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Abbreviations 26 

IVIG Intravenous Immunoglobulin 27 

KD Kawasaki Disease 28 

ITP Immune thrombocytopenic purpura  29 

GBS Guillain–Barré syndrome GBS,  30 

CIDP Chronic inflammatory demyelinating polyneuropathy  31 

SLE Systemic lupus erythematosus 32 

CIA Collagen Induced Arthritis 33 

IL Interleukin 34 

PBMC Peripheral blood mononuclear cells 35 

DC Dendritic cells 36 

pDC Plasmacytoid dendritic cells 37 

EAE Experimental Autoimmune Encephalitis 38 

MISC Multisystemic Inflammatory Syndrome in Children 39 

NET Neutrophil extracellular traps  40 

 41 
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Clinical Commentary: JACI in practice 44 

 45 

Abstract: IVIG is the mainstay of therapy for humoral immune deficiencies and numerous inflammatory 46 

disorders. Although the use of IVIG may be supplanted by several targeted therapies to cytokines, the 47 

ability of polyclonal IgG to not only act as an effector molecule but as a regulatory molecule is a clear 48 

example of the polyfunctionality of IVIG. This article will address the mechanism of action of IVIG in 49 

a number of important conditions that are otherwise resistant to treatment. In this commentary we will 50 

highlight mechanistic studies that shed light on the action of IVIG. This will be approached by identifying 51 

effects that are both common and disease specific, targeting actions that have been demonstrated on cells 52 

and processes that represent both innate and adaptive immune responses.  53 

 54 

  55 
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Introduction 56 

IgG plays multiple roles in the immune system. Best known as an effector molecule in host defense, 57 

infusions of polyclonal IgG have been employed as the mainstay of treatment for patients with 58 

immunodeficiency diseases affecting the humoral immune system.  Preparations of human IgG are 59 

available for intravenous (IVIG) or subcutaneous SCIG) administration, which has allowed individuals 60 

with both primary and secondary immune defects to achieve much improved outcomes.1  In addition,  61 

IVIG has been employed as a regulator of a large number of autoimmune and inflammatory conditions 62 

since the 1980’s2. IVIG contains a broad spectrum of antibodies, as it is fractionated from plasma pools 63 

that include several thousand donors or more3. IVIG has been consistently and successfully used for 64 

numerous conditions, including Immune thrombocytopenic purpura (ITP), Kawasaki Disease (KD), 65 

Guillain–Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), systemic lupus 66 

erythematosus, dermatomyositis, and other autoimmune and neurologic disorders4. Indeed, the number 67 

of conditions for which IVIG is used “off label” outnumbers those that have regulatory approval5,6. 68 

However, pressures on the plasma fractionation system leading to shortages of raw materials for IVIG, 69 

particularly during the recent pandemic period, demand that practitioners carefully scrutinize their use 70 

and employ caution both in prescribing, and in over-rationing this essential therapy, to the detriment of 71 

patients with primary antibody immune deficiency7. More thorough mechanistic understanding of the 72 

role of IVIG as an immune regulator can provide better rationale and determine the optimal use for this 73 

increasingly scarce resource.  74 

 75 

IVIG has been used in two distinct dose regimes: low-dose (400-800 mg/kg) replacement therapy in 76 

primary immunodeficient patients and high-dose (1-2 g/kg) in autoimmune and inflammatory diseases.1 77 

As IVIG contains antibodies to diverse pathogens, the main goal of low-dose replacement therapy is to 78 

prevent recurrent infections  in primary immunodeficient patients or in patients with recurrent infections 79 

with secondary immunoglobulin deficiencies. Several lines of evidence also suggest that low-dose IVIG 80 
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therapy can exert positive effects on the cellular immune compartment, depending on underlying 81 

immunodeficiency8-12. In contrast, most autoimmune conditions require high dose therapy. As will be 82 

discussed below, this is likely due to the need for specialized antibody contents that represent a small 83 

percentage of polled IVIG, such as anti-idiotype antibodies, fractions that have specific glycosylation, 84 

and other components2.  85 

 86 

Autoimmune and inflammatory diseases are characterized by perturbed immune tolerance and aberrant 87 

activation of immune and nonimmune cells, inflammation, and tissue damage. Despite the significant 88 

number of novel, biological therapies that target cytokines and small-molecule inhibitors aimed at 89 

signaling pathways, IVIG continues to have an important therapeutic niche in these diseases. The 90 

rationale behind the extensive use of IVIG is due to a combination of relatively low therapeutic 91 

toxicity13,14 with a very broad spectrum of immunoregulatory actions.  92 

 93 

IgG molecules are complex glycoproteins, structured to both interact with target antigens via their 94 

variable regions, and with cells that express Fc receptors via their constant regions (Figure 1). These are 95 

complemented by multiple glycosylation sites which increase the mobility of the molecule and mediate 96 

interaction between IgG and lectin receptors on cells in the immune system. As demonstrated in Figure 97 

1, IVIG has been implicated in multiple critical immune processes that can mitigate inflammatory 98 

responses in autoimmune diseases. These actions encompass both the innate and adaptive immune 99 

systems. In this commentary we will address several of the key mechanisms of action which can provide 100 

direction for the continued use of IVIG and assist in potentially developing therapeutic substitutes for 101 

this critical therapy.     102 

 103 

IVIG modulates structural cells 104 
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Structural cells like epithelial cells, fibroblasts and endothelial cells express a wide range of immune 105 

genes and respond to the inflammatory stimuli. Stevens-Johnson syndrome (SJS), toxic epidermal 106 

necrolysis (TEN), and SJS/TEN overlap syndrome are rare severe skin reactions, in most cases triggered 107 

by medications, with high morbidity and mortality of up to 40% for TEN. IVIG is one of several 108 

therapies, utilized after corticosteroids, which have been shown to improve outcomes, reduce hospital 109 

stays and decrease time for the skin to heal.15,16  The therapeutic benefits of IVIG in TEN is suggested to 110 

be due to inhibition of Fas-mediated keratinocyte death17,18. A different mechanism is seen in 111 

experimental models of bullous pemphigoid, an autoimmune blistering disease, for which IVIG 112 

suppressed inflammatory cytokines like IL-6 from keratinocytes19. In pathologies associated with fibrosis 113 

such as systemic lupus erythematosus and Sjögren’s syndrome, IVIG therapy may reverse fibroblast 114 

proliferation20, and also inhibited early fibrogenic changes in experimental models of Systemic 115 

Sclerosis21. 116 

 117 

Endothelial cells function as a barrier between the bloodstream and tissue. They actively contribute to 118 

inflammatory processes by secretion of cytokines and chemokines, and by regulating the adhesion and 119 

mobility of various immune cells. By activating mitochondrial apoptotic signalling pathways, IVIG 120 

induced apoptosis of TNF-α-stimulated umbilical vein endothelial cells 22. IVIG inhibited TNF-α-121 

induced activation of NF-κB 23 and as a consequence inhibited inflammatory cytokine-mediated 122 

proliferation of endothelial cells, and expression of adhesion molecules, inflammatory cytokines and 123 

chemokines24-26. Similarly, in a murine model of stroke, IVIG suppressed ischemia-induced enhancement 124 

of markers of endothelial cell adhesion and lymphocyte infiltration27. 125 

 126 

IVIG can inhibit inflammatory processes of endothelial cells via specific antibodies in its repertoire that 127 

interact with target molecules. Specifically, anti-IL-1α IgG antibodies in IVIG have been shown to inhibit 128 

IL-1α-mediated activation of endothelium and consequently, reduce neutrophil adhesion28. In a murine 129 
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model of antiphospholipid antibody syndrome, IVIG inhibited antiphospholipid antibodies-induced 130 

endothelial cell activation and thrombosis in vivo29. IVIG also increased HLA-DR expression in 131 

endothelial cells, decreased IL-6 and promoted endothelial cell amplification of Treg cells, all of which 132 

may assist in maintenance of allograft tolerance 30. Thus, by targeting endothelial cells, IVIG not only 133 

reduces endothelial cell function but also mitigates the influx of immune cells to sites of inflammation. 134 

 135 

Innate immunity and IVIG 136 

The innate immune compartment, including soluble factors such as complement molecules and innate 137 

immune cells, plays a key role in the initiation and propagation of pathogenic immune responses through 138 

the secretion of inflammatory mediators like cytokines and chemokines, recruiting effector cells, 139 

mediating T cell differentiation and programming, and by causing tissue damage. Innate immune cells 140 

include antigen presenting cells such as dendritic cells (DC), monocyte/macrophages; NK cells, and 141 

granulocytes like neutrophils, eosinophils, and basophils.  IVIG actively regulates several key 142 

components of the innate immune system. 143 

 144 

IVIG and complement pathways  145 

The complement pathway is composed of a complex network of proteins that interact with each other in 146 

a sequential manner to produce a variety of biological responses. Well known for its crucial role in host 147 

defense against infections, the complement pathway also contributes to a range of diseases. IVIG 148 

contains antibodies that exert complement scavenging effects27,31-33. By interacting with C3b 149 

complement components and preventing the binding of activated C3 to C5 convertase, IVIG inhibited 150 

the deposition of C5b-C9 membrane attack complexes on endomysial capillaries, restoring the capillary 151 

network and reducing microvasculopathy, a characteristic feature of dermatomyositis31. Another report 152 

showed that IVIG diminished complement amplification in dermatomyositis patients by reducing the 153 
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concentration of C3 convertase precursors in blood 32. In both dermatomyositis and KD patients, IVIG 154 

therapy suppressed expression of multiple genes for complement products and their receptors 34,35.  155 

 156 

In a murine model of stroke, IVIG protected against experimental stroke by scavenging C3b and 157 

preventing complement-mediated neuronal cell death27. IVIG also neutralized anaphylatoxins C3a and 158 

C5a, and suppressed their effector functions both in vitro and in vivo animal models 33. Thus, IVIG exerts 159 

diverse actions on the complement system to attenuate inflammation. 160 

 161 

Monocytes/Macrophages and Dendritic cells: 162 

IVIG inhibited activation of monocytes and macrophages both in mice and humans, and induced anti-163 

inflammatory cytokines like IL-1 receptor antagonist (IL-1RA), TGF-β and IL-1036-41. IVIG induced 164 

Fas-mediated apoptosis of innate cells and neutralized various innate inflammatory cytokines by virtue 165 

of high-affinity anti-cytokine IgG antibodies42. IVIG also promoted an expansion of monocytic myeloid-166 

derived suppressor cells43. Interestingly,  induction of IL-10 by IVIG in TLR-4 activated monocytes is 167 

dependent on FcγRI (CD64) and FcγRIIb (CD32B), and is impaired in high affinity genetic FCGRIIA 168 

risk variants (H131R polymorphism, rs1801274)38.  169 

 170 

The effect of IVIG therapy on monocytes may be a biomarker in KD.  Single cell RNA sequencing-based 171 

profiling of PBMCs from acute KD patients revealed that monocytes are the major source of 172 

inflammatory mediators in these patients35. IVIG therapy reduced CD14+ monocytes/macrophages and 173 

CD16+ positive inflammatory monocytes in circulation 35,44-46, as well as expression of calgranulin genes 174 

35,47 and high affinity FcγRI receptors45. Microarray data confirmed that IVIG therapy downregulated 175 

MAPK14, TLR5 and MYD88, the signaling and adapter proteins involved in TLR and IL-1 receptor 176 

signaling48 which affects multiple signal transduction pathways38,49,50. In line with these observations, 177 

analyses of M1(inflammatory macrophages which cause tissue damage) and M2 (regulatory 178 
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macrophages which induce tissue repair) macrophages in KD patients revealed that during acute phases 179 

of the disease, transcripts of both M1 and M2 markers were increased, then declined following IVIG 180 

therapy51. IVIG mediated epigenetic regulation of target genes in macrophages via hypermethylation of 181 

CpG sites at its promoter region51.  182 

 183 

DC are the major professional antigen presenting cells which direct both immune tolerance and primary 184 

and memory T-cell responses. IVIG suppressed expression of DC co-stimulatory molecules CD40, CD80 185 

and CD86, and HLA-DR in vitro 52, leading to a tolerogenic DC phenotype. Adoptive transfer of IVIG-186 

treated CD11c+ DC led to amelioration of ITP in mouse53.  IVIG therapy in CIDP patients reduced levels 187 

of inflammatory CD16+ myeloid DC54, and reduced inflammatory cytokines like IL-12 and TNF52,55, 188 

while enhancing IL-1052. IL-10 was also induced by IVIG in two myeloid DC subsets in KD patients in 189 

the subacute phase of recovery56. IVIG suppressed IFNα production in pDC via two mechanisms: in SLE 190 

patients, IVIG inhibited FcγRIIa and IFNα production induced by SLE immune complexes; additionally 191 

IVIG contained F(ab’)2 residues which induced PGE2 in monocytes, leading to suppression of  TLR-7 or 192 

TLR-9 agonist-induced IFNα production57. 193 

 194 

Initial reports on successful clinical use of Fc fragments of IVIG for the treatment of ITP suggested that 195 

IVIG blocked Fcγ receptors and hence prevented immune complex-mediated activation of innate 196 

immune cells58. Subsequent studies, particularly in experimental animal models, reported that terminal 197 

α2,6-sialic acid-linked residues on the Fc portion of IgG may mediate some of these immunoregulatory 198 

functions of IVIG (Figure 1), suggesting possible enrichment of IgG preparations for sialic acid 199 

containing fractions, and thus more targeted usage. However, the importance of the α2,6-sialic acid 200 

linked residues appears to be disease and possibly model specific. Murine studies suggest that the α2,6-201 

sialic acid portion of IVIG enhances the inhibitory FcγRIIb in effector splenic macrophages 59-62. α2,6-202 

sialic acid linkages may induce IL-33 in marginal-zone macrophages via SIGN-R1 signaling (or in 203 



 10 

humans, DC-SIGN) or CD2359,63,64.  IL-33 activates basophils via the ST2 receptor to induce IL-4 63,64 204 

which in turn enhances FcγRIIb expression on effector splenic macrophages. Several animal models such 205 

as K/BxN-induced arthritis, experimental autoimmune encephalomyelitis (EAE), ITP and experimental 206 

allergic bronchopulmonary aspergillosis (ABPA) have validated the requirement of sialylated Fc region 207 

or sialylated IgG in imparting protective effects 61,63-69. In allergic airways disease, a second sialic acid 208 

receptor, DCIR, was shown to mediate the effects of sialylated IgG in abrogating airway inflammation70. 209 

In contrast, models of autoimmune diseases such as K/BxN serum transfer arthritis, collagen-induced 210 

arthritis (CIA), ITP and EAE reported that neither sialylation of Fc fragments nor FcγRIIb are mandatory 211 

for the anti-inflammatory effects of IVIG 71-74 212 

 213 

In human studies have also not been as conclusive. Flow cytometry and cellular surface plasmon 214 

resonance imaging did not find evidence to support CD23 or DC-SIGN as receptors for human IgG 215 

irrespective of glycosylation properties on F(ab’)2 or Fc75.  Both FcγRIIb or Fc-sialylation were 216 

dispensable for IVIG to inhibit IgG-mediated phagocytosis by human macrophages 76.  Although IL-33 217 

was induced by IVIG in autoimmune patients, it was not produced by DC-SIGN+ innate cells 77. IL-33 218 

did not induce activation of human basophils nor production of IL-478, suggesting that the action of IVIG  219 

modulating human basophils would be via different mechanisms. Sialic acid moieties on IgG were also 220 

not required for activation of the Wnt/β-catenin pathway, autophagy and immune complex-mediated 221 

induction of type I IFN by human pDC57,79,80.  DC-SIGN on human monocyte-derived DC played a key 222 

role in inducing COX-2-mediated PGE2 production and regulatory T cell (Treg) expansion81. But unlike 223 

mice, interaction with DC-SIGN was mediated by F(ab’)2 fragments rather than Fc, suggesting that either 224 

sialic acid molecules on Fab or anti-DC-SIGN IgG antibodies could mediate these effects. More work is 225 

needed to define the role of sialylated Fc fragments in mediating immunoregulatory functions of IVIG.  226 

 227 

Granulocytes: 228 
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Neutrophils:  Neutrophils have a role in inflammatory diseases such as KD through recruiting other 229 

innate immune cells to the site of inflammation, secreting inflammatory mediators and causing tissue 230 

damage. IVIG therapy exerted cytotoxic effects on neutrophils in KD patients82,83 possibly through anti-231 

Fas and anti-Siglec9 IgG via caspase-dependent and caspase-independent pathways, respectively84. IVIG 232 

also reduced neutrophil nitric oxide in KD patients85. In multisystem inflammatory syndrome in children 233 

(MIS-C)86, IVIG targeted IL-1β+ neutrophils via PI3K- and NADPH oxidase-dependent cytotoxicity, and 234 

suppressed their activation82. IVIG inhibited neutrophil extracellular trap (NET) formation in anti-235 

neutrophil cytoplasmic antibody (ANCA)-associated vasculitis in vivo87. This may be due to IVIG 236 

inducing lactoferrin in neutrophils that negatively regulates NET formation87,88.  237 

 238 

The immunoregulatory role of IVIG on neutrophils goes beyond cytotoxicity. In a mouse model of sickle 239 

cell disease, IVIG interfered with recruitment of neutrophils in inflamed venules by increasing rolling 240 

velocity of granulocytes and reducing adhesion to venules89. Using a neutrophil-mediated acute vascular 241 

injury model the effect of IVIG on neutrophil adhesion and activation was dependent on FcγRIII via 242 

recruitment of SHP-190.  243 

 244 

Basophils: IVIG induces the activation marker CD69 as well as IL-4 and other cytokines in IL-3-primed 245 

human basophils via F(ab’)2- and Syk-dependent mechanisms by interacting with surface-bound IgE78. 246 

Induction of CD69 was also observed in IVIG-treated myopathy patients78. IL-4 produced by basophils 247 

might dampen inflammation by enhancing FcγRIIb and antagonizing Th1 and Th17. 248 

 249 

Eosinophils:  IVIG induces ROS-dependent cytotoxic effects on eosinophils in the presence of 250 

inflammatory cytokines both by caspase-dependent and caspase-independent pathways, via anti-Siglec-251 

8 IgG91. IVIG therapy in Churg-Strauss syndrome patients decreased CD69+ activated eosinophils92 252 
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suggesting functional anti-Siglec-8 IgG-mediated cytolysis. Similarly, in moderate to severe childhood 253 

atopic dermatitis patients, IVIG therapy caused a decline in peripheral blood eosinophil counts93. 254 

 255 

Other positive effects of IVIG on eosinophils have also been observed. Eosinophil levels are frequently 256 

significantly higher in KD patients compared to control subjects94. In work by Kuo et al, IVIG therapy 257 

induced IL-5 and elevated eosinophil counts, which were positively correlated with successful IVIG 258 

therapy95. Mechanistically, increased IL-5 (or other eosinophil chemotactic factors) without increased 259 

eosinophil activation factors was correlated with post-IVIG therapy eosinophilia96 and mitigated Th1 260 

inflammation. Th2 cytokines following IVIG therapy were proposed to also help decrease coronary 261 

artery lesions.  262 

 263 

Natural Killer cells:  264 

Classically known for their ability to kill malignant and virus-infected cells by cytotoxic effects, Natural 265 

Killer (NK) cell activation also leads to secretion of pro-inflammatory cytokines. IVIG inhibits direct 266 

cytotoxicity and ADCC function of human NK cells in vitro97 associated with apoptotic cell death in 267 

CD56dim NK cells98. Reduced NK cell function following IVIG therapy was reported in ITP99,  268 

CIDP100,101, and KD, all associated with reduced cytotoxic CD56dim NK cell subsets, while preserving or 269 

increasing regulatory CD56bright NK cells101,102.  270 

 271 

Some women with multiple high-risk pregnancies have elevated preconception peripheral NK cells; trials 272 

of IVIG therapy significantly improved the delivery birthweight of babies born to women with high risk 273 

of low birthweight infants103. A murine model of recurrent pregnancy loss was associated with increased 274 

CD44bright NK cells; IVIG reduced spontaneous abortion rates while suppressing increases in the 275 

CD44bright NK cell subset104. Women with recurrent spontaneous abortion similarly display increased NK 276 

cells but exhibit reduced NK cell cytotoxicity;  IVIG therapy significantly increased the live birth rate105-277 
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108,  as well as increasing expression of inhibitory receptors and decreased activating receptors of NK 278 

cells105. Further detailed investigation on the regulation of NK cells by IVIG is needed. 279 

 280 

Adaptive Immunity: Human studies 281 

 282 

Treg/Th17 axis:  CD4+ T cells are heterogenous and various subsets have been identified. Tregs are 283 

necessary for the control of inflammation, while, aside from controlling infection,  Th1, Th2 and Th17 284 

cells can promote tissue damage, and are associated with autoimmunity109,110. Early studies indicated that 285 

IVIG therapy balances Th1 and Th2 cells111. Experimental studies have further reported that IVIG 286 

suppressed the differentiation, expansion and function of human Th17 cells in an F(ab’)2-dependent 287 

manner by inhibiting STAT-3 phosphorylation112. KD has been a paradigm for understanding the role of 288 

IVIG in the Treg/Th17 axis. While Th17 cells, as well as cytokines IL-17, IL-22, and IL-23, can be 289 

elevated in acute KD, these cytokines were downregulated up to eight weeks following IVIG therapy113. 290 

Analyses of mRNA in a group of KD subjects revealed that there were no significant changes in the 291 

frequency of Th17 cells before and after IVIG therapy; however, Treg-related IL-10 and FoxP3 levels 292 

increased 3 days after IVIG, and plasma IL-17 levels significantly decreased after 3 weeks114. Single-293 

cell RNA sequencing has also demonstrated increased FOXP3 mRNA levels after IVIG treatment35. 294 

Franco et al.115 found that two weeks after IVIG therapy, KD patients without coronary artery lesions 295 

presented an expansion of a Treg population that produced IL-10 and low amounts of IL-4 but no TGF-296 

β. In contrast, patients with arterial inflammation did not exhibit this profile, reinforcing the idea that 297 

Tregs are key for controlling the vascular inflammation and may be associated with KD resolution115. 298 

Additionally, two myeloid DC subsets (CD14+ cDC2 and ILT-4+ CD4+ tmDC) from KD patients 299 

internalized IgG in vitro through FcgR, secreted IL-10 and expanded Fc-specific Tregs56. 300 

 301 
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The effects of IVIG on Treg are not restricted to KD. Women with recurrent pregnancy loss (RPL), ITP 302 

patients successfully treated with IVIG, or ex vivo IVIG-treated healthy donor T cells, showed increased 303 

Tregs as well as enhanced in vitro Treg activation and increased suppressive function35,116-118. In GBS 304 

patients, IVIG reciprocally regulated Th1/Th17 and Tregs119 suggesting that Treg frequency represents 305 

a potential immunological biomarker to predict clinical response to IVIG therapy120. Similarly, patients 306 

with CIDP and dermatomyositis showed increased frequency of Tregs following IVIG102.  In vitro 307 

stimulation with IVIG of PBMC from GBS patients resulted in increased in vitro secretion of IL-10 and 308 

TGF-b1121 and expansion of Tregs121. Reduced frequency of circulating Tregs in myasthenia gravis was 309 

corrected by IVIG and induced expansion of circulating CD4+CD25+FoxP3+ and CD4+CD25+FoxP3+ 310 

CTLA-4+ T cells.  311 

 312 

B cells and humoral antibody responses:   313 

 314 

Potential mechanisms through which IVIG regulates the humoral immune system include the (i) 315 

neutralization of pathogenetic autoantibodies via anti-idiotype antibodies122, (ii) acceleration of the 316 

catabolism of pathogenic autoantibodies by saturation of FcRn123, (iii) interaction with inhibitory Fc 317 

receptors, (iv) the reset of immunoglobulin repertoires124, and (v) inhibition of activation and 318 

proliferation of B-cells by recruiting phosphatases125,126.  319 

 320 

IVIG suppressed B-cell activation and proliferation through agonistic binding to inhibitory receptors 321 

such as CD22 and FcgRIIb, while antagonizing signaling through BCR or TLRs126, although this is not 322 

a consistent finding in human B-cells105. Compared to healthy controls, patients with CIDP display 323 

reduced expression of FcgRIIb on the surface of naïve and memory B-cells; this can be rescued following 324 

treatment with IVIG, resulting in upregulation of FcgRIIb on both B-cell subsets124. Treatment of GBS 325 
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with IVIG promoted rapid expansion of plasmablasts one week after onset of treatment124. In addition, 326 

IVIG may reduce B-cell survival by neutralization of BAFF, as demonstrated in CIDP patients127,128.  327 

 328 

Adaptive Immunity: Murine studies 329 

Using a collagen induced arthritis (CIA) model, it was demonstrated that IVIG affected T-cell and 330 

germinal center responses129, and that IVIG-mediated attenuation of CIA was IL-10 dependent and 331 

associated with increased frequencies of Tregs and decreased Th17 in the spleen, coupled with a decrease 332 

in splenic germinal center B- and T-follicular helper (Tfh) cells. Further, IVIG attenuates murine allergic 333 

airways disease (AAD) by inducing highly suppressive antigen specific Tregs130-132 This entails 334 

modification of DC and is driven at least in part by Fc-sialic acid residues70,130,133. IgG-derived Tregitopes 335 

(T-regulatory epitopes), which can be produced synthetically134, can reproduce the effects of IVIG in 336 

allergic airways disease135. IVIG had a positive effect on proliferation of natural Tregs136 and reciprocally  337 

regulated pathogenic Th1/Th17 in experimental models of autoimmune diseases like EAE by regulating 338 

T-cell trafficking73; this effect was  independent of IgG sialylation74. Other mechanisms including 339 

modulation of prostaglandin E2 have been reported by which IVIG induces and /or expands Tregs70,81,134.  340 

 341 

Anti-idiotype antibodies are naturally occurring antibodies against various molecules including normal 342 

cytokines, receptors and pathogenic autoantibodies;  anti-idiotype antibodies in IVIG may help in 343 

regulating inflammatory responses. From as early as 1984, with the discovery of anti-idiotypic antibodies 344 

in IVIG against idiotypes of anti-VIII autoantibodies, multiple candidate anti-idiotypic antibodies have 345 

surfaced as highly relevant molecules52,122,137-139. For example, anti-anti-citrullinated-protein antibodies 346 

fractionated from commercial IgG (ACPA-sIVIG) was as effective as high-dose IVIG at Treg induction, 347 

reduced anti-collagen and anti-ACPA antibody responses, increased anti-inflammatory cytokine (IL-10 348 

and TGF-β), and decreased pro-inflammatory cytokine (TNFα and IL1β) production in the CIA model 349 

140. Similarly, another study showed that anti-anti- β2GPI specific fraction of IVIG, was highly effective 350 
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at preventing fetal loss and repairing fecundity in mice with experimental antiphospholipid syndrome 351 

(APS)141. These studies provide insight into the need to understand potential bioactive fractions within 352 

normal human immune globulin that can mitigate disease.   353 

 354 

Conclusion 355 

There has been extensive mechanistic study in animal models of disease and observation in IVIG-treated 356 

individuals. In this clinical commentary, we addressed pertinent studies that provide clues to biomarkers 357 

that track the effects of IVIG in autoimmune and inflammatory conditions. IVIG therapy can be best 358 

utilized if there will be clearer guidance for ancillary measures of immunological effectiveness to 359 

complement clinical observations. To summarize over 30 years of use of this therapy in a brief 360 

commentary does not do justice to the extensive amount of work that has been performed. However, the 361 

take home message is that there has been significant animal and human study of IVIG mechanistic 362 

biomarkers that we can use for clinical application. For example, measuring monocyte subsets or NK 363 

cells, as has been demonstrated in KD, in arthritis models and in high-risk pregnancies, may give 364 

practitioners more information regarding the likelihood of treatment success. Moreover, the accumulated 365 

evidence on induction of Tregs by IVIG suggests that there is a role for monitoring Treg in patients for 366 

whom there are questions on the effectiveness of IVIG therapies; this could be a target for validation in 367 

larger cohorts. Considering IVIG as a scare resource argues for development of distinct guidelines not 368 

simply for disease indications, but for baseline evaluation and follow-up of individuals who have IVIG 369 

therapy initiated for autoimmune and inflammatory diseases. This will not only provide a method of 370 

monitoring success or failure of therapy but will allow for accrual of evidence that can advance the care 371 

of those who are treated with human immunoglobulin.  372 

 373 

Further mechanistic study will also improve the chances of understanding various fractions of IVIG that 374 

have specific bioactivity. The study of sialic acid linkages may address a need for a fraction of IgG that 375 
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can target specific conditions, but it also has increased the sophistication of preparation of other antibody 376 

therapies, which require proper glycosylation to have maximum effect. Other modalities such as 377 

Tregitopes or anti-idiotype antibodies such as targeted anti-endothelial antibodies, as examples, can 378 

reduce reliance on the plasma supply. Until such time as a true substitute is found through clinical trials, 379 

IVIG will continue to be a mainstay of therapy for multiple autoimmune conditions.  380 

  381 
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Figure Legend: 801 

Figure 1: The current knowledge on the implication of either F(ab’)2, Fc or both in the mechanisms 802 

of action of IVIG. IgG contain Fab and Fc regions. Several mechanisms of IVIG are mediated by F(ab’)2 803 

fragments. Some of the Fc-mediated functions also implicit the involvement of α2,6-sialic acid linkages 804 

at Asn297. However, mechanisms of IVIG for dendritic cells, various T cell subsets and B lymphocytes 805 

are dependent on both F(ab’)2 and Fc fragments.  VH, heavy chain variable domain; VL, light chain 806 

variable domain; CH, heavy chain constant domain; CL, light chain constant domain. Figure created in 807 

BioRender.com. 808 

809 
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Table 1: Landmark studies on the mechanisms of action of IVIG 832 
 833 
 834 
Innate Immune Compartment References 
  
Blockade of Fcγ receptors  Debré et al. 199358  
Induction of apoptosis of immune cells by 
Fas apoptosis pathway 

Prasad et al. 1998142  

Induction of anti-inflammatory IL-1 
receptor antagonist (IL-1RA) in monocytes 

Ruiz de Souza et al. 199536 

Suppression of an array of immune 
activation genes in monocytes of Kawasaki 
disease 

Abe et al. 200547 
 

Regulation of dendritic cell functions 
 

Bayry et al. 200352,55  
Siragam et al. 200653  
Wiedeman et al. 201357  

Inhibition of NK cytotoxicity Ruiz et al. 1996108  
Cytotoxic effects on neutrophils by anti-
Siglec-9 autoantibodies 

von Gunten et al. 200684  

Inhibition of neutrophil extracellular trap 
(NET)   

Uozumi et al. 2020 87  

Cytotoxic effects on eosinophils by anti-
Siglec-8 autoantibodies 

von Gunten et al. 200791  

IL-3-dependent induction of human 
basophil activation and IL-4 secretion via 
anti-IgE IgG  

Galeotti et al. 2019 78  
 

Fc-Sialylation-dependent anti-
inflammatory mechanisms in Mice 

Kaneko et al. 2006 61  
Anthony et al. 2011 63  
Fiebiger et al. 201564  

Identification of receptors for sialylated Fc 
fragments of IgG   
      
     

Anthony et al. 2008143  
Séïté  et al. 2010126  
Massoud et al 2014 70  
Fiebiger et al. 201564  

Induction of inhibitory ITAM signaling 
through FcγRIII 

Aloulou et al. 2012144  
 

Induction of autophagy in innate immune 
cells  

Das et al. 202087  

Epigenetic regulation of macrophages  Guo et al. 202051  
 835 
Innate Immune Compartment References 
Regulation of Th1/Th2 balance Graphou et al 2003111 
Inhibition of Th17 differentiation, 
expansion and function 

Maddur et al. 2011112 

Enhancement of regulatory T cells 
 

Kessel et al. 2007 118 
Ephrem et al. 2008 136 

Reciprocal regulation of Th17/Treg cells 
 

Othy et al. 2013 73 
Lee et al 2014 129 
Guo et al. 2015114  
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Identification of mechanisms of Treg 
expansion in human and mouse 
 

De Groot et al. 2008 134 
Trinath et al. 2013 81 
Massoud et al 2014 70 
Fiebiger et al. 2015 64 

Suppression of IL-4- and CD40-induced 
B-lymphocyte activation 

Zhuang et al. 2002 125 
 

Inhibition of TLR9 signaling 
by recruiting phosphatases 

Séïté et al. 2011126 
 

 836 
Soluble/Humoral Factors References 
Neutralization of pathogenic autoantibodies 
by anti-idiotype antibodies 

Sultan et al. 1984 122 
 

Neutralization of various cytokines by virtue 
of high-affinity anti-cytokine IgG antibodies 

Svenson et al. 1993 42 
 

Complement scavenging effects Basta and Dalakas. 1994 31 
Basta et al. 2003 33 

 837 
Structural Cells  
Modulation of endothelial functions 
 

Xu et al. 1998 25 
 

Inhibition of toxic epidermal necrolysis by 
blockade of Fas-mediated keratinocyte death 

Viard et al. 199818 
 

Saturation of FcRn 
 

Akilesh et al. 2004 123 
 

Modulation of immunoregulatory or 
structural muscle genes in the patients with 
inflammatory myopathies  

Raju and Dalakas 2005 34 
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