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A CHARACTERIZATION OF STRICTLY UNIMODAL DISTRIBUTION

FUNCTIONS BY THEIR CONCENTRATION FUNCTIONS1

Unimodal distribution functions

by Walter Hengartner and Radu Theodorescu

Laval University

The purpose of this article is to prove that a distribution function is
strictly unimodal if and only if its concentration function is strictly uni-

modal.
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1. Introduction and main result

Let F be a (right continuous) distribution function on R = (-=,+=)

afid set x' = inf {x:F(x)>0} and x" = sup {x:F(x)<1} . B is said to be

unimodal if and only if there exists at least one value x = X such that

F is convex on (-w,x*} and concave on (x*,+w} .

F In this case F = a Hx* + (1-a)A , where 0 < o
F at x="%¢, Hx*(x) =0 for X =x* ., Hx*(x) =
A is an absolutely continuous unimodal distribution

mode x = x* ; clearly A' has at most one relative

if it exists, at x = x* . A characterization of unimodal distribution func-

tions by their characteristic functions was given by

x* is called a mode of
<1 15 the saltus ‘&f

I o S = 00 ang
function with the same

strict maximum which is,

A . Ja. Hintin (see,

e.g., [2, p.92], Theorem 4.5.1): F is unimodal with mode x* = 0 if and

only if its characteristic function f has the form £(t) = (1/t) jt g(u)du
o)

te R , where g is a characteristic function.

Further let Qe(£) = sup {F(x+£)-F (x):xeR} for £ = 0 and Qe(D) =0

otherwise, where F  denotes the left limit of F , be the (Lévy) concentra-

tion function of F . C(learly Qp 1is a distribution function. If there is

no ambiguity we shall simply write (Q instead of Qe -

[1,p.4-9] that (Q is subadditive, Q(0) = sup {F(x)-F (x):xeR}, and that

for every £ > 0 there exists X, € R such that Q(&) = F(x,+0) - F (x

If L = sup {£:Q(&)<1} , then X; 1is unique and x'

2

= X e e

L

Our purpose is to characterize unimodal distribution functions by their

concentration functions. If F is unimodal, it is easily seen that Q

modal with unique mode £%* = 0 . The converse of this assertion is unfortuna-

tely not true. Take, e.g.,

It is known (see, e.g.,

is uni-
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( 0 Fopiix <30 ,
x/4 for e po el o
1/4 Fors 1< X <2 o,
F(x) = §
(X-1)/4 For 2= %< 4,
(x+2)/8 for 4 <x<6 ,
L 1 FOT W Bale -
Then
0 for 3Lj<alil,
£/4 for 0<£'<2,
QL) = :
[(8:2) /S S ap st 2bs IR< GI8]
1 for L =6,

This situation leads us to strenghten the definition of a unimodal distribu-

tion function. We shall say that F is strictly unimodal if and only if F

is unimodal with a mode at x = x* , F is strictly convex on (x',x*) , and
F is strictly concave on (x*,x'") . It follows immediately that x = x* 1s
the unique mode of F . Let us remark that one or both of the sets (x' X%
and (x*,x') may be empty. Since F = a Hx* + (1-¢)A , it follows that in
g this case A' has exactly one relative strict maximum at Xx = x* . Moreover
F 1is strictly unimodal with mode x* = 0 if and only if its characteristic
function £ has the form f(t) = (1/t) ft g(u)du , t ¢ R, where g is the
characteristic function of a distributicmofunction G which is strictly in-

creasing on the interval {x:0<G(x)<1} .
ni- The remainder of this paper is devoted to the proof of the following:

THEOREM, F is strictly unimodal if and only if Q 1is strictly unimodal.
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2. Auxiliary results

Let ¢ be a real-valued function defined on R and consider its four

derived numbers at x ¢ R

D'o(x) = lim sup [¢(x+h)-4(x)1/h ,
h+0
D+¢(x] = 1im inf [¢(x+h)-¢(x)1/h ,
h+0
D7¢(x) = lim sup [¢(x)-¢(x-h)1/h ,
h+0
D ¢(x) = lim inf C[¢(x)-¢(x-h)1/h .
h+0
If D+¢[x) = D+¢(x) we shall write ate(x) for. this common value which

represents the right derivative of ¢ at x ¢ R, and similarly A ¢(x) for

its left derivative at x e R.

LEMMA 1. For all £ > 0 we have

IA

max(D_F_(xﬁ] » D.F(x,+0)) < D,Q(D) ,

min(D+F-(x£) . D_P(x£+£)) D Q&)

v

The above inequalities hold alsc if D_ and D, are replaced by D° and

D respectively.

PROOF. For 0 <a < b we have for all x,y ¢ R

F(x+b) -F (%) -F(x,+a) +F (x)) QM)-Qa) F(xb+b) e (xb) -F(y+a)+F (y)

b-a b-a b ~-a

Take first x:xa,y=xb,andthen x:xa+a—b,y=xb+b-a. Lemma

1 follows after passage to the limit.

Let us remark that if I—"(xg) ; F’{x£+£) , and . O'"(£) . exist, ther Lemma

1 states that Q'(g) = F'(XZ) = F'(xzﬂ’,) . Moreover if F'(xz) exists and

1

Ty
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Q is concave on (0,+=), then, by Lemma 1, Q'(£) exists.

LEMMA 2. Suppose that Q 1is strictly unimodal. Then

i E(xpteth) - F (x,+h) < Q(&)
fonka R <SP and Yfor all £ such that Q(E) <1 .

PROOF. Since Q 1is strictly unimodal, we have
JF(x+&+h)-F (x)] + 3[F(y+£-h)-F (y)1 < [Q(£-h)-Q(£+h)1/2 < Q(&)

for all x,y e R and 0 < |h| <2 . Take x=x, and y = xpth . We get
JLF(xp+2+h) - F(xpth) 1 + JLF(xp+0) - F (x,)] < QB ,

and consequently we obtain (1)
T

LEMMA 3. Suppose that Q is strictly unimodal and let F_l = 0 be such

that s<Q({) <1 . Then x, is unique for all £ e (£,,1) .

PROOF. Suppose by contraposition that Q(£) = F(xﬁ%} - F—(xi) =

F(xiu’.) - F'[xﬁ) and xilf_ < x2 . Then by Lemma 2 it follows that xz > xé sk

and hence ?(x‘i»«ﬂ) = 20(8) & Sitice £ > !.1 and since Q 1is strictly unimodal

we get F(xﬁﬂ’,) > 1 and we are led to a contradiction.

Let us remark that the proof of Lemma 3 also shows that Xp is unique.
d

Moreover if Q(0) = 3 , then Xp ismmique for all* 0 <g<ily |

LEMMA 4. Suppose that Q is strictly unimodal and let £, 2 0 be such

that } < Q(.El) <ijine .Then Xp is continuous on (£1,L)

PROOF. Let £ e (Zl,L) and take A, € (£1,L) Egpal]l Tz o osuch that
na

Laed, Then Q) = F(x’\n L) = F—(X)‘n) +Q(#) . Since A + £, there

15 0 < M, < 4= such that A s M, forall nz1. Letusnow take M, > 0

o4
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2 Tz 1 gafliy, L
such that 1 F(Mg) + F( M2) <dg ) MiThen xkn EF K=" EM, N i M1+M2+1] for

all n =91 .

Further, take a subsequence x

A
Pk iy
or F‘(xA ) + F(§) , and either P(x, “+#3i )~ D g Bz, #de)
0 n B n. Ty
k
F(8+2) . Therefore. F(x, 'otad ) = F'(xA ) > Q(£), and we get 3 = Q&) =
Ny k Ny

F(&+£) - F (§) . By Lemma 3, we conclude that £ =X, .

Let us remark that the proof of Lemma 4 also shows that Xp is right con- -

‘L
£ e (£,,1) . As an example take F(x) = 0 for x <0, F(x) = vx for

tinuous at £ = £, . Moreover it is possible that x; = X, = X, for all
!

0= % < 0N Blx)=1l Iford xes das

LEMMA 5. Suppose that Q is strictly unimodal and let £, 20 be such

that: 18 Q[ﬂl) < 1 . Then F 1s cenvex on (—w,xz ) , strictly convex on
il
(xL,le) , concave on {x£1+£1,+m) , and strictly concave on (x£1+£1,xL+LJ h

PROOF. By Lemma 4 there is for x e (x;,X, ) an 2e (2,,1) such
1

that x = x, . Now since Q is strictly unimodal we have for 0 s a < £ <c

@ £z8 [Fae) - Fw] + a [Fova) - (W] < Q@

c=a C=a:
for all u,v ¢ R . Let us note that 0 < (£-a)/(c-a) = a <1, (c-£)/(c-a) =
1= aqu.d=oac+ (1=alal Xp = a(x£+£-c) + (l-a](x£+£—a) , and Xp + X =
a(xﬂﬁc) + (1—a)(x£+a) . Let us now take in (2) u = Xp + £ =i and Vo=

Xp + £ - a . Thenwe get a F-(x£+£-c) + (1-a)F (xp+L-a) > F-(xﬂj . Since

ol
similar argument we get the convexity of F on a neighborhood of X provided

< + £ ,F~ and therefore F is strictly convex on (xL,x£ o BVoE
- 1

+ £ ¢ K such that either F_(xA )+ F(

th

orl

th

wn

|t

|t
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that x, is finite. Therefore F 1is convex on (~==,x£) and strictly convex
il

L

ol {XL’XE ) . Next let us take in (2) u=v =X, ; then analogously we get
1 :

that F is concave on (x!_ +£1,+m] and strictly concave on (xZ wh X+ L)
i q

As a straightforward consequence of Lemma 5 we get

LEMA 6. Let Q(0) = i . If Q is strictly unimodal, then F is

strictly unimodal.

LEMMA 7. Suppose that Q is strictly unimodal and let £1 = 0 such

tha sl = Q(!ii) o W o) Xp is nonincreasing and Xp + £ 1is nondecrea-
sing on (ﬂl,L) .
PROOF. Let 21 <X <A.<L . Since Q is strictly unimodal we have

1 2
by Lema 1 A~ F (x, ) < 4A'Q(x,) < 4 Q(»,) < A'F (x, ) and therefore by Lemma
Xy 2 1 Xy

X

5 F(x)\) < F(x, ) which implies x, =< x, . Analogously from NG oI O
2 1 R S

4 = =
A Q(A,z) <28 Q(x) =2 F(xl +11) we get X, + X S X, o+ Ay o+
3! dl 2

3, Proof of the main result

We can now prove the Theorem of Section 1 by making use of the auxiliary

results given in Section Z.

Suppose that F is strictly unimodal with unique mode x = x* . Then
forany £ > 0 we have Xx, < x* and Xp + £ = x* . Let us take now

g P <1 for Lets or 0% £ <4, <+ for L = +=; then we can

write Lfor, =0 s oo <scl

aQ(L,) + (1-a)Q(L,) = Q[F(xﬂ ) -F (x, )+
- 1 - 4

="

(1-0) [F{x£2+£2) : F_(xﬂh)] <

A

Fla(xy +£y) + (1-0) (xp +£p)) - F(oxy +(1-a)xp ) <

A

Qlal +(1-0)£,)
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In order to prove the converse assertion, we begin by extending Lemma 5
using induction on r . Take T =1 and let us call P, the property of
F which was proven in Lemma 5. We go to r = 2 ; by Lemma 6 we can assume

that Q(0) <

[

In order to prove property P, of F we have to extend
f'irst Lemmas 3 and 4. Hence we begin by showing that if Q is strictly uni-
modal, Q(0) < i , and if L,20 is such that 1/3 < QL) < 2/3 , then X,
is unique for all £ ¢ {ﬂz,L) and continuous on (£Q,L)

Indeed, take m2’> £, such that Q(m) = 2/3 . (Note that in Lemmas 3

and 4 m =1L .) By Lemma 3, Xy is unique and consider the distribution
2
fimetion G(x) = 0" for“x < xm2 » G(X) = 3F(x)/2 for )cm2 < ol xm2 +m,

and G(x) =1 for x=x  +m, . We show first that QD = 3qe)/2 for
2

aly” L= m, , T8, Xp and Xp + £ " Tie in (xmz,ngn;m?) and are therefore

for both F and G the same. Suppose by contraposition that x, <x .
%
Since Q is strictly unimodal we have A™Q(£) = a'Q(&) > A+Q(m2) . On the
other hand we have, by Lemmas 1 and 5, A QL) < A+P'(x£) < A_F-(xm2) = A+Q(n12)
and we are led to a contradiction. By an analogous argument we have x, + L=
X, tm, . Next, by applying Lemmas 3 and 4 to G , we get our assertion.

2

Before continuing let us remark that £2 =t

4 stxzisx£2,and

_x£2 + £2 < xﬂl + I_l < x ot L . Moreover m,sm .
Further, to get P2 we have to show that F is convex on (-w,xﬂ )%
2

strictly convex on [xL,x£2} , concave on (x£ +£2,+==) , and strictly concave
2

on (xt +£2,xL+L) . Indeed, we get this assertion by proceeding in the same
2 ;
way as in the proof of Lemma 5 for G . As a straightforward consequence of

P, we get that if Q(0) = 1/3 and if Q is strictly unimodal, then F is

2
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strictly unimodal. This is the extension of Lemma 6. Moreover Lemma 7 extends

to the interval (JZQ,L) :

Property Pr - of F can be obtained from property P -in the same way
as we get P2 from Pl . This means that, by induction on T , we have shown
that if Q is strictly unimodal and if 21_ 240 weisosuchathat §1/ (rHl)i< Q(ZT)

< 2/(r+l) , then F is convex on (-w,x£ ) , strictly convex on (x »Xp e
T T
concave on (x£ +£r,+m] , and strictly concave on (Xﬁ +£r,xL+L) . This is
T . T

the extension of Lemma 5.

From P, we conclude that if Q(0) 2 1/r and if Q is strictly unimo-
dal, then F is strictly unimodal. This is the extension of Lemma 6. There-
fore our theorem is proven for Q(0) > 0 . Moreover Lemma 7 extends to the

interval (ZT, i)

It remains to show that our theorem holds for Q(0) = 0 , i.e., if and
only if F 1is continuous. Take the nonincreasing sequence {mr v ree 1)
such that m.+ 0 and Q(n'&) = 2/(x+1) 4+ 0 . Clearly £ +0 and since

by the extention of Lemma 7 xzs < }(Lc < xﬁv + 1’_v < xzu + £u for arbitrary

natural numbers s,t,u,v , such that s <t , u<v, we conclude that there

is a value x = x* such that X,
T

for any r 2 1 , we conclude that F is strictly unimodal with unique mode

- *
+ x* and (‘xlr+2r)_+x . By Pr’

Xei=axT v,
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