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Abstract

This paper is a follow-up of previous work about the “Born” term, which must not be confused

with the famous Born equation for ion solvation energy. The “Born” term is an empirical

formula that is often introduced in explicit-solvent models for electrolytes in conjunction with a

contribution for ion-ion interactions taken from a model with implicit solvent. An inconsistency

is found for the expression commonly used in the literature. The “Born” term is supposed

to describe the effect of ion-solvent interactions. The relevance of the “Born” term for that

purpose is further investigated by considering various different situations: The transfer of an

ion from pure water into a pure molten salt is examined; then, the nonprimitive mean spherical

approximation theory for mixtures of ions and dipoles (MSA-ID) is used to get further insight

in the case of a waterlike solvent and, besides, in the limit of low density and low coupling where

the MSA becomes exact. The various situations considered in this work further indicate that

this term is unsuitable. The possibility of deriving a formula in the spirit of the original Born

equation is also considered.

Keywords: “Born” term, electrolytes, non-primitive, ion-dipole, mean-spherical approximation

(MSA).

1. Introduction

The so-called “Born” term has been employed extensively in the literature about the model-

ing of the thermodynamic properties of electrolytes, since it was proposed in 1978 by Cruz and

Renon [1]. Hereafter quotes are used when mentioning it because Born was not the author of

this formula. The “Born” term must not be confused with the famous Born equation for the

solvation energy of an ion [2]. It has often been presented in the chemical engineering literature

as following naturally from the latter, but this is not so as will be seen below.
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It has been used mainly in models with explicit solvent to describe the change in Gibbs

energy when an ion is passed from a pure solvent (reference state at infinite dilution) to an ionic

solution of finite salt concentration in the same solvent, generally water. Since the initial work

of Cruz and Renon, the “Born” term has been employed in a wealth of thermodynamic models

for electrolytes as, e.g., in Refs. 3–18 just to cite a few.

There are a priori two main issues associated with this contribution, which may be described

as follows. Firstly, in these explicit-solvent models, it has played the role of accounting for

ion-solvent interactions (as claimed, e.g., in Refs. 4, 16, 17) and, as such, it has been used

in conjunction with a term for ion-ion interactions that was either a Debye-Hückel (DH) or a

mean spherical approximation (MSA) term, both of which being theories regarding the solvent

as a dielectric continuum. The latter feature contrasts with the type of models (with explicit-

solvent) in which the “Born” term is usually employed. Secondly, the formula for the “Born”

term was directly copied from the famous Born equation [2] for the Gibbs solvation energy of

an ion, in which a lone ion is placed in a continuous solvent. The formula was written down

by assimilating an ionic solution to a dielectric continuum of dielectric constant εsol (which

quantity, by the way, is relevant for the description of interionic forces at large separations).

This is a crude assumption, that by no means results from the Born equation for ion solvation.

In this respect, the “Born” term is an empirical formula.

A discussion was proposed by this author in a recent publication [19] that questioned the

relevance of the “Born” term. It is of paramount importance for the modeling of the thermo-

dynamic properties of electrolytes to clearly assess the value of this contribution. If the “Born”

term is indeed unsuitable, then it constitutes a major drag for the development of reliable mod-

els. Indeed, it introduces an invariably positive contribution of large magnitude, which may

exaggerate the importance of this term as compared to other contributions. Furthermore, its

lack of flexibility may strongly unbalance the resulting overall model. The aim of this work is

to further investigate the relevance of the “Born” term.

In a very recent publication [20], the capability of the “Born” term was investigated us-

ing Monte Carlo simulations for the system NaCl+water. This is the first fundamental study

dedicated to this issue since the publication of Ref. 19. An involved procedure was used in

that valuable work [20] in order to attempt disentangling the various contributions to the mean

salt chemical potential. However, because of uncertainties on the simulation results, and in the

estimation of the ion-ion (MSA) contribution, it seems difficult to draw a clear and definitive

conclusion about the suitability of the “Born” term from this study.
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The present paper is organized as follows. After an introduction, and a presentation of the

Born equation and the “Born” term, it is divided in several sections, each of which touching on

a different significant and hopefully insightful problem in relation with the “Born” term. For

convenience and clarity of the exposition, each section contains its own theoretical developments,

results, and a discussion thereof. This organization was chosen because each of these problems

could not be the subject of a full paper per se.

In the next section, the difference between the original Born equation [2] and the “Born”

term is underscored. Then, the view that the “Born” term reflects the effect of ion-solvent

interactions is scrutinized. For that purpose, an extreme case is considered first, in which an

ion is transferred from pure water into a pure molten salt. Then, the solvation energy of an

ion in a dilute electrolyte is calculated along the lines of Born’s seminal paper. After that, the

nonprimitive mean spherical approximation theory for mixtures of ions and dipoles (MSA-ID)

[21–23] is utilized to get further insight into the role that the “Born” term is supposed to play

in explicit-solvent models. Former results about a dilute electrolyte in a waterlike solvent are

first reexpressed in a more explicit and clearer way. Unlike previous work, the classical “Born”

term, usually employed in chemical engineering models, is now calculated within the MSA-ID.

The formalism allows one to build a relevant framework for the purpose intended by the “Born”

term, namely a suitable contribution in an explicit-solvent model. Some results are given in

the semi-restricted (cation and anion of the same size) and unrestricted (general) case for alkali

chlorides. Next, the solution to the MSA-ID is obtained in the case of a mixture of ions and

dipoles at low concentration of both components and high temperature (dilute plasma). In this

limit of low density and low coupling, the MSA becomes exact, as shown in Appendix B. Hence,

in this limiting case, the performance of the “Born” term can be tested in a rigorous manner.

Finally, the main results of this work are summarized and some prospects are presented in the

Conclusion.

2. The Born equation vs. the “Born” term

2.1. The Born equation for the solvation energy

Hereafter, ε0 will designate the permittivity of a vacuum. The solvent will be water, with

dielectric constant εW . The charge of a proton is e, the Boltzmann constant is denoted by kB,

the temperature by T , and β = 1/kBT . The diameters of an ion i and of the water molecules

(both modeled as hard spheres) will be σi and σW , respectively.

The case of a monovalent salt will be considered in what follows.
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The famous original equation published by Born [2] involved a calculation of the energy of

the electrostatic field created by a lone ion in a solvent regarded as a dielectric continuum of

relative permittivity εW .

This energy was obtained by Born by summing the energy density dWi/dτ in the continuum

dielectric surrounding ion i. With dWi/dτ = 1/2 D.E where D (= ε0εW E) and E are the

displacement vector and the electric field in the volume dτ , respectively, he obtained,

Wi =
1

2
ε0εW

∫ ∞

σi/2
E2dτ (1)

where dτ = 4πr2dr, E = e/4πε0εW r2, and the integration is performed from the surface of the

ion at r = σi/2. Upon integration, the result for the energy of the electric field in the dielectric

may be written in compact form as,

βWi =
L0

σi

1

εW
with L0 = βe2/4πε0 (2)

in units of kBT , with L0 ≃ 560.4 Å at 25◦C, and ε0 the permittivity of a vacuum. The energy

Wi is also the work required to charge the ion in the dielectric continuum.

Then, Born considered the transfer of an ion from a vacuum to pure water, and identified

the corresponding variation in electrostatic energy with the hydration Gibbs energy of the ion,

µHydr
i , from Eq. (2), which yielded,

βµHydr
i = −L0

σi

(
1− 1

εW

)
(3)

This is the equation proposed by Born in 1920 [2]. Hereafter it will be mentioned as the Born

equation (without quotes). It has been very successful for a first description of ion hydration

energies, as well as for a first a quantitative modeling of ionic solutions in terms of atomic

parameters [24]. It has also been the subject of much discussion and debate [25–27]. In passing,

it is noted that Ref. 25 proposes a contrasting and enlightning way of deriving the Born equation,

in which ‘the work of discharging a monovalent ion in a vacuum and the work of recharging it

after its immersion in the dielectric are zero’.

An important progress was made when an expression was derived from an explicit-solvent

model within the non-primitive MSA-ID in which the water molecule is represented as a hard

dipole [28, 29]. At infinite dilution of the salt, the ion-dipole contribution in the MSA-ID,

µid
i , is the Gibbs solvation energy of ion i (the reference state in MSA-ID is a system that is

infinitely dilute in ions and dipoles). Remarkably, it turns out that it has the following expression

[19, 28, 29],

βµHydr
i = − L0

σi + σW /λ

(
1− 1

εW

)
(4)
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which has strong resemblance to the Born equation [Eq. (3)], but includes an additional distance,

σW /λ, where λ is a polarization parameter for the solvent (see also Section 5.1 below) that has

a value of ∼2.65 for a waterlike solvent in ambient conditions [19]. This extra distance is a

consequence of the granularity of the solvent and dielectric saturation in the vicinity of the

ion, which is accounted for in the MSA-ID model, but not in Born theory. Eq. (4) provides

a justification for this long-known [30] distance that must be added to the ion diameter in the

Born equation for recovering experimental data [31]. It was also found [19] that it gives results

that are quite in keeping with experimental data when Shannon and Prewitt crystallographic

diameters are used for the ions.

It must be noticed that dipole-dipole interactions play a role in the Gibbs solvation energy.

This more subtle effect, which arises from the creation of a cavity in the solvent in order to

accomodate the ion, was studied within the MSA-ID by Garisto et al. [32] and later by Fawcett

and Blum [33]. Nevertheless, since this effect is generally small, it will be neglected in what

follows.

Let us mention finally that it is clear that a suitable contribution of the Born type must

indeed be employed when a lone ion is transferred from one solvent to another, as occurs in the

modeling of solute partitioning between immiscible solvents. In that case, the interactions of

the ion with its environment are modified, and this term accounts for the variation of solvation

of the ion between the two solvents. It represents the change in the reference chemical potential

of an ion i, µ0
i . For this purpose, the Born equation, or its MSA-ID counterpart [Eq. (4)], may

be used.

2.2. The “Born” term

2.2.1. Basic assumptions

This term has often been introduced in models for electrolyte solutions as a contribution to

the change in the chemical potential of an ion in the process depicted in Figure 1. In this process,

a lone ion in a solvent (here water) is transferred into an ionic solution of finite concentration

in the same solvent.

The expression of the “Born” term drew on the Born equation [Eq. (2)] but, as said above,

it was not introduced by Born. Presumably, a more correct formulation would be ‘Born-like

term’.

The relation was expressed by assimilating an ionic solution to a dielectric continuum of

dielectric constant εsol, and by assuming that the Born equation could be used equally in the

case of an ion in an electrolyte of finite concentration.
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Figure 1: Illustration for the “Born” term. An ion (here a cation) is transferred from pure water (reference state)

to a solution of some finite salt concentration.

Then, for the process depicted in Figure 1, in which the ion is transferred from pure solvent

to a solution (the two having relative permittivities εW and εsol, respectively), the use of Eq.

(2) leads to the formula,

β∆µ
(“Born”)
i =

L0

σi

(
1

εsol
− 1

εW

)
(5)

where ∆ denotes a difference w.r.t. infinite dilution (the reference state).

It stems from Eq. (5) that the “Born” term is always positive because the solution relative

permittivity, εsol, is smaller than the dielectric constant of pure solvent, εW . This drop in εsol

originates from the fact that there are fewer water molecules in a given volume of solution when

the salt concentration is increased, and these water molecules become less and less effective for

screening charge-charge interactions.

2.2.2. Approximate expression

It may be noticed that the “Born” term takes a still simpler form when the relative solution

permittivity εsol has a particular dependency w.r.t. the salt concentration. Indeed, this may be

seen by plotting experimental values for 1/εsol for alkali chloride solutions at 25
◦C [34–36]. This

plot is shown in Figure 2. It is observed that these data are very well fitted (the coefficient of

determination R2 being better than 0.98) by a function of the form: 1/εsol = 1/εW + αCs/εW ,

in which Cs is the salt concentration and αCs/εW is the slope of a fitting line in Figure 2), or

equivalently,

εsol ≃
εW

1 + αCs
(6)

which was the dependency used in former work in the MSA at the McMillan-Mayer level [37, 38].
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Figure 2: Experimental values of 100/εsol vs. salt concentration in the case of LiCl (•), NaCl (�), KCl (▽), RbCl

(◦), and CsCl (�). Solid lines: results of linear fits (the fitting lines for LiCl and NaCl cannot be distinguished

from each other).

Therefore, by using Eqs. (5) and (6), one finds that if experimental data for εsol are employed

in the “Born” term, the latter reads,

β∆µ
(“Born”)
i ≃ LW

σi
αCs (7)

where LW = L0/εW is the Bjerrum distance, and ∆ denotes difference w.r.t. infinite dilution.

Thus, if it is assumed that relation (6) holds, then the “Born” term exhibits a nearly linear

variation with the concentration of the salt. A similar outcome is also observed when using the

formulas proposed by Pottel [39] and Schreckenberg et al. [11] as was shown in the Supplemen-

tary Material of Ref. 19.

2.2.3. A peculiarity in the expression used in the literature

Actually, Eq. (5) is not the expression usually employed in the literature. Instead, an

expression for the Helmholtz energy related to the “Born” term is first written down by basically

assuming that the solution permittivity is constant vs. concentration [11, 13, 17], and then this

energy is differentiated to get a modified chemical potential.

This can be illustrated in the simplifying case of a uni-univalent salt for which the cation (+)

and anion (-) diameters are equal: σ+ = σ− = σ. Hereafter, ρi stands for the number density of

ion of type i (the number of ions per volume unit).

The Helmholtz energy is then expressed by [11, 13, 17],

β∆A(“Born”,lit)/V =
L0

σ

(
1

εsol
− 1

εW

)
ρt (8)
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where ρt = ρ+ + ρ− is the total number density of solute, and the superscript ‘lit’ denotes that

this is the relation usually employed in the literature. One also arrives at this expression by

integrating Eq. (5) w.r.t. the densities ρi by taking εsol constant.

Next, this energy is differentiated w.r.t. the number density ρi to obtain the chemical

potential of an ion i, which yields,

β∆µ
(“Born”, lit)
i =

L0

σ

(
1

εsol
− 1

εW

)
+

L0

σ
ρt

∂(εsol
−1)

∂ρi
(9)

which, as compared to Eq. (5), introduces an extra term involving a derivative of the per-

mittivity. Thus, by virtue of the latter equation, the contribution to the mean salt chemical

potential,

∆µ(“Born”,lit)
s =

1

ρt

∑
k

ρk ∆µ
(“Born”,lit)
k (10)

is given by,

β∆µ(“Born”,lit)
s =

L0

σ

(
1

εsol
− 1

εW

)
+

L0

σ

∑
k

ρk
∂(εsol

−1)

∂ρk
(11)

Noting that the following relation holds,

∑
k

ρk
∂(εsol

−1)

∂ρk
= ρs

∂(εsol
−1)

∂ρs
(12)

in which ρs is the number density of salt (= ρ+ = ρ− here), and if one moreover assumes that

εsol
−1 varies linearly with concentration as in Eq. (6), then one finds that,

ρs
∂(εsol

−1)

∂ρs
=

1

εsol
− 1

εW
(13)

So, by combining the latter three relations, one finds that the second term in the r.h.s. of Eq.

(11) is equal to the first one, and one obtains,

∆µ(“Born”,lit)
s = 2 ∆µ(“Born”)

s (14)

in which ∆µ
(“Born”)
s is the original “Born” term given by Eq. (5).

This simple calculation can also be made without difficulty in the general case of ions of

different sizes and arbitrary charges, and it yields the same relation as Eq. (14) when a linear

variation of εsol
−1 with the salt concentration is assumed.

The above calculation shows that the procedure used in the literature leads to an inconsis-

tency between the original “Born” term, which should be used for the chemical potential of a

salt, and the modified “Born” term generally utilized in the literature [a relation similar to Eq.

(11)].
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In the above manipulation, the original “Born” term is initially introduced in order to account

for the variation of εsol with the salt concentration, Cs. But then it is integrated to get the

Helmholtz energy by considering that εsol is constant vs. Cs, and finally this Helmholtz energy

is differentiated w.r.t. the ion densities. In this differentiation, the dependency of εsol vs. Cs is

restored, which produces an extra term.

This manipulation is inconsistent. It finally leads to a “Born” term that is the double of

what it should be.

It could be proposed to lift this inconsistency by considering a particular expression for εsol

as a function of Cs (such as the one of Eq. (6), or that of Pottel [39] or Schreckenberg et al.

[11]), and integrate Eq. (5) over number densities. However, this procedure would lead to an

impasse because the “Born” term of Eq. (5) does not derive from a Helmholtz energy. Indeed,

the condition: ∂∆µ
(“Born”)
i /∂ρj = ∂∆µ

(“Born”)
j /∂ρi, is not fulfilled because the following relation:

σi ∂ε
−1
sol/∂ρi = σj ∂ε

−1
sol/∂ρj , cannot be expected to hold in the general case.

Therefore, the expression for the “Born” term commonly employed in the literature is not

consistent with the original one. In this work, we will only consider the “Born” term of Eq. (5).

3. The “Born” term as a measure of the variation of ion-solvent interactions?

3.1. General comments

It has often been claimed that the “Born” term accounts for the change in ion-solvent

interactions [4, 15–18, 40] when an ion is transferred from the reference state (infinite dilution)

to a solution of some finite salt concentration. Then, in the expression of the chemical potential

of an ion, this term was introduced as a supposedly natural complement to the contribution for

ion-ion interactions, which is usually a Debye-Hückel (DH) or MSA term at the McMillan-Mayer

level.

However, the pertinence of the “Born” term to describe the effect of ion-solvent interactions

is not obvious. Indeed, even if one admits that the static solution permittivity εsol coincides

with the experimental value, which is questionable because of several issues associated with

the interpretation of experimental data [41–43] (see also Ref. 44 for an insightful review), the

following fundamental question arises about Eq. (5):

Why would εsol, which reflects the strength of effective (solvent-mediated) ion-ion forces in

a solution, be the key quantity to describe the effect of ion-solvent interactions? This simple

question already raises questions and perplexity about the “Born” term.
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Furthermore, εsol is relevant for interactions between charges separated by a large distance.

This range contrasts with that of ion-solvent interactions which is typically of a few solvent

molecular diameters (see also Section 3.3). Furthermore, the magnitude of εsol not only results

from the effect of solvent molecules but also from that of ions (see the next section). Another

feature of the “Born” term is that its magnitude is generally not small, typically of a few kBT

[19], which can make it one of the dominant contributions (see Figure 4 of Ref. 13 as an example).

Therefore, this term, which has often been accepted as a matter of course in the literature,

raises some basic issues. An example is presented in the next section.

3.2. A simple remark

Let us imagine a process in which an ion is transferred at constant temperature from pure

water into an ionic liquid comprising this ion as depicted in Figure 3. This process may be

carried out in two steps: first from pure water to a vacuum, and then from a vacuum to the

ionic liquid.

vacuum

+

+

-

-
-

+

+

+

+
-

1 2

Figure 3: Transfer of a lone ion (here a cation) from pure water to an ionic liquid comprising this ion, at the same

temperature.

The contribution from ion-water (iW ) interactions to the chemical potential of an ion i

(cation or anion) in this transfer, ∆µiW
i , can be deduced from steps 1 and 2: the first contribution

is the opposite of its Gibbs hydration energy, −µHydr
i , and the second is naught since there is

no water in the two states involved in step 2. Therefore, in the overall process 1+2, the change

in the chemical potential corresponding to ion-water interactions is simply,

∆µiW
i = −µHydr

i (15)

Furthermore, this same quantity can be obtained from the “Born” term in which εsol is

replaced with the relative permittivity of the ionic liquid (IL). By virtue of Eq. (3) (assuming
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that the Born equation describes the Gibbs hydration energy of the ion, −µHydr
i ), and of Eq.

(5), one readily gets for the process of Figure 3,

∆µ
(“Born”)
i =

1/εIL − 1/εW
1− 1/εW

× (−µHydr
i ) (16)

This result is now applied to the following particular system. For a transfer below 100◦C one

may consider an ionic liquid like 1-butyl-3-methylimidazolium chloride (also known under the

shorthand names [C4MIM][Cl] or BMIMCl), that has a melting temperature of ∼65◦C [45, 46].

Aqueous solutions of this salt may be prepared in a wide mole fraction range [47].

For the chloride anion, according to Eq. (15), this variation amounts to ∆µiW
i = −µHydr

i ∼114

kBT at 65◦C, if the Gibbs hydration energy is calculated using the ion-dipole MSA [19] (instead

of ∼124 kBT at 25◦C [48, 49]).

On the basis of an estimation of the value of εIL for BMIMCl [50] and of the general variation

of εIL with temperature for BMIM salts [51], it may be estimated that εIL ∼ 13 ± 1 for this salt

at 65◦C. The dielectric constant of water at that temperature is ∼65 [52]. With these values

one gets from Eq. (16), ∆µ
(“Born”)
i ≃ 0.06 × (−µHydr

i ) (corresponding to a value of ∼ 7 kBT ),

instead of −µHydr
i as prescribed by Eq. (15). So, in this example, the result from the “Born”

term is ∼16 times smaller than the actual variation of the ion-water contribution to the chemical

potential of a cation or anion in the transfer of Figure 3.

This discrepancy originates from the presence of the term 1/εIL in the numerator of Eq.

(16) for the “Born” term. If this term was equal to 1, then one would recover the correct

result, −µHydr
i . But the IL itself has a dielectric constant that is significantly larger than 1, and

this is why the correct result is not obtained. The relatively high value of the permittivity of

the BMIMCl ionic liquid stems in particular from the strong permanent dipole moment of the

BMIM+ cation [53] and from the polarizability of the ions.

This example highlights the fact that the mismatch is due to the effect of the ions in the

final state of Figure 3. The “Born” term involves the permittivity of the system, which includes

the effect of the solvent, and also of the ions. This shortcoming is illustrated in the extreme

case considered here of a transfer into an IL, but it would be also at play at any concentration

of the salt in the solution.

This simple model-independent example shows that the “Born” term is an improper way of

estimating the effect of ion-solvent interactions.

3.3. A Born-type formula as an alternative to the “Born” term?

The subject of this section was motivated by the observation that, to the best knowledge of

this author, a calculation of the solvation energy of an ion in a solution has never been presented,
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in which a method similar to that utilized by Born to derive his famous equation [2] would be

employed. This is done in this section in the case of a dilute ionic solution.

As in the derivation of the Born equation, the solvent is viewed as a dielectric continuum,

and the purpose is to calculate the energy of the electric field created by a central ion C in the

solvent. As compared to the situation approached by Born, ion C is not alone in the dielectric,

it is now surrounded by positive and negative ions.

The main expected effect of the salt ions is that the latter will partially screen out the electric

field created by the central ion, which will reduce the magnitude of the field in the solvent around

C. It is therefore expected that the interaction energy of C with the solvent would be lower than

in the case where C is alone in the solvent (case of the Born equation, Eq. (5)). Accordingly,

the corresponding Born-like term (without quotes) would be negative, a behavior that would be

opposite to the “Born” term.

The details of the calculation are presented in the Supplementary Material. The final result

for the variation of the solvation energy of the central ion w.r.t. infinite dilution, ∆Wi, at very

low salt concentration is,

β∆Wi ≃ −3

4
LW κ (17)

so that ∆Wi is indeed negative as expected.

However, Eq. (17) shows that β∆Wi varies as the square root of the salt concentration

because κ = (8πLWρs)
1/2 for this 1:1 salt. This is an unwelcome result because it has the same

κ-dependence as the DH limiting law (DHLL) which reads,

βµDHLL
i = −1

2
LW κ (18)

Therefore, in a model with explicit solvent in which the ion-ion and ion-solvent contributions

would be added up, combining Eqs. (17) and (18) would result in a violation of DHLL, because

∆Wi also varies as
√
Cs.

Incidentally, it is noticed that this is not the case of the “Born” term if, as is observed for the

experimental solution permittivity, the variation of 1/εsol is proportional to Cs (εsol
−1−εW

−1 ∝

Cs). In the same way, the MSA-ID permittivity, and its inverse, vary as Cs at low concentration

[see Eq. (A.1)], so that the DHLL is indeed fulfilled.

Therefore, Eq. (17) is an unphysical result for this problem. Nevertheless, it might be

expected that the ionic cloud around C indeed produces a screening of the electric field in the

dielectric, and an ensuing reduction of Wi. We note that no mention of this effect is present

in the “Born” term. But something is clearly missing in the present calculation. The present
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procedure only involves a calculation of the electrostatic energy in the dielectric, it does not

account for entropic effects for the solvent particles. But this was also the principle of the

calculation that was made by Born to establish his equation, of which Born himself seemed

to be quite ‘skeptical’... [24] (it is clear however that an entropic contribution is obtained

by differentiation of the Helmholtz energy found by Born w.r.t. temperature T , because the

permittivity of solution varies with T ). So the present simple model apparently leads to some

tricky questions that will require further analysis. In the absence of a clear answer, this problem

will be reserved for future investigation.

4. Examination of the problem in the case of a mixture of ions and dipoles

In this section, some previous results [19] are recalled and expressed in a more explicit and

significant way. It is instructive to study the present problem in the simple case of a binary

mixture of hard spherical ions and dipoles, the latter mimicking water molecules. It is assumed

that the cation and the anion of the salt have the same diameter and opposite charges, and that

the solvent particles bear a central point dipole but are not polarizable. Then, the two types of

ions have the same chemical potential.

For this model system, the interactions between the particles are pairwise additive (unlike,

e.g., forces induced by polarization). The electrostatic part of the chemical potential of an ion

i (cation or anion) splits into ion-ion (ii) and ion-dipole (id) contributions as,

βµel
i = βµii

i + βµid
i (19)

In this relation, the chemical potentials µii
i and µid

i are for direct interparticle forces in a vacuum.

The ion-ion contribution µii
i contains an influence of the solvent dipole moment, and µid

i vanishes

when the dipole moment is zero.

The Gibbs solvation energy of ion i, µHydr
i , may be subtracted from each side of Eq. (19),

which yields,

β∆µel
i = βµii

i + β∆µid
i (20)

because, at infinite dilution of the ions, µii
i goes to zero so that no “∆” needs be added to it,

and µid
i → µHydr

i .

At low salt concentration, it may be conjectured that

βµii
i ≃ −L0κ/2 (21)

which is the DH limiting law for direct ion-ion interactions (in a vacuum), as was found within

the MSA-ID [19].
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Therefore, Eq. (20) may be rewritten as,

β∆µel
i = βµii

i

1

εW
+

[
β∆µid

i + βµii
i

(
1− 1

εW

)]
(22)

in which, by virtue of Eq. (21), the first term on the r.h.s. is the DH limiting law (DHLL), Eq.

(18), in a model with implicit solvent of dielectric constant εW [19],

βµii
i

1

εW
≃ ln γDHLL

i when Cs → 0 (23)

where γi denotes the activity coefficient of ion i and ln γDHLL
i = −LW κ/2 [Eq. (18)].

It is useful to separate this DHLL term in Eq. (22) because, at low salt concentration, it is

involved in all explicit-solvent models in which an ion-ion contribution for implicit solvent (DH

or MSA, the latter being equivalent to the former at high dilution) is used, as is generally done,

e.g., in SAFT-type models [10–13].

Then, again at low salt concentration, one gets from Eqs. (22) and (23),

β∆µel
i = ln γDHLL

i + β∆µ
id(resc)
i (24)

where

β∆µ
id(resc)
i = β∆µid

i + βµii
i

(
1− 1

εW

)
(25)

is a rescaled ion-dipole chemical potential [19].

These latter two relations pinpoint the contribution that is needed (at high dilution) in

explicit-solvent electrolyte models for a combination with an implicit-solvent term for ion-ion

interactions.

Eq. (25) shows that it should include the contribution from direct ion-dipole interactions,

and the most part of the direct ion-ion interactions (second term of the r.h.s. of Eq. (25)). The

latter corresponds to the ion-ion interactions that do not contribute to the reaction field (which

reduces the magnitude of the electric field acting on ion i, by a factor of εW at large dilution).

In Eq. (25), one has ∆µid
i > 0 (and µid

i < 0) but it decreases in absolute value when the salt

concentration is increased, and µii
i < 0. So, the ion-ion part gives a negative contribution that

lowers (significantly [19]) the direct ion-dipole part. The result, ∆µ
id(resc)
i , can be positive as

∆µid
i , or negative if the ion-ion contribution is sufficiently large. There is a priori no restriction

on the sign of ∆µ
id(resc)
i .

5. Expressions for mixtures of ions and dipoles within the MSA-ID

The MSA for ion-dipole mixtures (MSA-ID) is a model with explicit solvent for ionic so-

lutions, in which the solvent molecule is represented by a sphere bearing a point dipole at its
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center and ions are charged hard spheres as depicted in Figure 1. The MSA-ID has been solved

in the case of equisized ions [21, 54], and in the general case of ions and dipoles of arbitrary sizes

[23, 55, 56].

This model lacks features like the presence of hydrogen bonds, but it is the only analytical

model with a firm statistical-mechanical basis in which all interactions between species are

treated consistently at the same level. A silver lining of the MSA-ID is that it makes it possible

to obtain ion-ion and ion-solvent contributions to ion chemical potential, which includes entropic

effects. As such, and despite it is an approximate treatment, it can provide a useful framework

and reference system to try to better understand the properties of real ionic solutions.

5.1. Case of a dilute electrolyte in a waterlike solvent within the MSA-ID

In this section, some results obtained using the MSA-ID model [19] are recalled in a slightly

different manner and some new results are presented for ions of different diameters. Moreover,

the “Born” term is calculated within the MSA-ID with the formula usually employed in the

literature for this term. In what follows, the contributions will be computed at constant solvent

concentration (constant ρW ).

In previous work [19], the “Born” term was first investigated using the semi-restricted MSA-

ID in which both ions have the same size [21, 54], in a waterlike solvent made up of molecules

of arbitrary size. The diameter and dipole moment of the solvent molecule were determined,

which allowed one to recover the density and the dielectric constant of water at 1 atm and

25◦C, which gave: σW ≃ 2.4805 Å, and mW ≃ 2.2203 D. The effective solution permittivity, εA,

may be calculated within the MSA-ID framework [19, 21] by following the method proposed by

Adelman [57].

The basic equations used in the semi-restricted MSA-ID (for which σ+ = σ− = σi) are

recalled in the Supplementary Material. They were solved using the symbolic computation

program Maple.

It was shown in Ref. 19 that at low salt concentration and for constant solvent concentration,

the variation of the chemical potential of either ion (cation or anion) for this model system is

given by,

β∆µ
id(resc)
i ∼ L0

σi
M d0

2 (26)

in which the formula for M is provided in Appendix A together with the expansion of εA at

low concentration (not formulated in Ref. 19), and,

d0
2 = 8πL0σi

2 ρs (27)
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where d0 is a dimensionless parameter for the ions, and the expression of M is given in Eq. (A.4)

in terms of a MSA-ID parameter λ that has a value of ∼2.6535 at 25◦C for a waterlike solvent,

and of the size ratio r = σW /σi. The parameter λ is related to the energy of dipole-dipole

interactions in pure solvent (through the parameter b2 [21]), and to εW through the relation,

εW =
[
λ(λ+ 1)2/4

]2
(28)

It is seen in Eq. (26) that ∆µ
id(resc)
i is proportional to Cs (by virtue of Eq. (27)), which

contrasts with the expression for ∆µid
i which was shown to vary with

√
Cs [19].

The Debye screening parameter at large dilution is given by,

κ2 = 8πL0ρs/εW , (29)

which entails together with Eq. (27) that,

d0 = κσi
√
εW (30)

So, d0 is proportional to the Debye parameter κ.

At 25◦C one obtains by using σW ≃ 2.4805 Å and λ ≃ 2.6535 [19],

β∆µ
id(resc)
i ≃ 15.885

(σi + 4.6138)(σi − 3.5364)

(σi + 0.93482)4
Cs (31)

with the diameter σi and the salt concentration Cs expressed in Å and mol L−1, respectively.

In the same way, an expression for the “Born” term can be obtained from Eq. (5) in which

εsol is replaced with εA calculated within the MSA-ID. Note that a slightly different expression

for the “Born” term was taken in Ref. 19; the one used here is identical to the relation commonly

used in the literature for this term [11, 17]. One gets,

β∆µ
(“Born′′)
i =

L0

σi
B0 d0

2 (32)

where the expression for B0 is given in Appendix A. At 25◦C, one finds from Eq. (32) (with σi

in Å),

β∆µ
(“Born”)
i ≃ 21.137

(σi + 0.63714)

σi(σi + 0.93482)2
Cs (33)

Eqs. (31) and (33) give the initial behavior of β∆µ
id(resc)
i and β∆µ“Born′′

i as a function of Cs

in the semi-restricted MSA-ID. Both exhibit a linear variation with Cs at very low concentration.

Thus, the two vary as κ2, unlike the DH ion-ion contribution which scales as κ.

The particular case of RbCl is considered now because the Shannon and Prewitt diameters

[58–60] of Rb+ and Cl− are very close to each other (σRb+ ∼ 3.32 Å, σCl− ∼ 3.34 Å) so that the

semi-restricted MSA-ID may be employed.
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The classic “Born” term, β∆µ
(“Born”)
i [Eq. (33)], and the rescaled, β∆µ

id(resc)
i [Eq. (31)],

computed within the MSA-ID, are plotted in Figure 4 up to a concentration of 0.01 M. In this

concentration range, β∆µ
id(resc)
i and β∆µ

(“Born”)
i are nearly linear vs. Cs.

Figure 4: Plot of β∆µ
id(resc)
i [Eq. (31)] (solid line) and of the “Born” term β∆µ

(“Born”)
i [Eq. (5)] (dashed line),

both computed within the MSA-ID, in the case of RbCl solution at low concentration.

It is seen in this figure that the rescaled ion-dipole contribution is much lower, and of opposite

sign, as compared to the “Born” term when both are computed within the MSA-ID model.

Next, the initial slopes of the rescaled and “Born” terms (at high dilution of the salt),

β∆µ
id(resc)
i /Cs and β∆µ

(“Born”))
i /Cs, were investigated using the general unrestricted MSA-ID

model in which the ion sizes can have different values. The solution to the unrestricted MSA-ID

model was given recently [23]. Here, it makes it possible to consider the case of aqueous alkali

chloride solutions: LiCl, NaCl, KCl, and RbCl. At very low concentration, the electrostatic

contribution to the chemical potential of an ion is very well approximated by the internal energy

per particle, ui, which makes the calculation easier. The formulas being quite involved though,

it is not possible to reproduce them here.

These initial slopes are plotted in Figure 5. The diameters of the ions were taken from

Shannon and Prewitt tables [58–60] (for a coordination number of 6; σLi+ = 1.80 Å to σRb+ =

3.32 Å). The values of the initial slope β∆µ
(“Born”))
i /Cs were obtained by replacing εsol in Eq.

(5) with its MSA-ID counterpart (εA) [19]. The curves for cation and anion merge on the r.h.s.

of Figure 5 when arriving at RbCl because the diameters of the Rb+ and Cl− ions are nearly

equal.

Figure 5 shows that, at high dilution, the rescaled ion-dipole contribution, β∆µ
id(resc)
i , is

negative for alkali cations and the chloride anion. This behavior contrasts with that of the

“Born” term which is always positive. The latter is nearly constant in the case of the chloride
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Figure 5: Initial slopes of rescaled and “Born” contributions, β∆µ
id(resc)
i /Cs and β∆µ“Born′′

i /Cs, respectively,

computed within MSA-ID, for various alkali ions (full symbols) and chloride ion (empty symbols) in alkali chloride

salt solutions. Triangles: “Born” term; Circles: rescaled term. The plots are drawn against the Shannon and

Prewitt cation diameter, σ+.

anion and significantly larger than the rescaled term. The “Born” term is of the same order of

magnitude (in absolute value) as the rescaled term in the case of the Li+ cation, and it becomes

progressively relatively larger as one moves to bigger cations.

The outcome that the rescaled ion-dipole contribution, ∆µ
id(resc)
i , can be negative must not

come as a surprise. It results from the fact that the “Born” term is generally used in conjunction

with an ion-ion term for implicit solvent, as expressed in Eq. (24). Then, as seen in Eq. (25) and

discussed below this equation, the rescaled ∆µ
id(resc)
i being the sum of two quantities of opposite

signs, it can be positive or negative. This outcome is related to the fact that ∆µ
id(resc)
i has no

simple physical meaning. In contrast, the original, non-rescaled, ∆µid
i for direct interactions is

always positive for any salt concentration.

5.2. Limit of low density and high temperature within the MSA-ID

In this section, the semi-restricted MSA-ID is employed in the case of a very weakly coupled

ion-dipole mixture at low ion and dipole density. Weak coupling means that the mixture is

studied at high temperature, or equivalently for low ion charge and solvent dipole moment.

It is shown in Appendix B that the MSA becomes exact in the low-density and high-

temperature limit. This property is used below for a test of the “Born” term against the

rescaled ion-dipole result. In this comparison, both terms are calculated within the MSA-ID

framework, by using the expressions for B0 and M [Eqs. (A.3) and (A.4)].

So, in this section, the system is very dilute, it is a plasma made up of ions and dipoles.

The interaction potentials are much weaker than the mean thermal agitation energy, that is
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βVij(r) ≪ 1 for all r outside the hard cores (β = 1/kBT ). This is equivalent to saying that the

dimensionless coupling parameters,

q∗2 =
βe2

4πε0σi
=

L0

σi
, m∗2 =

βm2
W

4πε0σ3
W

(34)

are very small compared to unity: q∗2 ≪ 1 and m∗2 ≪ 1 In the definition of m∗, mW is the

solvent dipole moment.

In Eq. (34), q∗2 and m∗2 are the electrostatic to mean thermal energy ratios for ion-ion and

dipole-dipole interactions at contact, respectively. Other dimensionless parameters involved in

the MSA-ID are d0 for the ions, defined in Eq. (27), and d2 which is given by,

d2
2 =

βmW
2

3ε0
ρW (35)

for the dipolar solvent.

One has from Eqs. (27), (34), and (35),

d0
2 = 8πσi

3q∗2ρs, d2
2 =

4

3
πσW

3m∗2ρW (36)

Hence, d0
2 and d2

2 are proportional to the densities of salt and dipoles, ρs and ρW , respectively.

Now, if it is assumed that the ions and the dipoles are very dilute, then one also has: d0
2 ≪ 1

and d2
2 ≪ 1. Since the dipoles are very dilute, the value of the parameter λ is close to 1 (λ > 1),

which is its value for a vacuum [19, 21]. In that case, one has using Eq. (28),

εW ≃ 1 + 4 (λ− 1) (37)

to first order in (λ− 1).

Then, Eqs. (A.3) and (A.4) for B0 and M , that were established for low salt concentration

(and constant dipole density), may now be expanded in Taylor series in the vicinity of λ = 1.

One obtains,

β∆µ
id(resc)
i = −2

3

r3

(r + 1)2
(λ− 1) d0

2 (38)

and,

β∆µ
(“Born”)
i =

4

9

r3

(r + 1)2
(5r + 8) (λ− 1)2 d0

2 (39)

in which r = σW /σi is the same for the two ions (because σ+ = σ−).

The ratio of the two is,

β∆µ
(“Born”)
i

β∆µ
id(resc)
i

= −2

3
(5r + 8) (λ− 1) (40)
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Eqs. (38)-(40) are expected to be exact results in the limit of low density and low coupling

(high temperature, or low charge and low dipole moment).

The rescaled and “Born” terms in Eqs. (38) and (39) scale as d0
2, which is proportional to

Cs. On the other hand, the rescaled β∆µ
id(resc)
i is negative whatever the relative sizes of the

ions and dipoles, and it scales as (λ − 1), which contrasts to the “Born” term which is always

positive and scales as (λ− 1)2.

So, for the present system, the “Born” term is in sharp contrast to the correct rescaled

ion-dipole contribution.

6. Conclusion

The “Born” term is based on an improper extrapolation of the Born equation [Eq. (2) or

(3)] to the case of solutions of finite salt concentration. It is an empirical formula to which the

name of Born has been unduly (and unfairly) tied. Moreover, an inconsistent formula has been

commonly used in the literature.

It has often been claimed to represent the effect of ion-solvent interactions in models with

explicit solvent. In keeping with former work [19], this study arrives at a negative conclusion on

this point. For every single situation considered here, it has been found that the “Born” term

provides an unsuitable or inaccurate description for that purpose.

General considerations about a system of ions and dipoles suggest the introduction of a

‘rescaled’ ion-solvent term for a suitable match with the term adopted for ion-ion interactions,

which is commonly a DH or MSA term, the latter being usually employed in implicit-solvent

models for electrolytes. This modified ion-solvent term combines contributions from direct ion-

solvent and ion-ion interactions, which does not lend a simple physical meaning to this term. It

can be positive or negative, which is in contrast to the “Born” term which is always positive.

However, no suitable term is really available yet to replace the “Born” term. The calculation

of a Born-like term as proposed in Section 3.3 yields an unphysical result, in violation of the

DHLL at low salt concentration. Nonetheless, maybe this derivation could be amended and

provide a better expression. This possibility will be examined in the future.

It could be proposed to employ the MSA-ID model for the full electrostatic contribution in

explicit-solvent models, as has been done in a few works, in particular in a few SAFT models

[61–63]. Promising results were obtained in Ref. 63 within the semi-restricted MSA-ID. In this

respect, it may be noted that the solution to the general unrestricted case, possibly including

the effect of solvent polarization, is now available [23, 64]. However, it must be recognized that
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the MSA-ID is an approximate theory, and modeling the water molecule as a dipole might be

insufficient [65, 66], but maybe more progress could be made within this framework.

Meanwhile, something has to be done because the “Born” term can be a major drag for the

development of reliable explicit-solvent models for electrolytes. As suggested previously, a first

temporary remedy could be to introduce a multiplicative adjustable parameter to the “Born”

term, that could take positive or negative values [19]. This simple modification would provide

some flexibility to the “Born” term, whose magnitude is imposed in the models in which it is

used. It could bring up some improvement until a better solution is found.

It is also hoped that more simulations (e.g., of the type developed in Ref. 20, combining

Monte-Carlo and molecular dynamics algorithms) will be carried out in the future about this

topic. They could provide some more fundamental information about the “Born” term, and

some clues for its replacement.

In future work, the case of models with implicit solvent [15, 40, 67] will be considered. The

relevance of the “Born” term in such models will be investigated. It must be noted that an

implicit solvent model is naturally developed at the McMillan-Mayer level, at which ion-solvent

interactions should not be considered explicitly. Only effective solvent-averaged ion-ion forces

in the infinite dilute solution are normally involved in the MM framework [68]. This point will

require further study. The relevance of a “Born” term in this type of model will be examined

in the near future.

Supplementary Material

The Supplementary Material contains a demonstration of Eq. (17) for the solvation energy

of an ion in a dilute electrolyte calculated in the spirit of Born, and a summary of the equations

used for the semi-restricted MSA-ID in Section 5.1.
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Appendix A. Expansion of εA, and formulas for B0 in Eq. (32) and M in Eq. (26)

The expansion of εA at low salt concentration (low d0) is given by the following formula,

εA ≃ εW − E d0
2 (A.1)
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with,

E =
1

128
r3(λ− 1)2

(λ2 + 3λ+ 4)2(λ3 + 2λ2 + λ+ 4)2(4λ2 + 3rλ+ 4λ+ 2r)(λ+ 3)

λ2(λ+ 2)(λ+ r)2 f
(A.2)

where r = σW /σi, and

f = λ7 + 6λ6 + 15λ5 + 20λ4 + 15λ3 + 6λ2 + 9λ+ 24

from which one gets using Eqs. (5) and (32),

B0 = E/εW
2 (A.3)

with

εW =
λ2(λ+ 1)4

16

Moreover, one has,

M = − 1

16
r3(λ−1)(λ2+3λ+4)(λ3+2λ2+λ+4)

(
M2 r

2 +M1 r +M0

)
/
[
λ5(λ+ 1)8(λ+ 2)(λ+ r)4 f

]
(A.4)

where

M2 = (λ+ 1)(λ13 + 12λ12 + 64λ11 + 200λ10 + 406λ9 + 560λ8 + 452λ7 − 40λ6 − 399λ5 − 28λ4

+436λ3 + 320λ2 + 1088λ+ 3072)

M1 = −64λ (3λ8 + 19λ7 + 44λ6 + 42λ5 + 3λ4 − 25λ3 − 66λ2 − 212λ− 192)

M0 = −128λ2(λ8 + 7λ7 + 19λ6 + 25λ5 + 15λ4 + λ3 − 19λ2 − 73λ− 72)

Appendix B. Limit of low density and high temperature

A general closure relation in the field of integral equation theory is [69],

cij(r) = −βVij(r) + hij(r)− ln gij(r) +Bij(r) (B.1)

where cij , hij (= gij − 1), Bij , and Vij are the direct correlation function, the total correlation

function (gij being the i−j radial distribution function), the bridge function, and the interaction

potential between particles i and j at distance r, respectively.

An interesting point about the bridge function Bij(r) is that it is of second order in density

in dilute systems [69], so that it may be neglected as compared to the other terms of Eq. (B.1)

in that case. This approximation leads to the hypernetted chain (HNC) closure equation,

cij(r) ≃ −βVij(r) + hij(r)− ln gij(r) (B.2)
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For a system that is dilute in all components, one also has [70],

gij(r) ≃ exp[−βVij(r)] (B.3)

for r > σij , where σij = (σi + σj)/2 is the minimum distance of approach for particles i and j.

Now, it is assumed that the temperature of the system is very high so that βVij(r) → 0

outside the hard cores (or equivalently, m∗2 → 0 and q∗2 → 0). Then, in that limit of very low

coupling, and by virtue of Eq. (B.3), Eq. (B.2) becomes,

cij(r) ≃ −βVij(r) +O
(
[βVij(r)]

2
)

(B.4)

in which the last term means a contribution of at least second order in βVij(r).

Consequently, one obtains from this latter relation that cij is given by the MSA: cij(r) ≃

−βVij(r), in the limit of low density and high temperature (low coupling). Then, results from

the MSA become asymptotically exact in these limits.
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1. Born-type formula for an ion in a dilute electrolyte

This section presents the calculation yielding Eq. (17) of Section 3.3.
As in the Born treatment for the calculation of the solvation energy of an ion [1],

the energy of the electrostatic field in a small volume dτ of the dielectric is given by
dWi = 1/2D.E dτ = 1/2 ε0εr E

2 dτ , in which D (= ε0εr E) and E are the displacement
vector and the electric field in the volume dτ , respectively. The situation is depicted in
Figure S1. It is considered that a positive ion is located at a fixed central position. This
central cation is designated by C.

For simplicity, the added salt is comprised of monovalent hard spherical cations and
anions of the same diameter σi.

+

+-

-

+

E

C

Figure S1: Illustration of the situation considered in section 3.3. C is a fixed central cation. In the
calculation, the concentration of the salt is supposed to be very small.

As compared to the situation in which Born calculated the solvation energy (a lone
ion in a dielectric), ion C is now surrounded by positive and negative ions (at a very
low concentration in this case). Thus, a small portion of space is occupied by salt ions,
and so there are fewer solvent molecules interacting with C. The main effect of the salt
ions is that they screen out partially the electric field created by C, which reduces the
magnitude of the field in the solvent around C. As a consequence, it may be expected
that the interaction energy of C with the solvent will be lower than in the case where C
is alone in the solvent.
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Since the electrolyte is very dilute, the Debye-Hückel theory may be employed to
address this problem. In this framework, the linearized Poisson-Boltzmann equation reads
[2],

∆ψ(r) = 2ρs
βe2

ε0εr
ψ(r) (S1)

where ∆ is the Laplace operator, ψ(r) is the potential of the self-consistent electrostatic
field E(r) at a distance r from the central ion, ρs is the number density of the salt
(number of salt ‘molecules’ dissolved in the solvent), and εr is the relative permittivity of
the solvent at a distance r from C.

If this relative permittivity is considered to deviate from the dielectric constant εW
because of the presence of the ions, then the quantity ρs/εr which appears in Eq. (S1)
may be approximated by ρs/εW to the first order in ρs when ρs is very small. Hence, the
classic DH formula for the electrostatic potential ψ at a distance r from the central ion
may be employed [2], that is,

ψ(r) =
e

4πε0εW

1

1 + κσi

exp[−κ(r − σi)]

r
(S2)

where κ is the Debye screening parameter defined by,

κ2 = 8πLWρs, with LW = βe2/(4πε0εW ) (S3)

in which LW is the Bjerrum length in water. In the case of water at 25◦C, LW ∼ 7.15 Å.
By differentiation of ψ w.r.t. r [Eq. (S2)] one obtains the electric field E = −dψ/dr,

E =
e

4πε0εW

1 + κr

1 + κσi

exp[−κ(r − σi)]

r2
(S4)

This field results from the effect of the central ion and of the ions in the ionic cloud.
Then, following the calculation of Born [1], the energy of the field E in the dielectric

in the presence of salt is,

W
(s)
i =

1

2
ε0εW

∫ ∞

σi/2

E2dτ (S5)

where dτ = 4πr2dr, the integration is performed from the surface of the central ion at
r = σi/2, and it is assumed that εr may be replaced with εW . Since the solution is very
dilute, it is assumed that E is given by its expression in free space for σi/2 < r < σi, that
is E = e/(4πε0εW r2). For r > σi, Eq. (S4) is used in Eq. (S5).

It is noted that the fraction of space occupied by the ions is not in Eq. (S5) because
it is proportional to ρs which is of order κ2. It may be neglected because, as seen below,
the variation of Wi is of order κ as expected from the effect of screening.

After some simple algebra one gets,

βW
(s)
i = βWi

[
1

2
+

1

2

1 + κσi/2

(1 + κσi)2

]
(S6)

with Wi the electrostatic energy of the lone ion i in the dielectric [1] [Eq. (2)].
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Then, it stems from the latter relation that the variation of the solvation energy of the
central ion, ∆Wi = W

(s)
i −Wi, to the leading order in κ is, β∆Wi ≃ −3/4κσi × (βWi),

and since by virtue of Eq. (2) one has βWi = LW/σi with LW = L0/εW , one finally
obtains,

β∆Wi ≃ −3

4
κLW (S7)

2. Equations for semi-restricted MSA-ID

The semi-restricted case model involves the following two adimensional parameters,

d0
2 ≡ 8π ρsL0σi

2, (S8)

for the ions, and

d2
2 ≡ β

ρWmW
2

3
. (S9)

for the dipolar solvent.
Moreover, 3 parameters, denoted as b0, b1 and b2, are involved in the equations. They

are functions of the ion-ion, ion-dipole, and dipole-dipole correlation functions (see Eqs.
(11)-(13) of Ref. 3), respectively.

For a given ion-dipole mixture, these 3 parameters are the unknowns to be determined
first in order to compute the thermodynamic quantities. The 3 basic equations of the
model to be solved in the first place are [3],

a1
2 + a2

2 = d0
2, (S10)

a1K10 − a2(1−K11) = d0d2, (S11)

K10
2 + (1−K11)

2 = y1
2 + d2

2, (S12)

where

a1 =
1

2DF
2 (∆− 2β6DF ) , a2 = − b1

2β6DF
2

(
∆

2
+
DFβ3
r

)
, (S13)

K10 = r
b1
2∆

(1 + a1 Λ) , 1−K11 =
1

∆

(
β3 − a2b1Λ

r

2

)
, (S14)

r = σW/σi, y1 = β6/β12
2, (S15)

β3 = 1 + b2/3, β6 = 1− b2/6, β12 = 1 + b2/12, (S16)

∆ =
b1

2

4
+ β6

2, DF =
1

2

[
β6(1 + b0)− b1

2 r

12

]
, Λ =

1 + b0
2

+ β6
r

6
. (S17)

Expressions for the electrostatic contributions to the chemical potentials read,

βµel
i =

L0

σi
b0 −

L0

σW

d2
d0
b1. (S18)

with i = + or − because µ+ = µ− when the cation and the anion have the same size and
charge in absolute value.
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In Eq. (S18) the first term,

βµii
i =

L0

σi
b0, (S19)

is the contribution from ion-ion interactions to βµel
i (note that b0 < 0), and the second

term,

βµid
i = − L0

σW

d2
d0
b1, (S20)

is the contribution from ion-dipole interactions. Therefore,

βµel
i = βµii

i + βµid
i . (S21)
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