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Pseudomonas aeruginosa is an opportunistic pathogen that can cause critical

cellular damage and subvert the immune response to promote its survival.

Among the numerous virulence factors of P. aeruginosa, the type III secretion

system (T3SS) is involved in host cell pathogenicity. Using a needle-like

structure, T3SS detects eukaryotic cells and injects toxins directly into their

cytosol, thus highlighting its ability to interfere with the host immune response.

In this mini-review, we discuss how the T3SS and bacterial effectors secreted

by this pathway not only activate the immune response but can alsomanipulate

it to promote the establishment of P. aeruginosa infections.
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Introduction

Pseudomonas aeruginosa is a Gram-negative bacterium causing infections in

immunocompromised individuals. This pathogen is one of the ESKAPE pathogens

(including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,

Acinetobacter baumanii, P. aeruginosa, Enterobacter spp.), which constitute life-

threatening nosocomial bacteria (Hirsch and Tam, 2010; Mulani et al., 2019). P.

aeruginosa also infects patients with specific pathologies such as cystic fibrosis (CF).

Due to its ability to form a biofilm, P. aeruginosa often chronically infects CF patients and

represents a negative outcome in this disease (Malhotra et al., 2019).

To successfully establish itself in the host, P. aeruginosa deploys a series of virulence

factors, including toxins, siderophores, adhesins, and secretion systems (see reviews of

Gonçalves-de-Albuquerque et al., 2016; Qin et al., 2022). The latter allows the transport
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of molecules into the extracellular media or host cells. Among

the known secretion systems of P. aeruginosa, the type III

secretion system (T3SS) is the most relevant in human

pathogenesis and is implicated in host invasion by injecting

toxins directly into eukaryotic cells (Hauser, 2009; Juan et al.,

2017). It plays a significant role in the colonization of the host by

P. aeruginosa, and several studies show a close relationship

between T3SS expression and the modulation of the host

immune system. This review aims to discuss the current

knowledge regarding the interactions between T3SS and the

host immune response.
T3SS structure

The P. aeruginosa T3SS is a complex machinery that

includes a needle complex, a translocon, effectors, chaperones,

and a regulatory system (reviewed by Hauser, 2009; Horna and

Ruiz, 2021).

The needle complex consists of a multi-ring base and a

needle-like filament (Figure 1). The multi-ring base includes the

PscC protein for the outer rings and the PscD and PscJ proteins

for the inner ring (Notti and Stebbins, 2016). PscI connects the

multi-ring base to the needle (Deng et al., 2017). The needle like-

filament, composed of PscF subunits, allows the passage of

effectors and serves as a sensor for host cell contact (Lombardi
Frontiers in Cellular and Infection Microbiology 02
et al., 2019). The translocon, composed of the PopB, PopD, and

PcrV proteins, is also reported as the needle tip complex. PcrV is

involved in the assembly of the PopB/D complex, which allows

the injection of effectors into host cells by forming a pore in the

host cell membrane (Goure et al., 2004; Romano et al., 2011). As

such, the pore formed can lead to host cell death regardless of

effector action (Audia et al., 2013).

Although PemA, PemB, and the nucleoside diphosphate

kinase have also been proposed as T3SS effectors (Neeld et al.,

2014; Burstein et al., 2015), the four classically cited P.

aeruginosa T3SS effectors are ExoS, ExoU, ExoT, and ExoY

(Figure 1). The latter two toxins are detected with a high

prevalence in contrast to ExoS and ExoU, which have been

reported to be mutually excluded in most studies (Feltman et al.,

2001; Ozer et al., 2019). ExoS and ExoT are two homologous

bifunctional enzymes with GTPase activating protein (GAP)

activity in the N-terminal region and adenosine diphosphate

ribosyl transferase (ADPRT) activity in the C-terminal region

(reviewed by Barbieri and Sun, 2005). GAP activity, targeting an

array of GTPases, reorganizes the actin cytoskeleton, leading to

cell rounding and disruption of cell-to-cell adhesion while

ADPRT activity, targeting the Ras protein, modifies the

cytoskeleton (Garrity-Ryan et al., 2000; Garrity-Ryan et al.,

2004; Sun and Barbieri, 2004). Furthermore, both GAP and

ADPRT domains induce apoptosis (Kaufman et al., 2000;

Shafikhani et al., 2008; Wood et al., 2015; Kaminski et al.,
FIGURE 1

Translocation and activities of Pseudomonas aeruginosa T3SS effectors into host cells. P. aeruginosa injects exotoxins though a needle complex
after contact with the surface of the targeted eukaryotic cell. ExoS and ExoT modulate the cytoskeleton with their GAP and ADPRT domains
(Barbieri and Sun, 2005). ExoY also impacts the actin cytoskeleton but with its Nucleotidyl Cyclase activity (Belyy et al., 2018). ExoU disrupts the
integrity of the lipid membrane via its PLA2 activity (Schulert et al., 2003; Sato and Frank, 2004).
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2018). Although ExoS and ExoT possess similar domains,

Shafikhani et al. (2008) suggest that the activity kinetic of

these toxins could be different. ExoU is known to play a key

role in the cytotoxic phenotype of P. aeruginosa through its

phospholipase A2 (PLA2) activity (Sato et al., 2003; Schulert

et al., 2003; Sato and Frank, 2004). This PLA2 activity, which

produces lysophospholipids through the hydrolysis of

membrane phospholipids, allows ExoU to disrupt the plasma

membrane of host cells and cause rapid cell death (Phillips et al.,

2003; Diaz and Hauser, 2010). ExoY is an actin-activated

nucleotidyl cyclase that impacts the actin cytoskeleton (Yahr

et al., 1998; Beckert et al., 2014; reviewed by Belyy et al., 2018).

The actual clinical relevance of ExoY is still unclear, although a

recent study showed a potential protective role of ExoY towards

the cytotoxic effects of other P. aeruginosa virulence factors

(Silistre et al., 2021).

Some effectors and other proteins implicated in T3SS need

specific chaperones to facilitate their storage, conformational

folding, and proper delivery to the secretion apparatus (see

reviews Hauser, 2009; Horna and Ruiz, 2021).

The regulation of T3SS is complex and involves a variety of

players. ExsA is the general transcriptional regulator binding

promoter of T3SS genes, including its own promoter. Three

additional proteins, ExsC, ExsD, and ExsE, control ExsA activity

through a “catch and release”mechanism depending on whether

P. aeruginosa is in contact or not with host cells (Hauser, 2009).

Other players are also implicated in the regulation of T3SS

transcription (For more details, see reviews Hauser, 2009; Horna

and Ruiz, 2021).
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Implication of T3SS in the
establishment of the IL-1b-
mediated-inflammatory response to
P. aeruginosa

The three translocon proteins of the needle tip, PcrV, PopB,

and PopD, are required for P. aeruginosa to elicit rapid

neutrophil recruitment into the airways, suggesting that T3SS

affects the initial immune response of the host (Wangdi et al.,

2010) to P. aeruginosa infection either directly, through the

needle, or indirectly, through injection of exotoxins into the host

cell. More specifically, T3SS can modulate the production of IL-

1b whose signaling plays an important role in rapid neutrophil

recruitment (Figure 2).
NF-kB signaling pathway

The inducible transcription factor Nuclear Factor kB (NF-

kB) regulates the transcription of genes involved in the immune

and inflammatory responses. The binding of Pathogen-

Associated Molecular Patterns (PAMPs) or Damage-

Associated Molecular Patterns (DAMPs) to specific cell Toll-

Like Receptors (TLR) leads to the activation of NF-kB signaling

which ultimately results in the expression of proinflammatory

genes including cytokines, chemokines, and other inflammatory

mediators (reviewed by Liu et al., 2017). This process plays a key

role in the initiation of immune and inflammatory responses.
FIGURE 2

Role of T3SS in the cytokine IL-1b-dependent-proinflammatory response. Several components of the needle structure and the translocation
apparatus activate the NF-kB pathway leading to the expression of pro-IL-1b (Grandjean et al., 2017; Yu et al., 2020). They also activate the
inflammasome pathway resulting in a caspase-1-dependent maturation of IL-1b (Grandjean et al., 2017; Dortet et al., 2018). This cytokine
production allows the recruitment of immune cells. However, injected exotoxins (in green) can inhibit both NF-kB and inflammasome pathways
through various mechanisms.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.1064010
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Jouault et al. 10.3389/fcimb.2022.1064010
Several components of the T3SS structure have been

reported to activate the NF-kB signaling pathway. The T3SS

inner-rod protein PscI and needle protein PscF are recognized

by TLR4 and TLR2 (Grandjean et al., 2017), which can induce

NF-kB activation. More importantly, the needle-tip protein

PcrV seems to be a potent inducer of the NF-kB-mediated

proinflammatory response (Yu et al., 2020) since the addition of

PcrV on biofilm-infected tissues induces an inflammatory

response. The latter was characterized by an increased

macrophage differentiation toward an M1 phenotype followed

by activation of the M1-polarized macrophages and

phagocytosis, which occurred via the mitogen-activated

protein kinases (MAPKs) and NF-kB signaling pathways. The

authors of this study also reported downregulation of pcrV gene

expression during P. aeruginosa biofilm infection, which was

associated with attenuated immune activation. Altogether, these

findings suggest that P. aeruginosa regulates T3SS to promote

biofilm and its persistence in the host.

In addition to the needle structure, the ExoU toxin can also

activate the proinflammatory response through the NF-kB
signaling pathway. ExoU is involved in the inflammatory

response through the generation of lysophospholipids and free

arachidonic acid (via its PLA2 activity on host membrane

phospholipids), at local sites of P. aeruginosa infection (Saliba

et al., 2005). Lysophospholipids can be acetylated to generate

Platelet-Activating Factor (PAF), an inflammatory lipid mediator

that initiates neutrophil recruitment. By binding to its receptor,

PAFR, located on airway epithelial cells, PAF activates NF-kB and

stimulates IL-8 secretion (Mallet de Lima et al., 2014).

Additionally, free arachidonic acid is also involved in ExoU-

induced inflammation through its conversion into eicosanoids,

including prostaglandin (PGE2 or PGI2) (Saliba et al., 2005),

which are potent inducers of IL-6 and IL-8 production (Cho

et al., 2014; Kawahara et al., 2015).

ExoY has been implicated in the decrease of IL-1b
production and proinflammatory response both in vitro and in

an animal model of lung infection by P. aeruginosa (Jeon et al.,

2017; He et al., 2017; Kloth et al., 2018). Due to its adenylate

cyclase activity, ExoY can reduce inflammasome-related

responses by delaying the activation of NF-kB and caspase-1,

resulting in a delayed inflammatory response (Jeon et al., 2017).

Another study using a mouse model confirmed that ExoY can

attenuate proinflammatory cytokine production by

downregulating the activation of Transforming growth factor

Activated Kinase 1 (TAK1), NF-kB, and MAPKs kinases (He

et al., 2017).
Inflammasome

NLRC4, as part of the Nod-like receptors (NLRs), allows

host cells to sense pathogens and drive the innate immune

response. PAMPs cause oligomerization and activation of
Frontiers in Cellular and Infection Microbiology 04
NLRC4 inflammasome resulting in caspase-1-dependent

maturation of IL-1b and IL-18 cytokines and pyroptosis. This

cytokine production results in the recruitment of inflammatory

leukocytes, such as neutrophils and monocytes/macrophages to

the site of infection to achieve P. aeruginosa killing (reviewed by

Broz and Dixit, 2016).

The T3SS inner-rod protein PscI and the needle protein PscF

are recognized by macrophages through the neuronal apoptosis

inhibitory protein (NAIP) family, which then leads to NLRC4

inflammasome activation (Yang et al., 2013; Grandjean et al.,

2017). The translocation apparatus, with PopD, PopB, and PcrV

proteins, has also been reported to induce IL-1b production

(Sutterwala et al., 2007; Franchi et al., 2007; Miao et al., 2008;

Galle et al., 2012). Moreover, one study showed that the pore-

forming activity of PopD-PopB results in potassium efflux and

histone H3 modifications. The authors suggested that this

phenomenon could activate the inflammasome and subsequent

IL-1b maturation (Dortet et al., 2018). However, another study

reported that PopB activates the NLRP3 inflammasome rather

than the NLRC4 inflammasome, similarly to pore-forming

toxins from other organisms (Grandjean et al., 2017).

A recent study demonstrated that recognition of P. aeruginosa

T3SS leads to an NLRC4 inflammasome response, limiting the

development of infection in wounds. In response to T3SS insertion

into bone marrow-derived macrophages, CrkII interacts with the

Abl tyrosine kinase and enables the subsequent phosphorylation

cascade through Abl ! PKCd ! NLRC4, which is required for

NLRC4 inflammasome assembly and activity (Mohamed et al.,

2022). T3SS has also been reported to promote NLRC4 assembly

and activation by inducing mitochondrial DNA and ROS release.

Thus, the removal of damaged mitochondria generated after P.

aeruginosa infection with functional T3SS blocks NLRC4 activation

(Jabir et al., 2015). The flagellin FliC, which is a potent inducer of

the NLCR4 inflammasome pathway, has also been reported to be

translocated into host cells through T3SS and induces caspase-1

production (Ince et al., 2015).

Unlike the needle complex and the translocon, the P.

aeruginosa T3SS effectors are implicated in NLRC4 dysregulation.

ExoU was the first exotoxin shown to disrupt NLRC4

inflammasome activation, which transiently paralyzed the NLRC4

inflammasome (Sutterwala et al., 2007). Although the mechanisms

involved still need to be elucidated, Hardy et al. (2022) recently

showed an association between ExoU, host mitochondria, and

caspase-1 activation. In addition to ExoU, ExoS has also been

reported to regulate caspase-1-mediated IL-1b production by a

mechanism dependent on its ADPRT activity (Galle et al., 2008).

Recently, ExoT has been shown to inhibit NLRC4 inflammasome

activation by disrupting CrkII/AbI interaction and blocking the

phosphorylation cascade needed for NLRC4 assembly and function,

resulting in a decrease in the inflammatory response (Mohamed

et al., 2022).

Ince et al. (2015) showed that the DSTY mutant increases IL-

1 release compared to the WT strain, suggesting a role of these
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toxins in the modulation of the IL-1 production pathway, as

cited above. Interestingly, this inhibition is lost in the WT strain

with an overexpression of FliC, suggesting that the expression of

the agonists and antagonists of inflammasome activation could

be controlled during specific steps of infection. This hypothesis

could explain why studies on the benefit of inflammasome

activation in the process of P. aeruginosa clearance is

discussed and give an interesting perspective for further

studies. (Schultz et al., 2003; Sutterwala et al., 2007; Franchi

et al., 2007; Cohen and Prince, 2013; Faure et al., 2014;

Mohamed et al., 2022).
Subversion of host immune
response by the P. aeruginosa T3SS

Activation of the host immune response by T3SS results in

the killing of P. aeruginosa but the pathogen can solve this

dilemma by deploying exotoxins to disrupt the response initiated

by the host, which helps P. aeruginosa to avoid its phagocytosis.

Not only does P. aeruginosa protect itself from the host response,

it also eliminates other pathogens such as S. aureus from the

airways by manipulating the host immunity.
Antiphagocytosis

Some of the exotoxins injected by the P. aeruginosa T3SS into

host cytosol can intoxicate immune cells or inhibit P. aeruginosa

phagocytosis to favor its persistence in host tissues.Due to its PLA2

activity that hydrolyzes membrane phospholipids and promotes

necrosis, ExoUhas been shown to intoxicate andkill neutrophils, as

well as other phagocytic cells (Diaz et al., 2008; Diaz and Hauser,

2010).Moreover, both ExoS and ExoT trigger neutrophil apoptosis

via a mechanism mediated by the ADPRT domain (Sun et al.,

2012). Besides directly injuring phagocytic cells, the ADPRT

activity of ExoS also inhibits P. aeruginosa phagocytic uptake by

neutrophils and macrophages (Rangel et al., 2014). Additionally,

the GAP domain of ExoT and ExoS can also reduce the ability of

host cells to phagocytize P. aeruginosa (Garrity-Ryan et al., 2000;

Barbieri and Sun, 2005).

Although P. aeruginosa can kill immune cells extracellularly

and avoid its phagocytosis, it was reported to be engulfed by

phagocytes in animal and cell culture models (Garai et al., 2019).

Once in contact with immune and epithelial cells, P. aeruginosa

must evade cellular defense mechanisms against pathogens to

survive intracellularly. Studies have suggested a key role for ExoS

in the intracellular persistence of P. aeruginosa. In macrophages,

ExoS has been reported to modulate phagocytic vacuole escape

via a mechanism controlled by MgtC and OprF and involving

the GAP activity of ExoS (Garai et al., 2019). On the other hand,

the ADPRT activity of ExoS promotes bacterial survival in
Frontiers in Cellular and Infection Microbiology 05
epithelial cells by establishing a protecting niche in the plasma

membrane, i.e., a bleb niche where the bacteria replicate, and by

abrogating vacuolar acidification (Angus et al., 2010; Heimer

et al., 2013; Kroken et al., 2018). In neutrophils, ExoS and ExoT

reduce bacterial killing by blocking the phagocytic NADPH-

oxidase generating reactive oxygen species (Vareechon et al.,

2017). However, although P. aeruginosa can invade cells and

survive in the intracellular environment, the balance between

extra and intracellular lifestyle during P. aeruginosa

pathogenesis remains to be determined.
Manipulation of sPLA2-IIA by
P. aeruginosa to eradicate
Staphylococcus aureus

During airway colonization of CF patients, P. aeruginosa not

only uses its T3SS to subvert the host immune response to avoid

its own eradication but also to eliminate S. aureus (Pernet et al.,

2014). CF is an autosomal recessive lethal genetic disease

characterized by altered bacterial clearance in the airways,

leading to recurrent bacterial infections (Strausbaugh and

Davis, 2007). However, the bacterial species varies with patient

age, with S. aureus predominating during childhood and being

progressively replaced by P. aeruginosa (Registre français de la

mucoviscidose – Bilan des données 2020, 2022; Strausbaugh and

Davis, 2007).

The secreted group IIA phospholipase A2 (sPLA2-IIA) is a

potent bactericidal agent involved in the killing of several Gram-

positive bacteria including S. aureus (Nevalainen et al., 2008).

This enzyme is known to selectively kill Gram-positive bacteria

by hydrolyzing its membrane phospholipids, leading to bacterial

death (Foreman-Wykert et al., 1999) with minimal effects on

host cells (Foreman-Wykert et al., 1999). Pernet et al. (2014)

showed that infection of bronchial epithelial cells from CF

patients by P. aeruginosa leads to the induction of sPLA2-IIA

production, which in turn results in the killing of S. aureus from

CF expectorations. However, none of the laboratory or clinical S.

aureus strains tested were able to induce sPLA2-IIA expression

in CF bronchial epithelial cells (Pernet et al., 2014). Induction of

sPLA2-IIA expression by P. aeruginosa was attributed to the

injection of ExoS into epithelial cells, which activates the

Krüppel-like factor 2 (KLF2), a transcription factor known to

exert anti-inflammatory activities in endothelial cells, monocytes

and epithelial cells (O’Grady et al., 2006; Pernet et al., 2014). This

mechanism differs from classical pathways known to modulate

sPLA2-IIA expression in various cell systems (NF-kB, AP-1, and

MAPK) (Menschikowski et al., 2006; Jensen et al., 2009).

Nevertheless, whether ExoS induces sPLA2-IIA expression in

pulmonary cells other than epithelial cells remains to be

examined. This could include alveolar macrophages and

endothelial cells, which were shown to be the primary cellular
frontiersin.org
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source of sPLA2-IIA in lung tissue (Nevalainen et al., 2008;

Hensbergen et al., 2020). Although the mechanism by which

ExoS induces KLF2 expression in bronchial epithelial cells is still

unclear, the ADPRT domain, and not the GAP domain, is

involved in ExoS-induced sPLA2-IIA expression (Pernet et al.,

2014). This study supports the notion that P. aeruginosa

manipulates host cells by inducing their production of sPLA2-

IIA which in turn kills S. aureus and promotes its establishment

in CF airways.

In addition to this subversion mechanism, we have also shown

that P. aeruginosa down-regulates the expression of the bactericidal

antimicrobial peptide (AMP), cathelicidin LL-37, in bronchial

epithelial cells via a mechanism involving the injection of ExoS

into these cells (Abrial et al., 2017). This AMP is known to kill both

laboratory and clinical strains of P. aeruginosa (Geitani et al., 2019).

It was therefore concluded that such a process may allow P.

aeruginosa to evade the host immune response and initiate

infection. Further studies are necessary to identify the signaling

pathways involved in LL-37 repression by ExoS.
Summary

The T3SS is a major player in P. aeruginosa pathogenesis.

Although T3SS is best known for stimulating the host immune

response, this secretion system also allows P. aeruginosa to

manipulate the inflammatory response to avoid its phagocytosis

and to survive intracellularly. T3SS can also manipulate eukaryotic

cells to eliminate other pathogens and become the dominant

pathogen in certain host organs. Thus, T3SS interactions with

host cells contribute to pathogen persistence and could negatively

impact the outcome of infection.

The close interactions between T3SS and the immune system

suggest that T3SS could be an interesting potential therapeutic

target to combat P. aeruginosa, and some studies have proposed
Frontiers in Cellular and Infection Microbiology 06
the use of certain components of T3SS as potential targets for

antibacterial drugs and vaccines against P. aeruginosa infections

(Naito et al., 2018; Moir et al., 2021; Asadi Karam et al., 2022).
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