l > 0 there exists x« e ]R such that Q(£) « F(x»+£) - F~(x„)
A- -V»

If L = sup {£:Q(£)<1} , then xT is unique and x* = xT , x" * xT + L .
*

f L L

Our purpose is to characterize unimodal distribution functions by their

concentration functions. If F is unimodal, it is easilv seen that Q is uni

modal with unique mode Z* = 0 . The converse of this assertirai is unfortuna-
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This situation leads us to strenghten the définition of a unimodal distribu¬
tion function. We shall say that F is strictly unimodal if and only if F
is unimodal with a mode at x = x* , F is strictly convex on (x' ,x*) , and
F is strictly concave on (x*,XM) . It follows immediately that x * x* is
the unique mode of F . Let us remark that one or both of the sets (x' ,x*)
and (x*,x") may be empty. Since F *‘ a Hx* + (l-a)A , it follows that in
this case AT has exactly one relative strict maximum at x * x* . Moreover
F is strictly unimodal with mode x* =» 0 if and only if its characteristic

t

function f has the form f(t) * (1/t)' / g(u)du , t e ]R, where g is the
o

characteristic function of a distribution function G which is strictly in-

creasing on the interval {x:0<G(x)<ü} «

The remainder of this paper is dévoted to the proof of the following:

THEOREM. F is strictly unimodal if and only if 0 is strictly unimodal.
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2. Auxiliary results

Let <(> be a real-valued function defined on ]R and consider its four

derived nunibers at x e ]R :

D+<j>(x) = lim sup [<t>(x+h)-<|>(x) 3/h ,

h 4- 0

D <j>(x) = lim inf [ <J> (x+h)-<|> (x) H/h ,

h + 0

D”<j>(x) = lim sup [cf>Cx) — <|)(x—h) ]/h ,

h + 0

D_4>C-x) = lim inf [<|>(x)-<|>(x-h) ]/h .

h + 0

If D+4>Cx) = D d>(x) we shall write A+<j>(x) for this common value which

represents the right dérivative of <j> at x e IR , and similarly A~4>Cx) for

its left dérivative at x e IR .

LEMMA 1. For ail Z. > 0 we hâve

max(D_F~(x^) , D+F(x^+£)) < D+Q(£) ,

min(D+F"(x£) , D_F(x£+£)) s D_Q(£) .

The above inequalities hold also if D_ and D are replaced by D- and

D+ respectively.

PROOF. For 0 < a < b we hâve for ail x,y e E.

F(x+b)-F'(x)-F(xa+a)+F~(xa) Q(b)-Q(a) F(xb+b)-F"(xb)-F(y+a)+F~(y)
b - a b - a

Take first x = xa , y = xb , and then x = xa + a-b , y = Xh + b-a . Lemma
1 follows after passage to the limit.

Let us remark that if F’Cx^) > F'(x^+L) , and Q'(L) . exist, then Lemma
1 States that Q’(£) = F’(x^) = F'(x^+L) . Moreover if F'(xp exists and
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<|i is concave on ïî(f»+ep)> then, iby Lemma 1, * Q’(£) exists.

LBMA 2. Suppose that Q is strictly unimodal, Then

m F(x£+£+h) - F"(x£+h) < Q(£)
for ail -h , 0 < |h] ^ Z. , and for ail Z suCh that Q(£) < 1 .

PROOF. Since Q is strictly unimodal, we hâve

KF(x+^+h)-F"^x>3 + iCF(y4*e-h)^F“C^;Q %

for ail x,y e ]R and 0 < , |h| s Z . Take x = x^ and y = x^+h . We get

l[F(x£+£+h) - F- (x^+h) ] + UF(x£+£) -F~(x£)] < Q(£) /'
and consequently we ohtain (1) .

LEM4A. 3'. Suppose that Q is strictly unimodal and let ^ i 0 be such
that i s jjÉÉÊi « 1 • Then is unique for ail Z ë yLJyL .

^PROOF. Suppose by contraposition that £i£|| s, F(x^+£) - F^Cxp =.

F(x|+S - F”(xJ) and x£ < xJ. . Then by_ Lemrna 2 it follows that x^ > x^ + £
P ~ry ,

and hqnce F(x^+£) £ 2Q(£) . Since Z > JL and since Q is strictly unimodal
h m >A -r "

we get F(x^+£) > 1 and we are led to a contradiction.

Let us remark that the proof of Lemma 3 also shows that x» is unique.

Moreover if Q(0) g l , then x^ is unique for ail Q! < Z < L- ..

LEMIA. 4. Suppose that Q is strictly unimodal and let ^ ^ 0 be such
that 2 < ‘Q('£^x< 1 . Then x^ is continuous on (J^L) .

PROOF. Let Z e (J^L) and take x^, e (J^L) for ail 1 such that
\ Z . Then QCO = F(x. ' + X_) - F_(x. ) -*■ Q(J) . Since X_ % Z , thereil n à n n

n n
is 1 < M„ < +® such that X < M* for ail n * 1 . Let us now take M0 > 0.1

.. n i . *
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such that 1-F(M ) + F~(-MJ < \ . Then x. e K = [-M -M -1, M +M„+11 for2 2 Xn 12*12
ail n > 1 .

Further, take a subsequence xx -*• ç e K such that either F~(x. ) + F~(Ç]
nk nk

or F (x. ) -*» F(£) , and either F(x + X ) -*■ F~(ç+£) 0r F(x, t K <) *
\ \ "k \ A

F(€+£) . Therefore F(x^ + An ) - F (xx ) -»• Q(£) , and we get \ $ Q(£) =
"k k nk

F(£+£) - F (Ç) . By Leirana 3, we conclude that K - x^ .

Let us remark that the proof of Leirana 4 also shows that x^ is right con-
tinuous at £ = £^ . Moreover it is possible that xl = x£ = f°r
£ e C^jL) . As an example take F(x) = 0 for x < 0 , F(x) = Sx for
0 < x < 1 , and F(x) = 1 for x > 1 .

LEM1A 5. Suppose that Q is strictly unimodal and let £. > 0 be such

that \ < Q(£.J < 1 . Then F is convex on (-°°,Xp ) , strictly convex on

(x^,X£ ) , concave on (x^ +£^+«0 , and strictly concave on (x^ +£1,Xj+L) .

PROOF. By Leirana 4 there is for x e (xl>X£ ^ an £ e C>L) such
that x = xn . Now since Q is strictly unimodal we hâve for 0 < a < £ < c

(2) ~f [F(u+ç) - F"(u>] + gf [F(v+a) - F‘(v)] < Q(£)
for ail u,v e R . Let us note that 0 < (£-a)/(c-a) = a < 1 , (c-£)/(c-a) =

1 - a , £ = ac + (1-a)a , x^ = a(x^+£-c) + (1-a)(x^+£-a) , and x^ + £ =

ot(x£+c) + (1-a) (x^+a) . Let us now take in (2) u = x^ + £ - c and v =
x^ + £ - a . Then we get a F”(x£+£-c) + (1-a)F (x^+£-a) > F (x^) . Since
x£ - x£ + £ >F and therefore F is strictly convex on (xl>x£ ) • By a
similar argument we get the convexity of F on a neighborhood of x^ provided
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that x, is finite. Therefore F is convex on (-°°,x« ) and strictly convex
L

| on Next let us take in (2) u = v = x^ ; then analogously we get
that F is concave on (x^+L^, +») and strictly concave on (x^ +Z , x^ + L) .

ÏÆ As a staraightforward conséquence of Leirana 5 we get

* f LEMMA 6: Let Q(0) a | If Q is strictly unimodal, then F is.I;
strictly unimodal.

LENMA <7n Suppose that Q is strictly unimodal and let Z1 > 0 such
1 that/toz-*^-#^) . 1 • Then x^ is nonincreasing and fy'f ^ is nondecrea-

h-J sing on (Z^»l)^ «

PROOF. Let k' ^2 <' L • Since <Q is strictly unimodal we hâve
by Lemma 1 A~ F~(x, ) $. A+Q(x^) <, A QùX.}, < A+F~(x. ) and therefore by Leirana

Xf£ g* jj^ * 1 j -A^ y
5 F(x.. W^>F(x. which, implies -x. iIjl . Analogously from A+F(x%

’ V' ' 1**1 X2 xi X2 2
î I A+Q^)n* A~Q(>i>-*- A"F(xx^+A1) we get xx + x1%,x\ •+>2

3. Proof of the main resuit

We can now prove the Theotem of Section 1 by making use of the auxiliary
§ results givèri in Seètïon 2.

: f, Suppose that JF is strictly unimodal with unique mode x = x* . Then
for any Z 0 we hâve x» < x* and x^ + Z i x* . Let us take now

g 0 <£,,' < £2 5 L for L < +00 or 0 *k Z^ < Z^ < +00 for L = -h» ; then we can
write ni 03 s a âgfls

*r4 + (l-alQ(£^ * afF(x» +L1)-F”(x^ S +
^ + (1-a) [F(*^Z2y- F’(x^ )] <

< F(a(x« +0 + a-a)(x» +4)) - F'(ax„ + fl-a)'x. "f**
S ^ «-s l fs S ‘ SÂ-2> G Tas e >4 *"2

J 21 - ■* «
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In order to prove the converse assertion, we begin by extending Lemma 5^

using induction on r . Take r = 1 and let us call P1 the property of
F which was proven in Lemma 5. We go to r = 2J ; by Lemma 6 we can assume

that Q(0) < i . In order to prove property P2 af F we hâve to extend
first Lemmas 3 and 4. Hence we begin by showing that if Q is strictly uni-

modal, Q(0) < \ , and if st 0 is such that 1/3 s Q(£2) < 2/3 , then
is unique for ail l e (f2»L) and continuons on (£2,L) .

Indeed, take m2 > Z2 such that QCm^ = 2/3 . (Note that in Lemmas 3 1
and 4 = L .) By Lemma 3, x_ is unique and consider the distribution *

function G(x) s 0 for x < x , G(x) I 3F (s:)/2 for x s x < x + nu , J
“2 ^

and G(x) = 1 for x t x + nu . We show first that &,(£) = 3Q(Z)/2 for
l**2 ^ 'J

ail Z < m2', f.e., x^ and x^ + Z lie in (xm ,xm^+m2) and are therefore *
for both F and G the same. Suppose by contraposition that x^ ^ ^
Since Q is strictly unimodal we hâve a“Q(£) > A+Q(£) > A+Q(m2) . On the
other hand we hâve, by Lemmas 1 and 5, ût~QÇè} < .A+F“(x^) < h~T~(x^ < A+Q(m2)
and we are led to a contradiction. By an analogous argument we hâve x^ + Z s
s x^ + . Next, by applying Lemmas 3 and 4 to G , we get our assertion. ^

Before continuing let us remark that Z2 s Z1 , x^ s x^ * x^ , and
1 2

f ^2 £ XZ + ^ xl + L . Moreover m2 s .

Further, to get P0 we hâve to show that F is convex on (-°°,x« ) ,
: 2

strictly convex on Cx^,x^ ) , concave on (x^ +Z2, +») , and strictly concave

on (x^ +^2,x^+L) . Indeed, we get this assertion by proceeding in the same
way as in the proof of Lemma 5 for G . As a straightforward conséquence of

P2 we get that if Q(Q) k 1/3 and if Q is strictly unimodal, then F is
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strictly unimodal. This is the extension of Leirana 6. Moreover Lemma 7 extends
to the interval (£2,L) •

Property Pr+1 of F can be obtained from property Pr in the same way
as we get P2 from P1 . This means that, by induction on r , we hâve shown
that if Q is strictly unimodal and if £ s 0 is such that l/(r+l) < Q(£r)
< 2/(r+l) , then F is convex on (-~,x^ ) , strictly convex on (xL,X£ ) ,

concave on (x. +£,+«) , and strictly concave on (x» +£r,x^+L) . This is

the extension of Lemma 5.

From P we conclude that if Q(0) > 1/r and if Q is strictly unimo¬

dal, then F is strictly unimodal. This is the extension of Lemma 6. There-
fore our theorem is proven for Q(0) > 0 . Moreover Lemma 7 extends to the
interval (£ ,L) .

It remains to show that our theorem holds for Q(0) = 0 , i.e., if and

only if F is continuous. Take the nonincreasing sequence {m : r £ 1}
such that mr + 0 and Q(mr) = 2/(r+l) 4- 0 . Clearly £ + 0 and since
by the extention of Lemma 7 x» < xp < x. + £ < xp + Z for arbitrary

^s \ S v ^u u
natural nunibers s,t,u,v , such that s < t , u < v , we conclude that there
is a value x = x* such that x£ + x* and (x + O + x* . By Pr ,

for any r > 1 , we conclude that F is strictly unimodal with unique mode
x = x
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