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A new method named B-TIS (Bourgeois & Davoine 2020) has recently been proposed to
suppress the influence of numerical Cherenkov radiation (NCR) that appears in Particle-
In-Cell (PIC) simulation of Laser WakeField Acceleration (LFWA). However, while this
method provides good results when applied to the already accelerated electrons, we show
here that it cannot model correctly most of the plasma electron bulk interacting with the
laser field. We thus investigate in this paper the origins of this limitation and propose
an improved method for which this limitation is removed. This new method, named
B-TIS3, can now be applied to a much broader variety of problems and improve the
performance in comparison to the standard PIC algorithm. We show that, for an electron
interacting directly with a laser pulse, this new technique offers greater accuracy in
term of momentum and motion than the conventional scheme used in many PIC codes.
These improvements translate into more faithful energy spectrum and electric charge
for the accelerated beam in simulations of Vacuum Laser Acceleration (VLA) or LWFA
involving Direct Laser Acceleration (DLA) at low plasma density. This new method, easy
to implement and not computationally demanding, should then prove useful to study in
depth and help develop novel VLA, DLA and LWFA techniques.

1. Introduction
Particle-in-cell (PIC) codes are known for their versatility and relative speed, they

are used to simulate a wide range of phenomena in kinetic and collisionless (or weakly
collisional) plasma physics. To solve Maxwell equations, many of them use the finite-
difference time-domain (FDTD) method first proposed by K. Yee (Yee 1966), a simple
second-order method easily parallelisable but suffering from some numerical dispersion
error which gives rise to what is known as numerical Cherenkov radiation (NCR) (Godfrey
1974). There has been lots of work in recent years proposing different ways to limit the
impact of NCR (Xu et al. 2013; Lehe et al. 2013, 2016; Godfrey & Vay 2014; Yu et al.
2015; Li et al. 2017, 2021). We recently proposed a novel approach to mitigate the effects
of this numerical artefact through the modification of the fields interpolation (Bourgeois
& Davoine 2020).

This new technique, that we called B-TIS for B-translated interpolation scheme, is
easy to implement in most PIC codes using the Yee scheme, has negligible impact on
performance or communications and showed good results to reduce the impact of NCR
in Laser WakeField Acceleration (LWFA) simulations but we believe it could also help
to improve the modelisation of laser-particle interaction in a number of cases.

One domain where this interaction is particularly important, and thus could benefit
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greatly from such improvements, is the simulation of Vacuum Laser Acceleration (VLA);
where a laser beam directly interact with electrons propagating in vacuum to accelerate
them (Esarey et al. 1995; Quesnel & Mora 1998; Yu et al. 2000; Cline et al. 2013; Varin
et al. 2013). Though it is a difficult technique to set up experimentally, it benefits from the
extremely strong fields of the laser pulse (a few TVm−1) which make it a good candidate
to produce MeV electrons at high repetition rate (Marceau et al. 2015; Carbajo et al.
2016).

B-TIS allows for a better modelisation of laser-electron interaction by reducing the
error on the computed magnetic field which in turn lead to more accurate Lorentz force
and particle motion. The improvement is especially significant for electromagnetic fields
propagating at c along the electron acceleration axis. The study of VLA thus appears
as a logical next step as it fits well within the limitations of B-TIS and provides a good
benchmark to investigate the reproduction of the physical phenomena at play in laser-
electron interaction. This should also help to improve the modelisation of the Direct
Laser Acceleration (DLA) regime appearing in LWFA which presents great similarities
to VLA (Pukhov et al. 1999; Shaw et al. 2014, 2017; Zhang et al. 2015).

In this article, we will start in section 2 with the study of a single electron interacting
with a plane wave so as to compare and validate the simulation results against a simple
analytical model. This simple study highlights the limitations of the different simulation
techniques available and prompted us to develop an improved version of B-TIS that
should be even more robust and accurate than the previous one. In section 3 we will see
how the gaussian shape of a laser pulse impact those results before, in section 4, looking
into the acceleration of a bunch of electrons by a laser beam and finally the application
of our results to a case of DLA in a LWFA simulation.

2. Electron dynamic in an electromagnetic plane wave
We first study the case of a single electron interacting with a propagating plane wave.

This simple situation can be analytically modelled which gives us a useful benchmark to
evaluate the accuracy of our numerical simulations.

2.1. Analytical model
Considering one electron in vacuum, we can write its motion equation in terms of the

electromagnetic vector potential A as:

dp

dt
= −e

[
−∂A

∂t
+ v × (∇×A)

]
(2.1)

where p is the electron momentum, v its velocity, e the elementary charge and the scalar
potential ϕ = 0.

For a plane wave propagating along the x axis, the vector potential depends only on
x and is polarised in the yz plane. Assuming an electron initially at rest, we thus get to:

dpx
dt

= − e2

meγ
A · ∂A

∂x
= − e2

2meγ

∂A2

∂x
(2.2)

p⊥ = eA (2.3)

with p⊥ = pyey + pzez, me being the electron mass and γ its Lorentz factor. We can
recognise in eq. 2.2 the expression for the relativist ponderomotive force in the 1D case.

From the conservation of energy equation for the electron and using the fact that for a
plane wave propagating at c along the x axis,

(
∂
∂t + c ∂

∂x

)
A = 0, we can then show that
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the quantity γ − px/mec is conserved. With the electron being initially at rest, we have
γ(t = 0) = γ0 = 1 and px(t = 0) = px,0 = 0 which leads to:

γ = 1 +
px
mec

(2.4)

We thus have three equations describing the dynamic of an initially at rest electron in
a propagating plane wave.

px
mec

=
1

2

(
eA

mec

)2

(2.5)

p⊥

mec
=

eA

mec
(2.6)

γ =1 +
1

2

(
eA

mec

)2

(2.7)

2.2. Numerical simulations
All numerical simulations presented in this article were performed using the code

Calder (Lefebvre et al. 2003). Before we delve into the results of those simulations
though, we will first discuss the computation of electromagnetic fields and their resulting
actions in PIC codes in order to introduce and summarise the B-TIS method proposed
in (Bourgeois & Davoine 2020).

2.2.1. Temporal interpolation of the magnetic field B in PIC codes
Standard Temporal Interpolation

Although there have been interesting new developments to create dispersionless
Maxwell solvers in recent years, nobably most recently (Pukhov 2020), Calder, as
many other PIC codes, still uses the simple and robust FDTD Yee scheme (Yee 1966) to
solve the Maxwell equations. Electric (E) and magnetic (B) fields are thus calculated
using a leap-frog method: they are defined on different grids which are offset spatially
by half a cell but also temporally by ∆t/2.

Let us consider the computation of the transverse Lorentz force applied to a moving
particle in our simulation. The particle can move freely in the whole simulated space while
the fields are computed only on specific grid points, it is thus necessary to interpolate
the electromagnetic fields onto the charged particle position to calculate its motion.

This simple situation, with the fields amplitude values known on the different points
of the grid and an electron moving freely between those points, is shown in Fig. 1 for a
simple 1D grid. Considering only the longitudinal dimension x to simplify the notations,
An

i then denotes the value of the field A at the nth time step and the ith point of the
spatial grid or in other terms An

i = A (t = n∆t, x = i∆x). Due to the leap-frog nature
of the Yee scheme, values of the Ey fields are known at integer time-steps and grid
points while values for Bz are known at half-integer time-steps and grid points. In the
remainder of this section, we will only consider Ey and Bz - which are required to compute
the transverse force Fy - and then omit the y and z indices when it is not absolutely
necessary so as not to clutter the notation.

As the fields are initially not known at the same time step, a temporal interpolation
is necessary to get B̃n before the spatial interpolation and the computation of the force
which is done at the integer time step n. The simplest and most common method is the
linear time interpolation (LTI) B̃n = 1

2 (B
n− 1

2 + Bn+ 1
2 ) as is shown in the Fig. 1.a but

a quadratic time interpolation (QTI) - with ˜̃Bn
i+ 1

2

= 3
8B

n+ 1
2

i+ 1
2

+ 3
4B

n− 1
2

i+ 1
2

− 1
8B

n− 3
2

i+ 1
2

- can
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Figure 1. Usual interpolation process of EM fields on a 1D spatial grid at the nth time step in
order to get the transverse force Fn

y applied on the particle represented by the yellow dot. (a)
shows the initial configuration where the fields values are known at different times and spatial
points. The temporal interpolation to get B̃n is shown with dashed lined arrows. Then (b)
shows the subsequent spatial interpolation of En and B̃n on the particle (again with dashed
lined arrows and first order).
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Figure 2. Modified interpolation process of EM fields: B-TIS on a 1D grid at the nth time step.
(a) shows the same initial configuration as Fig. 1 (a) but instead of the temporal interpolation of

B, the relation B̂n
i = B

n+ 1
2

i+ 1
2

is used. (b) shows the result of this translation and the subsequent

spatial interpolation of En and B̂n
i on a particle.

sometimes be used instead for higher accuracy (Lehe et al. 2014). Once both fields E and
B are known at the same time step, they are interpolated spatially onto the particles.
This step is shown in Fig. 1.b. Once again different kinds of spatial interpolation can be
used with varying orders of interpolation. The one depicted here is, for simplicity’s sake,
a 1st order method (linear interpolation).

Bypassing the need for a temporal interpolation: B-TIS
The idea behind our new scheme proposed in (Bourgeois & Davoine 2020) is to simply

use the available value of the magnetic field as the value we need. That is, interpolating
the fields at the particle position using (En

i , B̂n
i = B

n+ 1
2

i+ 1
2

) instead of (En
i , B̃n

i+ 1
2

) as

previously shown. Of course, doing so is only physically sound if Bn
i ≈ B

n+ 1
2

i+ 1
2

. Thankfully
this condition means for a wave propagating at c that B(x, t) ≈ B(x+∆x/2, t+∆t/2)
which is true as long as ∆x ≈ c∆t. Although this last condition can be limited in
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the simulation by the Courant-Friedrichs-Lewy condition, it is usually verified in PIC
simulations as having a ratio ∆x/∆t close to c improves the quality of the results.

This new method effectively results in a translation of the calculated B field before the
spatial interpolation, hence its name: B-Translated Interpolation Scheme (B-TIS). This
process is described in Fig. 2.

Computational error introduced
Both approaches introduces an error on the computed values of the magnetic field

compared to an ideal situation where the magnetic field can be computed at integer time
steps.

Let us consider a given magnetic field B(φ) = B0 cos(φ). The computation of the
numerical value of that field in the simulation introduces an error ε which depends on
the method used:

εLTI = −B0 cos(φ) (1− cos(δφ)) (2.8)

εQTI = −B0 cos(φ)

(
1− cos(δφ)

(
1 +

1

2
sin2(δφ)

))
− 1

2
B0 sin(φ) sin

3(δφ) (2.9)

εB-TIS = −B0 cos(φ)
(
1− cos

(
δ̂φ

))
−B0 sin(φ) sin

(
δ̂φ

)
(2.10)

with φ = kxx + kyy + kzz − ωt, δφ = ω∆t
2 and δ̂φ = 1

2 (kx∆x − ω∆t). ω is the field’s
angular frequency and kx, ky, kz its wavevector components.

For longitudinally propagating waves with ω/kx ≈ c and c∆t ≈ ∆x, δ̂φ can become
very small and the gain in accuracy should then be significant. This improvement of
the computation of the magnetic field is what enables B-TIS to effectively suppress the
effects of NCR. Indeed, the more accurate computation result in the induced Lorentz
force, from the interaction of the NCR with particles, being negligible. In effect, the
spurious radiation is still generated and present in the simulation but has no impact on
the simulated particles.

2.2.2. Comparison of the different temporal interpolation methods
Three simulations were originally performed, each with a different temporal interpola-

tion method introduced earlier: LTI, QTI and B-TIS. To reproduce in a 2D simulation
the situation presented above, we use a plane wave propagating along the x axis, infinite
in width along the y axis. Periodical boundaries conditions are used on the longitudinal
edges of the simulation box to recreate the infinite transverse property of the wave.

We chose the polarisation direction in the simulation plane (along the y axis). The laser
wavelength is λ0 = 2πc/ω0, with ω0 the laser angular frequency, and the wave amplitude
is characterised by a0 = eA0/mec = 5. Simulations were performed in a moving window
following the wave propagation of 960 × 200 cells with ∆x = 0.15 c/ω0, ∆y = 10 c/ω0

and a time step ∆t = 0.149 1/ω0.
The propagating wave’s temporal profile has a finite extension with a trapezoidal

envelop as shown in figure 3.a. Each ramp and the plateau of the trapezoidal profile are
4λ0 long. We take care that

∫
Ey(t)dt = 0, otherwise, Ay, and thus py, is non zero even

once the laser has passed. To make the analysis easier we also chose the temporal profile
so that

∫ t2
t1

Ey(t)dt = 0, with t1 and t2 being the time boundaries of the profile ramps
or plateau. This ensures that the transverse impulsion py is zero on average during the
whole passing of the laser intensity plateau by the electron.

Only one particle is considered here. It is initially at rest at the centre of the simulation
box. This single particle is given a very small statistical weight in the simulation so that
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Figure 3. (a) Temporal profile (normalised vector potential a) of the incident wave. The dashed
line describes the trapezoidal envelop. (b) Initial situation of the simulation. The incident wave
is propagating to the right.

the charge density (computed within each cell of the simulation) around the particle is
negligible and doesn’t affect the particle dynamic. The figure 3.b shows the initial state
of the simulation. It is an electron density map (normalised to the plasma critical density
nc = ϵ0meω

2
0/e

2) showing the initial position of the particle superimposed on a map of
the wave transverse electric field Ey.

Considering a propagating plane wave along x, polarised along the y axis and with a
temporal envelop f such as A = A0f(t − x/c) sin(ω0(t− x/c)) ey, then equations (2.5),
(2.6) and (2.7) may be rewritten as:

px
mec

=
1

2
a20f

2(t− x/c) sin2(ω0(t− x/c)) (2.11)

py
mec

= a0f(t− x/c) sin(ω0(t− x/c)) (2.12)

γ =1 +
1

2
a20f

2(t− x/c) sin2(ω0(t− x/c)) (2.13)

The figure 4 shows results for each simulation by comparing the particle momenta px
and py to those expected according to theoretical computations based on equations (2.11)
and (2.12). These figures uses normalised values, meaning t is expressed as multiples of
1/ω0, x as multiples of c/ω0 and the momentum p as multiples of mec.

The QTI and B-TIS methods give values of py closer to the theoretical value than LTI
but overall, all three simulations reproduce fairly well the transverse behaviour of the
particle with small differences.

Still, notable differences between analytical and simulation results though are present
at the beginning and end of the trapezoid ramps (t−x ≈ 20 and t−x ≈ 90) in figure 4.b.
Those are due to a small difference in how the laser temporal profile is defined: in the
theoretical case we considered a trapezoidal envelop for the vector potential A, whereas
we considered a trapezoidal envelop for the electric and magnetic fields E and B in the
simulation, as it is easier to initialise the value of those fields. This definition gives rise
to vector potential A with a slightly different shape when A varies significantly within a
single wavelength, as is the case at the boundaries of the temporal profile of the wave.

The longitudinal momentum is more problematic and only the LTI method reproduces
qualitatively the expected behaviour of the particle, with a notable error on the maximal
value of px which is underestimated. Both QTI and B-TIS lead to an overestimation of
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Figure 4. Evolution of the electron normalised momenta px (a) and py (b) with respect to the
normalised coordinate ct − x for the considered different methods. The red dashed line shows
the theoretical px (respectively py) given by equation (2.11) (respectively equation (2.12)).

px with an error increasing over time (artificial increase in the energy of the particle).
This error leads to an nonphysical residual momentum after the wave went by.

The next section investigate the source of this error and present a possible solution for
the B-TIS method.
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2.3. Inaccurate longitudinal momentum with QTI and B-TIS
The laser wave propagation in Calder is computed using the fields E and B not the

vector potential A so we will use here expressions with respect to the electromagnetic
fields. The electron motion equation, for the longitudinal momentum is thus:

dpx
dt

= −e (Ex + vyBz − vzBy) (2.14)

Considering a plane wave propagating along x and polarised along the y axis such that
Ey = E0 cos(φ) with φ = ω0(t−x/c), then Bz = (E0/c) cos(φ) and Ex = 0, By = 0. The
previous equation thus becomes:

dpx
dt

= −eE0

c
vy cos(φ) (2.15)

From equation (2.6), we get that vy ∝ A(φ) ∝ sin(φ), which leads to:

px(t) =

∫ t

0

dpx
dt

dt ∝
∫ t

0

sin(φ) cos(φ)dφ (2.16)

This means that for an electron initially at rest, after an integer number of wave period,
the momentum px should be 0 again as

∫ 2π

0
sin(φ) cos(φ)dφ = 0. This is indeed what

is observed in figure 4 for the theoretical curve and LTI but not for QTI and B-TIS.
This error comes from the computational error introduced during the magnetic field
interpolation step.

Looking at equations (2.8,2.9,2.10), for all three methods, we can see that the error
depends on a term that is proportional to cos(φ) but in the case of QTI and B-TIS there
is a second term proportional to sin(φ). That is this last part which is problematic here.
Taking a look at the numerically computed momentum pnumx in our simulation, we can
express it as:

pnumx (t) = px(t) +

∫ t

0

−eE0

c
vy ε dt = px(t) + εp (2.17)

Where εp is the numerical error on the momentum px. Thus, with LTI, we get that:

εLTI
p = K (1− cos(δφ))

∫ t

0

sin(φ) cos(φ)dφ (2.18)

With K a constant depending on the wave amplitude. This error will fluctuate with time
but it will periodically cancel out whereas with QTI and B-TIS we get:

εQTI
p = K ′

∫ t

0

sin(φ) cos(φ)dφ+
1

2
K sin3(δφ)

∫ t

0

sin2(φ)dφ (2.19)

εB-TIS
p = K ′′

∫ t

0

sin(φ) cos(φ)dφ+K sin
(
δ̂φ

)∫ t

0

sin2(φ)dφ (2.20)

With K ′ = K
(
1− cos(δφ)

(
1 + 1

2 sin
2(δφ)

))
and K ′′ = K

(
1− cos

(
δ̂φ

))
. The second

term in these expressions leads to an error that grows continuously and monotonically
with time instead of periodically cancelling out. This explain the divergence of results
observed in figure 4 though the initial error is really small. Note also that, with our values
for the parameters ∆x and ∆t, 1

2 sin
3(δφ) ≈ 2. 10−4 where as sin

(
δ̂φ

)
≈ 5. 10−4. This

explains the difference in growth rate for the error with QTI and B-TIS.
The obvious solution would be to use a finer grid so as to minimise ∆t and ∆x −

c∆t - thus minimising δφ, δ̂φ and the induced error - but this is highly detrimental to
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computation performance. Restricting oneself to using only small values of a0 is another
way to circumvent this problem - as the error is proportional to a20 - but it is problematic
in the case of the study of VLA or DLA. In any case, both of those approaches only
mitigate the problem as the error will still be present and, though small initially, it will
compound and increase with time.

It is however possible to slightly modify B-TIS in a way that drastically reduces this
source of error while still benefiting from all of the advantages of this method.

2.4. B-TIS modification
As we saw earlier, B-TIS replaces the following temporal interpolation of the magnetic

field:

B̃n
i+ 1

2
=

1

2

(
B

n+ 1
2

i+ 1
2

+B
n− 1

2

i+ 1
2

)
(2.21)

with the following translation (as shown in figure 2.a):

B̂n
i = B

n+ 1
2

i+ 1
2

(2.22)

This is based on the assumption that the wave propagates at c along the x axis and that
c∆t ≈ ∆x.

However, if the value of the magnetic field is conserved going forward in time and
space, it is also conserved when going backward, and within those assumptions, that
translation is completely equivalent to this one:

B̂n
i = B

n− 1
2

i− 1
2

(2.23)

Both possible translations are shown in figure 2.b where the assumption that the
magnetic field B propagates at c and that c∆t ≈ ∆x means that B is constant along the
diagonals of the grid, hence the equivalence of the two translations.

Let us call r-BTIS the ’reversed’ version of B-TIS using B̂n
i = B

n− 1
2

i− 1
2

. This method
then introduces the following error on the magnetic field:

εrB-TIS = −B0 cos(φ)
(
1− cos

(
−δ̂φ

))
−B0 sin(φ) sin

(
−δ̂φ

)
(2.24)

= −B0 cos(φ)
(
1− cos

(
δ̂φ

))
+B0 sin(φ) sin

(
δ̂φ

)
(2.25)

With the exception of the second term sign, this is the same expression as the error
for the ’classical’ B-TIS. As such, we should be able to eliminate that second term by
combining both B-TIS and rB-TIS. We can indeed choose to use both translations in
conjunction at each time step through a simple average such as:

B̂n
i =

1

2

(
B

n+ 1
2

i+ 1
2

+B
n− 1

2

i− 1
2

)
(2.26)

It is important to note though that it is not a simple temporal averaging as is used in
LTI, both the time index and the spatial index are different. This new method, that we
call B-TIS3, then introduces the following error on B:

εB-TIS3 =
1

2
εB-TIS +

1

2
εrB-TIS (2.27)

= −B0 cos(φ)
(
1− cos

(
δ̂φ

))
(2.28)

The second term involving sin(φ) has indeed disappeared as we expected. The expression
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of this error is similar to the one introduced by LTI with the important difference though
that we have δ̂φ < δφ, which should point to an improvement of accuracy.

To illustrate this point, let us consider a forward propagating wave in vacuum with
ω = ω0 and kx = k = ω0

c . We thus have, δφ = ω0∆t
2 while δ̂φ = 1

2
ω0

c (∆x− c∆t). Then,
per the equation 2.8, 2.9, 2.10 and 2.28, with our numerical parameters we get:

εlas
LTI = −B0 cos(φ)× 2.77 10−3 (2.29)

εlas
LTI = −B0 cos(φ)× 1.15 10−5 −B0 sin(φ)× 2.06 10−4 (2.30)

εlas
B-TIS = −B0 cos(φ)× 1.25 10−7 −B0 sin(φ)× 5 10−5 (2.31)

εlas
B-TIS3 = −B0 cos(φ)× 1.25 10−7 (2.32)

On the other hand, let us consider a wave, propagating forward in the simulation at the
Nyquist frequency so that ω = π

∆t and kx = k = π
∆x . Then, as δφ = π

2 and δ̂φ = 0:

εNyq
LTI = −B0 cos(φ) (2.33)

εlas
LTI = −B0 cos(φ)−B0 sin(φ) (2.34)

εlas
B-TIS = 0 (2.35)

εNyq
B-TIS3 = 0 (2.36)

Both of these simple cases show the immense improvement in accuracy that B-TIS3
brings to our simulations regarding the magnetic field over all the previously considered
methods.

A comparison of the results from the B-TIS3 method and the previous one is presented
in figure 5. We can see that this improved B-TIS3 eliminate the troublesome compounding
error impacting B-TIS1 and lead to computed values of px even closer to the theoretical
ones than those obtained using LTI. Results on transverse momentum py are just as good
as before, the improvement margin being already very slim even with LTI.

At this point, the reader should note, that we have focused on forward propagating
waves, as they are what is most commonly encountered in VLA and LWFA and what
this scheme was designed for. Counter-propagating radiation, however, can be present in
a few situations, because of back-scattering for instance or even in the case of colliding
laser pulses. It is thus of interest to check the robustness of our new scheme in such
scenarios.

The accuracy of both LTI and QTI is not impacted for a counter-propagating wave,
as we still have δφ = ω∆t

2 . For B-TIS and B-TIS3 however, with kx = −k, we now get
δ̂φ = 1

2 (k∆x+ ω∆t). With this, for a counter-propagating laser pulse we get:

εback las
B-TIS3 = −B0 cos(φ)× 1.11 10−2 (2.37)

And for a wave propagating backward at the Nyquist frequency:

εback Nyq
B-TIS3 = −2B0 cos(φ) (2.38)

While these results appear much worse than in the case of forward propagation, it should
be noted that they are not that different from the accuracy level of LTI, with a factor
of 2 to 4 between them. Therefore, the presence of counter-propagating radiation in the
simulation, although not the ideal use case for B-TIS3, should not prove physics breaking
and the overall gains might be well worth this trade-off.

From these results, it appears that we have successfully solved the initial problem
encountered in the computation of the longitudinal momentum px and that B-TIS3
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Figure 5. Evolution of the electron normalised momentum px (a) and py (b) with respect to
the normalised coordinate ct−x for the considered different methods. The red dashed line shows
the theoretical px (respectively py) given by equation (2.11) (respectively equation (2.12)).

appears well suited to reproduce the physics of vacuum laser acceleration contrary to
B-TIS1 and QTI.

As LTI is by far the most common method used in PIC codes, it seems an appropriate
method to compare to. We will then only present simulation results for both of these
methods. A summary of results for LTI and B-TIS3 is presented in figure 6. The better
reproduction of the momentum with B-TIS3 shown in Figures 6.a and 6.b leads to an
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Figure 6. Evolution of the electron normalised momentum: (a) px, (b) py and normalised
position: (c) x, (d) y with respect to the normalised coordinate ct− x for LTI and B-TIS3. The
red dashed line shows the theoretical values expected from analytical model introduced earlier.

electron trajectory more faithful to the theoretical predictions as can be seen in figures 6.c
and 6.d.

2.5. Simulations with initial longitudinal momentum
We have so far investigated only the case of an electron initially at rest but, in practice,

electrons are far more likely to have a non zero initial momentum. Going back to the
analytical model developed in 2.1, with px,0 ̸= 0 and γ0 ̸= 1 we now get:

γ = γ0 +
px
mec

− px,0
mec

(2.39)

Which leads to the three following equations now describing the electron motion:

px
mec

=
px,0
mec

+
1

2

(
γ0 +

px,0
mec

)(
eA

mec

)2

(2.40)

p⊥

mec
=

eA

mec
(2.41)

γ = γ0 +
1

2

(
γ0 +

px,0
mec

)(
eA

mec

)2

(2.42)

Figure 7 show results from two simulations where the electron had an initial longitudinal
momentum p0: The first one with p0 = mec and the second one with p0 = 5mec. All
other numerical and physical parameters are the same as previously. The two methods
results in much more noticeable differences than previously.
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Figure 7. Evolution of the electron normalised momentum: (a) (resp. (c)) px, (b) (resp. (d))
py with respect to the normalised coordinate ct − x for LTI and B-TIS3 with p0 = me c (resp.
p0 = 5me c). The red dashed line shows the theoretical values expected from analytical model
introduced earlier.

It is apparent that the greater the initial velocity of the electron, the more LTI un-
derestimate the longitudinal momentum. The maximum longitudinal momentum px,max

being underestimated by at least a factor of 3 compared to the theoretical value when
using LTI with a an initial momentum p0 = 5me c. B-TIS3, on the other hand, slightly
overestimates px but overall produces results much closer to the predictions of the
analytical model.

Looking at the transverse momentum py now, both methods reproduce fairly well the
theoretical results though both tend to overestimate it. Once again, B-TIS3 results appear
closer to those of the model and, though the error increases when the initial momentum
p0 increases, this increase appears much smaller for B-TIS3 than LTI.

Note that all of the presented simulations have been realised using the Boris pusher
(Boris 1970). We found very negligible differences between simulations using Boris’
scheme and simulations using the scheme proposed in (Vay 2008) to correct the Boris
pusher inaccuracies at relativistic speed and we observed the same inaccuracies with LTI
and the same improvements with B-TIS3, irrespective of the choice of pusher.

3. Interaction with a gaussian beam
In order to get to more realistic cases, we now consider, as our incident wave, a laser

pulse with a gaussian spatial profile instead of plane wave with an infinite transverse size.
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Figure 8. Initial situation with a spatially gaussian wave.

3.1. Theoretical description
We keep the same trapezoidal temporal profile for our laser pulse so as to make

comparisons with earlier results easier, however its transverse size is now finite and given
by a gaussian profile with a width (FWHM of the intensity profile) of 160 ω0/c. The
figure 8 shows this initial situation.

We can come back to the equations introduced in section 2.1 but considering now the
more general case of a wave polarised along the y axis and propagating along the x axis
such that A(x, y, t) = A(x, y, t)ey. The laser waist is assumed here much bigger than the
wavelength and as such we can neglect the existence of a vector potential component
along x (We will discuss this approximation later). The energy conservation equation
then leads to:

d

dt

(
γmc2

)
= evy

∂A

∂t
(3.1)

And the motion equation (2.1) gives us:

dpx
dt

= −evy
∂A

∂x
(3.2)

d

dt
(py − eA) = −evy

∂A

∂y
(3.3)

Using the fact that dA
dt = ∂A

∂t + (v · ∇)A, we finally get to:

dpx
dt

= −evy
∂A

∂x
(3.4)

dpy
dt

= e

(
∂A

∂t
+ vx

∂A

∂x

)
(3.5)

d

dt

(
γmc2

)
= evy

∂A

∂t
(3.6)

This system is much more complex than the previous one and we will not attempt to
solve it analytically here. We can still gather though that the ponderomotive force of
the laser will push aside the electron and that it will gain a residual momentum, both
longitudinal and transverse. For an exact solution of the motion and acceleration of
electrons by the laser fields, we would have to consider the longitudinal component of A
(A = Axex+Ayey) which would modify equations (3.1) from (3.6) above. For simplicity’s
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Figure 9. Evolution of the electron normalised momentum: (a) px, (b) py and normalised
position: (c) x, (d) y with respect to the normalised coordinate ct− x for LTI and B-TIS3 with
a transversly gaussian laser beam and an electron initially at rest (p0 = 0).

sake, however, we do not consider the component Ax which is negligible in our case. More
comprehensive descriptions and computations on this subject can be found in (Mora &
Antonsen 1997; Quesnel & Mora 1998).

3.2. Numerical results
The figures 9 and 10 sum up the simulation results for an electron initially close to

the propagation axis and, respectively, with no initial longitudinal momentum (p0 = 0)
or with p0 = mec.

The behaviour observed in the simulations is in accordance with our expectations: the
electron drift transversely as it is being accelerated and thus ends up with residual non-
zero longitudinal and transverse momentum, px and py, even after it has exited the laser
beam. This residual extra momentum is quite small when the electron is initially at rest
but it quickly becomes more important when the electron has some initial velocity as we
can see in figures 10.a and 10.b.

Both methods predict overall a similar behaviour for the electron though we can observe
notable differences on final momentum and positions. Indeed as the electron is sensibly
more accelerated in the B-TIS3 case, it travels a much longer distance while inside the
laser pulse. This difference is especially apparent in the case with a non-zero initial
momentum, which is coherent with our previous observations.

As we cannot compare to an analytical model here, we will use a numerical method to
estimate the theoretical result. When reducing both the spatial grid size and the time step
duration, both numerical methods should converge on a unique solution corresponding
to the physical solution.

We look at the results of three pairs of simulation where we chose respectively: ∆x =
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Figure 10. Evolution of the electron normalised momentum: (a) px, (b) py and normalised
position: (c) x, (d) y with respect to the normalised coordinate ct − x for LTI and B-TIS3
with a transversly gaussian laser beam and an electron with an initial longitudinal momentum
(p0 = mec)

.

0.15c/ω0 and c∆t = 0.149c/ω0 for the first one, ∆x = 0.10c/ω0 and c∆t = 0.099c/ω0

for the second one and ∆x = 0.05c/ω0 and c∆t = 0.049c/ω0 for the third. Observed
momenta are shown in figures 11. Those results clearly show that both methods are
converging on the same solution which appears fairly close to the one obtained initially
through B-TIS3. We thus observe once again that B-TIS3 tends to slightly overestimate
the electron momentum while LTI noticeably underestimate it.

It is important to note however, that even when dividing by 3 both ∆t and ∆x (thus
increasing the computation time by a factor nine), LTI still does not give better results
than B-TIS3 with a worse resolution. B-TIS3 appears, in that light, as a fairly good
improvement on the standard LTI.

3.3. Influence of the initial position
The ponderomotive force acting on the particle depends on the laser pulse intensity

gradient which varies widely depending on the transverse position.
We show in this section that we can indeed observe this behaviour in our simulations.

We present here in figure 12, the momenta of electrons with different initial positions y0.

Both methods tend to predict similar final momentum for the electron as long as it is
outside of the stronger field region of the laser pulse. Indeed differences in results between
LTI and B-TIS3 are less important the farther the electron initially from the propagation
axis.

As we showed that the error introduced by LTI was bigger when the electron was
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Figure 11. Evolution of the electron normalised momentum: (a) px, (b) py with respect to the
normalised coordinate ct−x for LTI and B-TIS3, with p0 = mec and varying cell sizes and time
steps.

strongly accelerated, it thus seems logical that its predictions are better - thus more in
accordance with B-TIS3 - when the electron is far from the high intensity region near
the propagation axis and less accelerated.

Though final momentum may appear similar, the small differences can have a big
impact on the particle trajectory. Furthermore, when trying to study VLA we are of
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Figure 12. Evolution of the electron normalised momentum: (a) px, (b) py with respect to the
normalised coordinate ct− x for LTI and B-TIS3, with p0 = mec and varying initial transverse
position y0 of the electron. Note that the transverse profile of the laser is centered on y = 0.

course more interested in the strongly accelerated electrons. Thus the usage of the B-
TIS3 method appears better suited to these simulations than the standard LTI.
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Figure 13. Initial situation with a spatially gaussian laser beam and an electron bunch.

4. Results for VLA and DLA simulations
4.1. VLA simulations

Now that we have determined that B-TIS3 gives more accurate results than LTI for a
single electron, we want to simulate a bunch of electrons and see the impact of the different
methods on more realistic cases. We thus introduce in our simulation a full electron beam
instead of a single particle while keeping the same laser profiles as described in section 3.
The initial situation is presented in figure 13. Note that we chose here to initialise the
electron beam directly in the laser field so as to maximise electron acceleration. The
(2D-) charge of the beam is quite low (≈ 4.5 pCµm−1) so as to limit space charge effects
and both the longitudinal and transverse spatial extensions are chosen to be close to a
laser wavelength of 800 nm.

Still comparing results of simulations using either LTI or B-TIS3, in both simulations
we observe the electron beam being longitudinally accelerated with the laser pondero-
motive force making it gradually blow up. The electrons then exit the laser pulse, mostly
through the sides without making it through longitudinally from end to end. Electrons
are, however, accelerated for much longer in the B-TIS3 simulation, resulting in the
charge being contained in the simulation box for a much longer propagation distance as
we can see in figure 14.

Figures 15 and 16 give a comparison of the spatial positions of the electrons within the
laser beam as well as their phase space (x, px) for two different time of the simulation.
As expected, we can see that the beam is progressively bursting apart due to the laser
ponderomotive force. The asymmetry in the explosion of the beam is due to the fact that
the electron bunch is initially not exactly on the propagation axis but in fact slightly
above it, hence the drift mostly towards positive values of y. Also, as the electron beam
is initially about as long as a laser wavelength, the back-end and the front-end are not
in phase. They interact initially with fields of different values - thus feel different forces
which explains the progressive separation of the two ends of the beam.

We can see in figures 15.a and 15.b. that the beam is dispersed much more quickly in
the simulation using LTI compared to the one using B-TIS3, and it is even more apparent
in figure 16.a where there is almost no electron left in the laser beam while the electron
bunch is, at the same time, still clearly present in figure 16.b for B-TIS3. The periodic
evolution of px that we saw in earlier section is also visible on the map of the (x, px)
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Figure 15. Top: electronic density map (greyscale) superimposed to the electric field Ey map
(colours) after a propagation of 570 µm for (a) LTI and (b) B-TIS3. Bottom: phase space (x, px)
after a propagation of 570 µm for (c) LTI and (d) B-TIS3.

phase space, especially in figures 15.d and 16.d. Though this structure is quickly masked
in the case of LTI, we can still make it out in figure 15.c.

Figure 17 show a comparison of the electron energy spectrums after two different
propagation length. The remaining charge inside the simulation window is much more
important in the case of B-TIS3 and reaches higher energies which is coherent with
previous observations.

In the end, it appears that B-TIS3 produce results significantly different from LTI.
Considering those results and the previous comparison to theoretical models, LTI appears
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Figure 16. Top: electronic density map (greyscale) superimposed to the electric field Ey map
(colours) after a propagation of 950 µm for (a) LTI and (b) B-TIS3. Bottom: phase space (x, px)
after a propagation of 950 µm for (c) LTI and (d) B-TIS3.
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Figure 17. Energy spectrum of the accelerated electrons after a propagation of (a) 570 µm
and (b) 950 µm.

- barring a prohibitively costly refining of the grid - to not be well suited to the study of
VLA though B-TIS3 may be an easy to implement substitute to solve this problem. LTI
may indeed lead to an inadequate estimation of the accelerated charge and of the beam
energy, two key characteristics in electron acceleration.

4.2. DLA simulations
Investigating the use of B-TIS3 for VLA simulation has allowed us to highlight its

improvement compared to LTI. However, as VLA as so far shown to be quite limited as
a reliable source of accelerated electrons, it is interesting to also study the use of B-TIS3
in simulations of other acceleration methods.

We already demonstrated the usefulness of B-TIS to mitigate impact of numerical
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artefacts such as numerical Cherenkov radiation in LWFA simulations (Bourgeois &
Davoine 2020) and those results still apply with B-TIS3. In addition to this, our new
interpolation technique B-TIS3 should also bring great improvements to simulations of
another situation: Direct Laser Acceleration.

In LWFA, DLA occurs when the laser beam is long enough to encompass part of the
bubble where electrons are being accelerated which brings about a coupling between
electrons and laser fields (Pukhov et al. 1999). Those electrons are then subject not only
to the electromagnetic wake fields but also to those of the laser pulse and their energy
gain is, in part, due directly to the laser wave and not only to the plasma wave.

To investigate this setting, we performed two 2D simulations (one using LTI, the other
B-TIS3), choosing laser and plasma’s parameters leading to the creation of a wakefield
with efficient electron acceleration but with a purposefully elongated temporal profile for
the laser, facilitating interaction between the accelerated electrons and the laser field so
as to get DLA. Figure 18 shows the temporal profile of the laser used in the simulation
which is made by adding two gaussian temporal profiles with different amplitudes, lengths
and delays (a0 = 6, τ = 42 fs for the first profile, where τ is the laser intensity profile
FWHM, and a0 = 4, τ = 85 fs for the second one with a 42 fs delay between the two
maximums). This results in an asymmetric temporal profile with duration of around a
hundred femtoseconds: the high intensity pulse front generates the wakefield while the
low intensity pulse tail fills the back of the bubble and interact with the electron beam as
shown in figure 19. This laser profile was specifically designed to favour laser interaction
with an accelerated electron beam and DLA in a fast 2D simulation.

This laser is propagating in a 6mm long and fully ionised plasma with an electron
density of ne = 0.0025nc. We used a density gradient injection technique (Bulanov et al.
1998; Suk et al. 2001; Ekerfelt et al. 2017) to facilitate electron injection in the bubble.
The simulation is performed inside a moving window of 6400 × 400 cells with c∆t =
0.149c/ω0, ∆x = 0.15c/ω0 and ∆y = 3c/ω0.

Figure 19 gives an example of DLA in a numerical simulation. As in all LWFA cases,
the laser propagating inside the plasma excites a plasma wave in its wake which creates a
cavity positively charged in which electrons can be accelerated. The borders of this cavity
or bubble are delimited by a higher electron density and easily visible on the greyscale
map. A beam of electrons has already been injected and is being accelerated inside of the
bubble around y = 0 c/ω0 and x = 20350 c/ω0. The laser oscillations are easily visible
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Figure 19. Electron density map normalised to the critical density nc (greyscale)
superimposed to the electric field Ey map.
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Figure 20. Electron density map after 2.65mm of laser propagation in the plasma: (a) LTI
simulation, (b) B-TIS3 simulation.

and present over the whole length of the bubble meaning all of the injected electrons are
directly influenced by the laser field.

Both simulations predict the formation of an accelerating bubble in the wake of the
laser beam and the injection and subsequent acceleration of a similar charge of electrons.
Note that contrary to what was done in our previous paper (Bourgeois & Davoine 2020),
B-TIS3 is now applied to all electrons in the simulation, irrespective of their energy.

There are nevertheless significant differences between the two simulations. The electron
beam appears much more focused in the B-TIS3 case. This effect is visible directly on
the transverse size of the beam as can be seen in figure 20, but also on the transverse
momentum of the accelerated electrons as shown in figure 21. It is important to note
that numerical Cherenkov radiation is quite weak in those 2D simulations and thus
this numerical artefact is not responsible for this variation in beam transverse size and
divergence in the way we observed in (Bourgeois & Davoine 2020). In the present case, the
difference is indeed due to the improved modelisation of the laser-electron interaction in
the B-TIS3 simulation. Comparing the electrons phase space (px, py) of both simulations,
we can see that both beams have a similar structure but with a much higher dispersion in
the LTI case, especially for the transverse momentum of the most energetic electrons. This
seems in accordance with previous observations suggesting LTI tends to overestimate py
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Figure 21. Phase space map (px, py) after 2.65mm of laser propagation in the plasma: (a)
LTI simulation, (b) B-TIS3 simulation.
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Figure 22. Energy spectrum of the accelerated electrons after 2.65mm of laser propagation in
the plasma.

and thus the beam divergence. However, somewhat contrary to what could be expected,
LTI also predicts higher longitudinal momentum than B-TIS3 despite the fact that we
showed in our previous VLA simulations that LTI tends to underestimate px when B-
TIS3 slightly overestimate it. This difference may be explained by the fact that electrons
are not accelerated only by laser fields as was previously the case. Direct laser acceleration
is the result of a complex coupling between the laser and the plasma fields and a small
error on the laser fields effect can lead to an important perturbation of this coupling,
leading to the overestimation of both py and px.

Looking at the energy spectrums of both beams (figure 22), we can again observe
the previously noted similarities and differences: LTI present a broader spectrum which
reaches to higher energies whereas B-TIS3’s spectrum is much more peaked.

The overall similarity of those two simulations leads us to think that B-TIS3 does not
introduced adverse effects to the modelisation of DLA in our simulation. To the contrary
in fact, the previous results on the VLA simulations make us confident in the fact that
the modelisation of laser-electron interaction is improved by the use of B-TIS3 over LTI
leading to a better reproduction of the electrons behaviour in both VLA and DLA.

Note that DLA simulations presented here had relatively low electronic densities.
Simulations with higher densities were also performed and we found that differences
between simulations using LTI or B-TIS3 are less and less prevalent with higher electronic
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densities (ne ≈ 0.01nc or higher) to the point of becoming almost negligible. We can
assume that, in those regimes, the plasma impacts the laser propagation sufficiently so
that there are real, physical differences in amplitude between the electric and magnetic
fields of the laser, making the error on the B amplitude introduced by LTI negligible.

Conclusion
In this paper we improved upon the already introduced technique of B-TIS making

it more robust and accurate. We then demonstrated its usefulness, not only to mitigate
adverse effects of NCR, but also to better model laser-electron interaction phenomena,
getting more faithful results, especially in terms of momentum, than the traditional
PIC methods. These improvements appear particularly important in the case of VLA
simulations or simulations involving DLA with low electron densities where those small
differences lead to more realistic values of charge and energy for the accelerated electron
beams.

With the benefit of this technique established, it could now be used to study more
complex cases of LWFA, DLA, VLA or other situations where electron beam or plasma
co-propagates with an electromagnetic pulse in a PIC simulation box. For instance,
VLA with radially polarised laser (Zaïm et al. 2017), could benefit from this improved
modelisation to better understand the polarisation impact and effects of other properties
on the acceleration process.
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