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Abstract. We develop semiclassical approximations for calculating photoabsorption cross sections beyond

the continuum threshold in quantum many-body systems. These approximations use the fully quantum-

mechanical Wigner function of the ground state and semiclassical expansions only for the part of the cross

section depending on the continuum states, thus avoiding the difficult explicit calculation of the continuum

states. Even though the approach is general, we test it in electronic-structure theory for the photoionization

cross sections of the hydrogen and helium atoms. The results suggest that these semiclassical approxima-

tions can be used to obtain good estimates of cross sections at high energy.

PACS. 03.65.Sq Semiclassical theories and applications – 31.15.Gy Semiclassical methods – 32.80.-t

Photoionization and excitation – 02.70.-c Computational techniques; simulations

1 Introduction

In many-body quantum systems, the calculation of properties
involving continuum states constitutes a challenge for compu-
tational methods. The simplest example is perhaps given by the
photoabsorption cross section beyond the continuum threshold,
corresponding to transitions of the system from a bound state
to continuum states induced by the absorption of a photon (see,
e.g., Refs. [1,2]). In the context of the electronic-structure the-
ory of atoms and molecules, this property is also known as the
photoionization cross section since it corresponds to the ioniza-
tion of the system by ejection of one or more electrons into the
continuum (see, e.g., Ref. [3]). Hence, calculations of photoab-
sorption/photoionization cross sections require an appropriate
description of excitations to continuum states and are usually
performed with quite sophisticated and computationally expen-
sive approaches, i.e. using extended basis sets such as B-spline
basis sets [4,5,6] with continuum boundary conditions [7,8,9]
or using techniques involving the complex-energy plane such
as complex scaling [10,11], analytical continuation [12], or in-
tegral transforms [13].

In this work, as a possible alternative to these involved fully
quantum mechanical calculations, we develop semiclassical ap-
proximations for calculating photoabsorption cross sections,
based on the Wigner phase-space formulation of quantum me-
chanics (see, e.g., Refs. [14,15,1,16]) or also known as defor-
mation quantization [17,18]. Wigner-based semiclassical ap-
proximations have been used in nuclear physics to calculate
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various quantities (see, e.g., Refs. [1]). In particular, the full
semiclassical Wigner-Kirkwood expansion (in powers of the
reduced Planck constant ~) of the linear-response function has
been determined [19,20]. Here, we consider semiclassical ap-
proximations of the photoabsorption cross section using the
fully quantum-mechanical Wigner function of the ground state
and semiclassical expansions only for the part depending on the
continuum states. This is motivated by the fact that semiclassi-
cal expansions are expected to work better for continuum states
than for the ground state. Similar semiclassical approximations
have been used in molecular physics to calculate photodisso-
ciation cross sections [21,22,23,24] (see, also, Refs. [25,26]),
but to the best our knowledge this type of semiclassical approx-
imations have never been developed for photoabsorption cross
sections (see, however, Ref. [27] for a Wigner-based approach
of light absorption in solids). As an illustration, we test this
approach in electronic-structure theory for the photoionization
cross sections of the hydrogen and helium atoms, but it can be
a priori applied to the photoabsorption cross sections appearing
in other fields such as nuclear physics.

The paper is organized as followed. In Section 2, we lay
down the general theory for semiclassical approximations of
photoabsorption cross sections for an arbitrary N-particle sys-
tem. In Section 3, we treat the case of one-particle systems with
spherical ground states. In Section 4, we work out the specific
case of hydrogen-like atoms with a Coulomb potential, and
give results for the hydrogen atom. In Section 5, we treat the
case of helium-like atoms, and give results for the helium atom.
Finally, Section 6 contains conclusions and future directions.
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Hartree atomic units (a.u.), in which ~ = m = e = 1/(4πǫ0) = 1,
are used throughout this work.

This work was started together with the late Peter Schuck
who developed semiclassical approximations in nuclear physics
and was eager to extend them to other fields. The present au-
thor is thus very much indebted to Peter Schuck for having in-
troduced him to these Wigner-based semiclassical techniques
and guided him through the early stages of the present work.
The paper is thus dedicated to his memory.

2 General theory for N-particle systems

2.1 Photoabsorption cross section in terms of Wigner
transforms

We consider a non-relativistic N-particle Hamiltonian,

Ĥ =
p̂2

2
+ V̂ , (1)

where p̂ = (p̂1, p̂2, · · · , p̂N) collects all momentum operators
of the individual particles and V̂ is a potential-energy operator,
with eigenstates {|Ψn〉}n∈N and eigenvalues {En}n∈N

Ĥ|Ψn〉 = En|Ψn〉. (2)

Denoting by Ethres the continuum threshold energy, the eigen-
states with En < Ethres are bound states and the eigenstates with
En ≥ Ethres are continuum states assumed to be discretized for
simplicity (e.g., obtained by putting the system in a large finite
box with periodic boundary conditions), so that {|Ψn〉}n∈N forms
a discrete complete orthonormal basis of the Hilbert space. The
linear-response photoabsorption cross section, corresponding
to transitions between the ground state |Ψ0〉 and the excited
states |Ψn〉, in the velocity-gauge electric-dipole approximation
at frequency ω is defined as

σ(ω) =
4π2

3cω

∑

µ∈{x,y,z}

∞
∑

n=0

|〈Ψ0|P̂µ|Ψn〉|2 δ(ω − (En − E0)),

(3)

where c = 137.036 a.u. is the speed of light, P̂µ =
∑N

i=1 p̂i,µ is
the Cartesian µ-component of the total momentum (or velocity)
operator, and δ is the Dirac delta function. We are interested
in the cross section beyond the continuum threshold, i.e. ω ≥
Ethres − E0. The cross section can be rewritten as

σ(ω) =
4π2

3cω

∑

µ∈{x,y,z}

∞
∑

n=0

〈Ψ0|P̂µ|Ψn〉〈Ψn|δ(ω + E0 − Ĥ)P̂µ|Ψ0〉

=
4π2

3cω

∑

µ∈{x,y,z}
〈Ψ0|P̂µδ(ω + E0 − Ĥ)P̂µ|Ψ0〉

=
4π2

3cω
Tr[B̂ ρ̂0], (4)

where we have used the Schrödinger equation [Eq. (2)] and the
completeness relation

∑∞
n=0 |Ψn〉〈Ψn| = 1̂, and we have intro-

duced the operator

B̂ =
∑

µ∈{x,y,z}
P̂µÂP̂µ, (5)

with the spectral-density operator Â = δ(ω + E0 − Ĥ) and the
ground-state density-matrix operator

ρ̂0 = |Ψ0〉〈Ψ0|. (6)

In the position representation, the cross section takes the
form

σ(ω) =
4π2

3cω

∫

R6N

drdr′B(r, r′)ρ0(r′, r), (7)

where r = (r1, r2, · · · , rN) ∈ R3N and r′ = (r′
1
, r′

2
, · · · , r′

N
) ∈

R
3N are position vectors of the N particles, and B(r, r′) = 〈r|B̂|r′〉

and ρ0(r′, r) = 〈r′|ρ̂0|r〉 = Ψ0
(r′)Ψ ∗

0
(r). We now introduce the

Wigner (or Weyl) transforms/representations of the operators B̂

and ρ̂0 (see, e.g., Refs. [1,28])

[B̂]W(q, p) ≡ BW(q, p) =

∫

R3N

ds e−ip·s〈q + s/2|B̂|q − s/2〉,(8)

[ρ̂0]W(q, p) ≡ ρ0,W(q, p) =

∫

R3N

ds e−ip·s〈q + s/2|ρ̂0|q − s/2〉,(9)

where q = (r + r′)/2 ∈ R3N is the average position vector,
s = r − r′ ∈ R3N is the relative position vector, and p =
(p1, p2, · · · , pN) ∈ R3N is the conjugate momentum vector of
s. The Wigner transformation preserves the trace of a product
of operators, so we have

σ(ω) =
4π2

3cω

∫

R6N

dqdp

(2π)3N
BW(q, p)ρ0,W(q, p). (10)

We have thus put the photoabsorption cross section in the form
of a phase-space integral. So far, everything is exact. We will
assume that we know the Wigner function of the ground state
ρ0,W(q, p), and we will now use a semiclassical expansion ap-
proximation for BW(q, p).

2.2 Semiclassical expansion approximation

A convenient formula for calculating Wigner transforms and
their semiclassical expansions is the following expression for
the Wigner transform of the product of two operators Ĉ and D̂,
also known as Groenewold’s formula or Moyal product or star
product (see Ref. [1]),

[ĈD̂]W(q, p) = CW(q, p)e(i~/2)
↔
ΛDW(q, p), (11)

where
↔
Λ =

←
∇q ·

→
∇p −

←
∇p ·

→
∇q is the Poisson bracket differen-

tial operator (the arrows indicate on which side act the nabla
operators) and the reduced Planck constant ~ = 1 a.u. is kept
to keep track of orders in ~. Expanding Eq. (11) in powers of ~
generates a semiclassical expansion.

By repeatedly applying this formula, we can write BW(q, p)
as

BW(q, p) =
∑

µ∈{x,y,z}
PµAWPµ −

~
2

4
Pµ
↔
Λ(AW

↔
ΛPµ), (12)
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where AW ≡ AW(q, p) is the Wigner transform of the oper-
ator Â. We have used the fact that the Wigner transform of
total momentum operator P̂µ is the total momentum variable

Pµ =
∑N

i=1 pi,µ, i.e. [P̂µ]W = Pµ, and we have used the fact that
the antisymmetry of the Poisson bracket differential operator
↔
Λ implies that Pµ

↔
ΛAW = −AW

↔
ΛPµ and Pµ

↔
ΛPµ = 0. Note that

there is no higher-order terms in Eq. (12) since acting twice

with
↔
Λ on Pµ gives zero. The last term in Eq. (12) is

Pµ
↔
Λ(AW

↔
ΛPµ) = −∇pPµ · ∇q(∇qAW · ∇pPµ)

= −
N

∑

i=1

N
∑

j=1

∂2AW

∂qi,µ∂q j,µ

. (13)

We thus obtain the following exact expression for BW(q, p)

BW(q, p) =

N
∑

i=1

N
∑

j=1

∑

µ∈{x,y,z}

[

pi,µp j,µAW(q, p) +
~

2

4

∂2AW(q, p)

∂qi,µ∂q j,µ

]

,

= P2AW(q, p) +
~

2

4
D2AW(q, p), (14)

where we have introduced the total momentum vector P =
∑N

i=1 pi and the differential operator D =
∑N

i=1 ∇qi
.

It remains to find an expression for AW(q, p), i.e. the Wigner
transform of the operator Â = δ(ω+E0−Ĥ). This Wigner trans-
form cannot be calculated exactly but we can write its second-
order semiclassical expansion

AW(q, p) = A
(0)

W
(q, p) + ~2A

(2)

W
(q, p) + O(~4), (15)

where the zeroth-order term is

A
(0)

W
(q, p) = δ(ω + E0 − H(q, p)) , (16)

where H(q, p) = p2/2 + V(q) is the classical Hamiltonian,
and the second-order correction is obtained from Eq. (13.43)
of Ref. [1] (by differentiating with respect to λsc and correct-
ing the minus sign in front of δ′′ into a plus sign) (see also
Refs. [29,30,31,32])

A
(2)

W
(q, p) =

1

8

[

−∇2
qV(q) δ′′(ω + E0 − H(q, p))

+
1

3

(

(∇qV(q))2 + (p · ∇q)2V(q)
)

δ′′′(ω + E0 − H(q, p))

]

.(17)

We thus obtain the second-order semiclassical expansion for
BW(q, p)

BW(q, p) = B
(0)

W
(q, p) + ~2B

(2)

W
(q, p) + O(~4), (18)

with

B
(0)

W
(q, p) = P2A

(0)

W
(q, p), (19)

and

B
(2)

W
(q, p) =

1

4
D2A

(0)

W
(q, p) + P2A

(2)

W
(q, p). (20)

The expression of D2A
(0)

W
(q, p) is obtained directly from Eq. (16)

D2A
(0)

W
(q, p) = −

(

D2V(q)
)

δ′(ω + E0 − H(q, p))

+ (DV(q))2 δ′′(ω + E0 − H(q, p)) . (21)

Finally, we obtain the second-order semiclassical expansion of
the photoabsorption cross section [Eq. (10)]

σ(ω) = σ(0)(ω) + σ(2)(ω) + · · · , (22)

with the zeroth-order cross section

σ(0)(ω) =
4π2

3cω

∫

R6N

dqdp

(2π)3N
B

(0)

W
(q, p)ρ0,W(q, p)

=
4π2

3cω

∫

R6N

dqdp

(2π)3N
P2δ(ω + E0 − H(q, p)) ρ0,W(q, p),

(23)

and the second-order correction

σ(2)(ω) =
4π2

3cω

∫

R6N

dqdp

(2π)3N
B

(2)

W
(q, p)ρ0,W(q, p). (24)

We will write the latter term as a sum of three contributions

σ(2)(ω) = σ(2a)(ω) + σ(2b)(ω) + σ(2c)(ω), (25)

where σ(2a)(ω) is the contribution coming from the δ′ function
in Eq. (21)

σ(2a)(ω) = − π
2

3cω

∫

R6N

dqdp

(2π)3N

(

D2V(q)
)

× δ′(ω + E0 − H(q, p))ρ0,W(q, p), (26)

σ(2b)(ω) is the contribution coming from the δ′′ function in
Eqs. (17) and (21)

σ(2b)(ω) =
π2

3cω

∫

R6N

dqdp

(2π)3N

[

(DV(q))2 −
P2

2
∇2

qV(q)

]

× δ′′(ω + E0 − H(q, p)) ρ0,W(q, p), (27)

and σ(2c)(ω) is the contribution coming from the δ′′′ function
in Eq. (17)

σ(2c)(ω) =
π2

18cω

∫

R6N

dqdp

(2π)3N
P2

(

(∇qV(q))2 + (p · ∇q)2V(q)
)

× δ′′′(ω + E0 − H(q, p))ρ0,W(q, p). (28)

We have thus arrived at an approximation to the photoab-
sorption cross section that only requires to know the ground-
state Wigner function ρ0,W(q, p) but does not require the calcu-
lation of the continuum states. Note that Eq. (22) is not a full
expansion in powers of ~ since we do not expand ρ0,W(q, p) in
powers of ~.

3 Theory for one-particle systems with

spherical ground states

We now apply the general theory of the previous section to the
case of one-particle systems (N = 1) with spherical ground
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states. The phase-space variables are now q ≡ q1 ∈ R3 and
p ≡ p1 ∈ R3, and the classical Hamiltonian is

H(q, p) =
p2

2
+ V(q), (29)

where p = ||p|| and q = ||q||, and V(q) is a central potential.
This case encompasses not only one-electron atoms but also
many-electron atoms within a mean-field approximation with a
spherical local potential such as Kohn-Sham density-functional
theory. The ground-state Wigner function then depends only on
q, p, and q · p, i.e. ρ0,W(q, p) ≡ ρ0,W(q, p, q · p).

3.1 Zeroth-order semiclassical approximation

The zeroth-order photoabsorption cross section [Eq. (23)] sim-
plifies to

σ(0)(ω) =
4π2

3cω

∫

R6

dqdp

(2π)3
p2δ(ω + E0 − p2/2 − V(q))

× ρ0,W(q, p, q · p), (30)

which gives, after performing the integrals in spherical coordi-
nates,

σ(0)(ω) =
4π

3cω

∫ ∞

0

dq q2
[

θ(E)(2E)3/2ρ̃0,W

(

q,
√

2E
)]

E=ω+E0−V(q)
,

(31)

where we have introduced the spherically averaged Wigner func-

tion ρ̃0,W(q, p) =
∫ 1

−1
dx ρ0,W(q, p, qpx) and made the change

of variables E = p2/2 before applying the delta function. In
Eq. (31), θ is the Heaviside step function.

3.2 Second-order semiclassical approximation

Using ∇2
qV(q) = V ′′(q) + (2/q)V ′(q), (∇qV(q))2 = V ′(q)2, and

(p · ∇q)2V(q) = V ′′(q)(q · p/q)2 + V ′(q)(p2 − (q · p/q)2)/q,
we can obtain the different contributions to the second-order
semiclassical correction of the photoabsorption cross section.
The first contribution in Eq. (26) is

σ(2a)(ω) = −
π2

3cω

∫

R6

dqdp

(2π)3

(

V ′′(q) + (2/q)V ′(q)
)

× δ′
(

ω + E0 − p2/2 − V(q)
)

ρ0,W(q, p, q · p),(32)

which gives

σ(2a)(ω) = − 4π

12cω

∫ ∞

0

dq q2 (

V ′′(q) + (2/q)V ′(q)
)

×
[

θ(E)
d

dE
ρ̃1,W

(

q,
√

2E
)

]

E=ω+E0−V(q)

, (33)

where we have introduced ρ̃1,W(q, p) = pρ̃0,W(q, p).

Similarly, the second contribution in Eq. (27) is

σ(2b)(ω) =
π2

3cω

×
∫

R6

dqdp

(2π)3

[

V ′(q)2 − p2

2

(

V ′′(q) + (2/q)V ′(q)
)

]

× δ′′
(

ω + E0 − p2/2 − V(q)
)

ρ0,W(q, p, q · p), (34)

which gives

σ(2b)(ω) =
4π

12cω

∫ ∞

0

dq q2

[

θ(E)

(

V ′(q)2 d2

dE2
ρ̃1,W

(

q,
√

2E
)

−
1

2

(

V ′′(q) + (2/q)V ′(q)
) d2

dE2
ρ̃3,W

(

q,
√

2E
)

)]

E=ω+E0−V(q)

,(35)

where we have introduced ρ̃3,W(q, p) = p3ρ̃0,W(q, p).
Finally, the third contribution in Eq. (28) is

σ(2c)(ω) =
π2

18cω

∫

R6

dqdp

(2π)3
p2

×
(

V ′(q)2 + V ′′(q)(q · p/q)2 + V ′(q)(p2 − (q · p/q)2)/q
)

× δ′′′
(

ω + E0 − p2/2 − V(q)
)

ρ0,W(q, p, q · p), (36)

which gives

σ(2c)(ω) =
π

18cω

∫ ∞

0

dq q2

[

θ(E)

(

V ′(q)2 d3

dE3
ρ̃3,W

(

q,
√

2E
)

+
(

V ′′(q) − (1/q)V ′(q)
) d3

dE3
τ̃5,W

(

q,
√

2E
)

+(1/q)V ′(q)
d3

dE3
ρ̃5,W

(

q,
√

2E
)

)]

E=ω+E0−V(q)

,

(37)

where we have introduced τ̃0,W(q, p) =
∫ 1

−1
dx x2ρ0,W(q, p, qpx),

ρ̃5,W(q, p) = p5ρ̃0,W(q, p), and τ̃5,W(q, p) = p5τ̃0,W(q, p).

4 Hydrogen-like atoms

In this section, we consider hydrogen-like atoms, i.e. one elec-
tron in the Coulomb potential V(q) = −Z/q. The ground state
energy is E0 = −Z2/2 and the ionization threshold Ethres = 0.
Beyond the ionization threshold, the photoabsorption cross sec-
tion is usually called photoionization cross section.

4.1 Expression of the photoionization cross section

The Wigner function of the ground state of the hydrogen atom
(Z = 1) has been given in Ref. [33] in the form of a one-
dimensional integral that, with the help of the software Mathe-
matica [34], we write here as 1

ρZ=1
0,W (q, p, q · p) =

∫ 1

0

du f (q, p, q · p, u), (38)

1 Note that we needed to multiply the Wigner function of Ref. [33]

by 4 × (2π)3 to match the present definition.
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where

f (q, p, q · p, u) = 16e2iq·p(2u−1)−2qg(p,u)

×
(1 − u)u

(

3 + 6qg(p, u)+ 4q2g(p, u)2
)

g(p, u)5
, (39)

with g(p, u) =
√

1 + 4p2(1 − u)u. Here, u is not a physical vari-
able but a disentanglement variable introduced to be able to
perform the integration over s in Eq. (9). From this, we easily
obtain the spherically averaged Wigner function as

ρ̃Z=1
0,W (q, p) =

∫ 1

0

du f̃ (q, p, u), (40)

where

f̃ (q, p, u) = 16e−2qg(p,u) sin (2qp(2u − 1))

×
(1 − u)u

(

3 + 6qg(p, u)+ 4q2g(p, u)2
)

qp(2u − 1)g(p, u)5
. (41)

The ground-state Wigner function for a hydrogen-like atom
with arbitrary nuclear charge Z can then be simply obtained
from scaling: ρZ

0,W
(q, p, q · p) = ρZ=1

0,W
(Zq, p/Z, q · p) and

ρ̃Z
0,W

(q, p) = ρ̃Z=1
0,W

(Zq, p/Z).
The zeroth-order semiclassical photoionization cross sec-

tion [Eq. (31)] thus takes the form

σ(0)(ω) =
4π

3cω

∫ 1

0

du

∫ ∞

0

dq q2(2(ω + E0 + Z/q))3/2

× f̃
(

Zq,
√

2(ω + E0 + Z/q)/Z, u
)

, (42)

and is calculated by performing a double numerical integration
over q and u with the software Mathematica [34].

The terms involving the Laplacian of the Coulomb poten-
tial, ∇2

qV(q) = 4πZδ(q), do not contribute to the second-order
semiclassical correction to the photoionization cross section.
Thus, the first contribution [Eq. (33)] vanishes

σ(2a)(ω) = 0, (43)

and the second contribution [Eq. (35)] simplifies to, using V ′(q) =
Z/q2,

σ(2b)(ω) =
πZ3

3cω

∫ ∞

0

dq
1

q2

[

d2

dE2
ρ̃1,W

(

Zq,
√

2E/Z
)

]

E=E(ω,q)

,

(44)

where E(ω, q) = ω+ E0 + Z/q. Finally, using V ′′(q) = −2Z/q3,
the third contribution [Eq. (37)] takes the form

σ(2c)(ω) =
π

18cω

∫ ∞

0

dq

[

Z5

q2

d3

dE3
ρ̃3,W

(

Zq,
√

2E/Z
)

−3Z6

q

d3

dE3
τ̃5,W

(

Zq,
√

2E/Z
)

+
Z6

q

d3

dE3
ρ̃5,W

(

Zq,
√

2E/Z
)

]

E=E(ω,q)

. (45)

Using the software Mathematica [34], the quantity ρ̃1,W

(

q,
√

2E
)

,

ρ̃3,W

(

q,
√

2E
)

, ρ̃5,W

(

q,
√

2E
)

, and τ̃5,W

(

q,
√

2E
)

, and their deriva-

tives with respect to E are obtained as one-dimensional inte-
grals over u similar to Eq. (40).
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Fig. 1. Photoionization cross section of the hydrogen atom (Z = 1).

The exact cross section σexact(ω) [Eq. (46)] is compared with the

zeroth-order semiclassical approximation σ(0)(ω) [Eq. (42)], the par-

tial second-order semiclassical approximation σ(0+2b)(ω) = σ(0)(ω) +

σ(2b)(ω) [Eqs. (42) and (44)], the full second-order semiclassical ap-

proximation σ(0+2)(ω) = σ(0)(ω)+σ(2b)(ω)+σ(2c)(ω) [Eqs. (42), (44),

and (45)], and the Padé approximant σPadé(ω) [Eq. (48)].

4.2 Results and discussion

The photoionization cross section of the hydrogen-like atom is
known exactly (see, e.g., Refs. [35,36])

σexact(ω) =
32π2Z6

3cω4

e−4n′(ω) arccot n′(ω)

1 − e−2πn′(ω)
, (46)

where n′(ω) = Z/
√

2(ω + E0).

In Figure 1, we compare the exact cross section of the hy-
drogen atom (Z = 1) with the zeroth-order semiclassical ap-
proximation σ(0)(ω) [Eq. (42)], the partial second-order semi-
classical approximationσ(0+2b)(ω) = σ(0)(ω)+σ(2b)(ω) [Eqs. (42)
and (44)], and the full second-order semiclassical approxima-
tion σ(0+2)(ω) = σ(0)(ω) + σ(2b)(ω) + σ(2c)(ω) [Eqs. (42), (44),
and (45)]. While the cross section σ(0+2b)(ω) is a significant
improvement over the zeroth-order cross section σ(0)(ω), the
addition of the contribution σ(2c)(ω) has almost no effect.

As expected, the semiclassical approximation becomes more
accurate as ω increases. The exact asymptotic behavior of the
cross section of the hydrogen atom for large ω is [37]

σexact(ω) ∼
ω→∞

16π
√

2

3cω7/2
≈ 0.172

ω7/2
. (47)

Numerically, we find limω→∞ ω
7/2σ(0)(ω) ≈ 0.11 and

limω→∞ ω
7/2σ(0+2)(ω) ≈ 0.17. So, σ(0)(ω) has the correct be-

havior in 1/ω7/2 but not the correct prefactor, while σ(0+2)(ω)
has the correct prefactor.

To improve the accuracy at small ω, one may resum the
semiclassical expansion in Eq. (22) using a [0/1] Padé approx-
imant

σPadé(ω) =
σ(0)(ω)

1 − σ(2)(ω)/σ(0)(ω)
, (48)
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Fig. 2. Photoionization cross section of the hydrogen atom. The ex-

act cross section σexact(ω) [Eq. (46)] is compared with the zeroth-

order semiclassical approximation σ(0)(ω) where the Coulomb poten-

tial V(q) has been neglected in BW(q,p).

which is also plotted in Figure 1. We see that the Padé approxi-
mant is quite effective indeed to improve the accuracy at small
ω.

Finally, Figure 2 shows the effect of neglecting the Coulomb
potential V(q) in BW(q, p), equivalent to using the free-particle
plane-wave continuum states. This changes completely the shape
of the spectrum. In particular, the cross section is now zero at
the ionization threshold, in accordance with the Wigner-threshold
law [38,39] which predicts this behavior for potentials lacking
a long-range attractive −1/q Coulomb tail. The obtained spec-
trum has in fact a similar shape as the one obtained in Hartree-
Fock [40] whose continuum states only see an exponentially
decaying effective potential.

5 Helium-like atoms

In this section, we consider helium-like atoms, i.e. N = 2 elec-
trons. The phase-space variables are now q ≡ (q1, q2) ∈ R6 and
p ≡ (p1, p2) ∈ R6, and the classical Hamiltonian is

H(q, p) =
p2

1

2
+

p2
2

2
+ V(q1, q2), (49)

where pi = ||pi|| and qi = ||qi||, and the potential is V(q1, q2) =
−Z/q1 − Z/q2 + 1/||q1 − q2||.

5.1 Wigner function of the ground state

As an approximation to the exact ground-state wave function,
we consider the Hartree-Fock (HF) wave function,Φ(q1, q2) =
φ(q1)φ(q2), where φ is the HF 1s orbital. The associated Wigner
function can be factorized as

ρHF,W(q1, q2, p1, p2) = ρφ,W(q1, p1, q1 · p1)ρφ,W(q2, p2, q2 · p2),

(50)

where ρφ,W(q, p, q · p) is the Wigner function associated with
the 1s orbital φ

ρφ,W(q, p, q · p) =

∫

R3

ds e−ip·sφ(q − s/2)φ(q + s/2). (51)

As usual in quantum chemistry, the orbital φ is expanded on M

Gaussian basis functions χi(q) = (2αi/π)
3/4e−αiq

2

, where αi are
fixed exponents,

φ(q) =

M
∑

i=1

ciχi(q), (52)

and ci are coefficients found by solving the HF self-consistent
equation. Following Ref. [41], the corresponding Wigner func-
tion is easily obtained as

ρφ,W(q, p, q · p) =

M
∑

i=1

M
∑

j=1

cic jPi, j(q, p, q · p), (53)

where

Pi, j(q, p, q · p) =

∫

R3

ds e−ip·sχi(q − s/2)χ j(q + s/2).

= 23
(

βi, jγi, j

)3/4
e−γi, jq

2

e−βi, j p
2

e−2iτi, jq·p, (54)

with βi, j = 1/(αi + α j), γi, j = 4αiα jβi, j, τi, j = (αi − α j)βi, j. The
Wigner function can be rewritten as

ρφ,W(q, p, q · p) =

M
∑

i=1

c2
i fi,i(q, p) +

M
∑

i=1

M
∑

j=i+1

cic j fi, j(q, p, q · p),

(55)

where

fi,i(q, p) = Pi,i(q, p, q · p) = 23e−2αiq
2

e−p2/(2αi), (56)

and

fi, j(q, p, q · p) = Pi, j(q, p, q · p) + P j,i(q, p, q · p)

= 24(βi, jγi, j)
3/4e−γi, jq

2

e−βi, j p
2

cos(2τi, jq · p).

(57)

5.2 Expression of the photoionization cross section

5.2.1 Zeroth-order contribution

Using the HF Wigner function in Eq. (50) and the correspond-
ing exact HF ground-state energy EHF

0
= −2.861680 a.u. (giv-

ing an ionization threshold of Ethres−EHF
0
= 0.861680 a.u.), the

zeroth-order photoionization cross section in Eq. (23) becomes

σ(0)(ω) =
4π2

3cω

∫

R12

dq1dq2dp1dp2

(2π)6
(p2

1 + p2
2 + 2p1 · p2)

× δ(ω + EHF
0 − p2

1/2 − p2
2/2 − V(q1, q2))

× ρφ,W(q1, p1, q1 · p1)ρφ,W(q2, p2, q2 · p2). (58)
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Using spherical coordinates for p1 and p2, and integrating over
the angles, we get

σ(0)(ω) =
4π2

3cω(2π)4

∫

R6

dq1dq2

∫ ∞

0

dp1

∫ ∞

0

dp2 p2
1 p2

2(p2
1 + p2

2)

× δ(ω + EHF
0 − p2

1/2 − p2
2/2 − V(q1, q2))

× ρ̃φ,W(q1, p1)ρ̃φ,W(q2, p2). (59)

where ρ̃φ,W(q, p) =
∫ 1

−1
dxρφ,W(q, p, qpx), and we have used

that the fact the integral over the angles of the term involving
p1 · p2 vanishes because ρφ,W(q, p, qpx) is an even function of
x. Using polar coordinates p1 = η cosϕ and p2 = η sinϕ, and
making the change of variables E = η2/2 before applying the
delta function, we find

σ(0)(ω) =

2

3cω

∫ ∞

0

dq1

∫ ∞

0

dq2

∫ 1

−1

dx

∫ π/2

0

dϕq2
1q2

2(cosϕ)2(sinϕ)2

×
[

θ(E)(2E)3ρ̃φ,W(q1,
√

2E cosϕ)

×ρ̃φ,W(q2,
√

2E sin ϕ)

]

E=E(ω,q1 ,q2,x)

, (60)

where

E(ω, q1, q2, x) = ω + EHF
0 +

Z

q1

+
Z

q2

−
1

√

q2
1
+ q2

2
− 2q1q2x

.

(61)

5.2.2 Second-order contribution

Similarly to hydrogen-like atoms, the Laplacian-like terms,
D2V(q) and ∇2

qV(q), should not contribute to the second-order

photoionization cross section. Thus, σ(2a)(ω) [Eq. (26)] is zero
and σ(2b)(ω) [Eq. (27)] simplifies to

σ(2b)(ω) =
π2

3cω

∫

R12

dq1dq2dp1dp2

(2π)6
(DV(q1, q2))2

×δ′′(ω + EHF
0 − p2

1/2 − p2
2/2 − V(q1, q2))

×ρφ,W(q1, p1, q1 · p1)ρφ,W(q2, p2, q2 · p2), (62)

where DV(q1, q2) = Z(q1/q
3
1
+ q2/q

3
2
). Using spherical coordi-

nates for p1 and p2, we get

σ(2b)(ω) =
π2

3cω(2π)4

∫

R6

dq1dq2

∫ ∞

0

dp1

∫ ∞

0

dp2 p2
1 p2

2

× (DV(q1, q2))2 δ′′(ω + EHF
0 − p2

1/2 − p2
2/2 − V(q1, q2))

×ρ̃φ,W(q1, p1)ρ̃φ,W(q2, p2). (63)
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Fig. 3. Photoionization cross section of the helium atom (Z = 2).

The reference TDHF cross section σTDHF(ω) [40,9] is compared with

the zeroth-order semiclassical cross section σ(0)(ω) [Eq. (60)] and

the partial second-order semiclassical cross sections σ(0+2b)(ω) =

σ(0)(ω) + σ(2b)(ω) [Eqs. (60) and (64)]. Also reported are the approx-

imate zeroth-order and partial second-order semiclassical cross sec-

tions σ(0),noV12(ω) and σ(0+2b),noV12(ω) = σ(0),noV12(ω) + σ(2b),noV12(ω)

[Eqs. (60) and (64)] in which the two-electron Coulomb interaction

V12(q1,q2) = 1/||q1 − q2|| has been neglected.

Using now polar coordinates p1 = η cosϕ and p2 = η sin ϕ, and
making the change of variables E = η2/2, we find

σ(2b)(ω) =
Z2

6cω

∫ ∞

0

dq1

∫ ∞

0

dq2

∫ 1

−1

dx

∫ π/2

0

dϕ (cosϕ)2(sin ϕ)2

×












q2
1

q2
2

+
q2

2

q2
1

+ 2x













[

θ(E)
d2

dE2

(

(2E)2ρ̃φ,W(q1,
√

2E cosϕ)

×ρ̃φ,W(q2,
√

2E sinϕ)
)

]

E=E(ω,q1 ,q2,x)

. (64)

Based on the results obtained for the hydrogen atom, we
expect the last second-order contribution σ(2c)(ω) [Eq. (28)] to
be small and so we will not attempt to calculate it.

5.3 Results and discussion

We performed a HF calculation with the uncontracted Gaus-
sian cc-pVDZ basis set [42,43] (containing M = 4 s Gaussian
basis functions) to obtain the 1s HF occupied orbital of the he-
lium atom (Z = 2). The exponents αi are 38.36, 5.77, 1.24,
0.2976, and the corresponding coefficients ci are 0.02380882,
0.15489122, 0.46998667, 0.51302690. We then calculated by
numerical integration with the software Mathematica [34] the
zeroth-order semiclassical cross section σ(0)(ω) [Eq. (60)] and
the partial second-order correction σ(2b)(ω) [Eq. (64)]. The nu-
merical integration for σ(2b)(ω) turned out to be delicate and re-
quires a somewhat costly local-adaptive algorithm. For this rea-
son, we also considered the approximation (refer to as “noV12”)
consisting in neglecting the two-electron Coulomb interaction
V12(q1, q2) = 1/||q1−q2|| in the expression of V(q1, q2). This is
done simply by replacing E(ω, q1, q2, x) in Eqs. (60) and (64)
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by EnoV12(ω, q1, q2) = ω + EHF
0
+ Z/q1 + Z/q2. This eliminates

the numerical integration over the variable x and makes the re-
maining numerical integration easier to perform. The resulting
zeroth-order and partial second-order semiclassical cross sec-
tions are designated by σ(0),noV12(ω) and σ(0+2b),noV12(ω), re-
spectively.

Figure 3 reports these photoionization cross sections for the
helium atom. As reference, we use the linear-response time-
dependent Hartree-Fock (TDHF) cross section calculated with
a B-spline basis set [40,9]. Similarly to the case of the hydro-
gen atom, the zeroth-order cross section σ(0)(ω) is always too
small but improves at ω increases. The partial second-order
cross sectionσ(0+2b)(ω) constitutes an improvement overσ(0)(ω)
and is accurate at high energy. The approximate partial second-
order cross section σ(0+2b),noV12(ω) is significantly less accurate
at high energy, showing that one should avoid neglecting the
two-electron Coulomb interaction.

6 Conclusions and future directions

In this work, we have developed semiclassical approximations
for calculating photoabsorption/photoionization cross sections.
The approximations only require to have the Wigner function
of the ground state and bypass the need to explicitly calculate
the continuum states. Examples in electronic-structure theory
on the hydrogen and helium atoms suggest that these approxi-
mations can be used to obtain good estimates of photoabsorp-
tion/photoionization cross sections at high energy.

However, at least two limitations remain. First, we do not
have any a priori estimates of the errors made by these semi-
classical approximations. Second, it seems difficult to extend
the present calculations done by deterministic numerical in-
tegration to a larger number of particles. Regarding the latter
point, a possible strategy to treat general systems would be to
calculate the 6N-dimensional phase-space integrals by Monte
Carlo sampling of the Wigner function [44]. The functions to
average in Eq. (23) and in Eqs. (26)-(28) are singular (they con-
tain the Dirac delta function and its derivatives) but the Monte
Carlo techniques developed in Refs. [45,46,47] could be used
to efficiently calculate these averages.

More generally, the type of Wigner-based semiclassical ap-
proximations developed in the present work could be useful
in quantum many-body theory to calculate efficiently the con-
tribution of the high-lying continuum states to various quanti-
ties such as second-order or coupled-cluster correlation ener-
gies [48,49] which are known to converge slowly with the size
of the one-particle basis set for a two-particle interaction with a
hard short-range part such as the Coulomb interaction [50,51].
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