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Abstract. The well-known Martensitic transformation is the main feature
for almost all Shape Memory Alloys (SMA) usage. Meanwhile, the practical
implementation of SMA in devices is not straightforward due to the evolution
of their functional properties in operation. This evolution is mainly due to the
different interactions between the martensite transformation (MT) or detwinning
(DT) and mechanisms such as plasticity. Although these mechanisms are
extensively studied by fine and precise techniques (e.g., high energy X-ray
diffraction and transmission electron microscopy), their impact on a macroscopic
level (usage scale) are not fully clarified. In this work, the effects of some of the
most influential mechanisms in a NiTi alloy are investigated by using electric
resistivity measurements at macroscopic scale. Distinct phase proportioning
approaches are employed to analyze the martensitic transformation kinetic. It
is found that, unlike elastic strains, plastic strains are a key influential factor on
resistivity variations in SMAs. It is also shown that the use of an assumption of
linearity between fraction of stress-induced martensite and strain transformation
can lead to unrealistic interpretations of transformation mechanisms in NiTi wires.
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proportioning, phase transformation kinetics
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1. Introduction

Shape memory alloy wires exhibit impressive behav-
iors, such as superelasticity, pseudoplasticity and shape
memory effect under thermomechanical loading. These
features are triggered by shear lattice distortion, a dif-
fusionless process known as martensitic transformation
that occurs between a parent austenite and a product
martensite crystal structures. Such peculiar character-
istics are very useful in various industry applications.
Among the different options of SMA composition, the
NiTi alloys are the most employed due to their stead-
ier behavior upon cyclic use and their wide range of
operating conditions when compared to others SMAs
[1, 2].

However, one of the main drawbacks for the usage
of SMAs in engineering applications is the evolution of
thermomechanical response upon cycling (also denoted
as functional fatigue). This shortcoming makes it
difficult to accurately design and control SMA-based
devices in industry [3, 4].

Among the major actors of the evolution of the
properties of SMAs, the interactions between phase
transformation and plasticity are the most significant.
These interactions take place at the microstructural
level and impact directly the macroscopic behavior. In
some cases, where the microstructure is more complex
compared to others SMAs, as for NiTi alloys, this
relation can be even more pronounced.

Being the most influential mechanism, the cou-
pling between phase transformation and plasticity can
occur in two different ways: upon repeated loading and
under conditions that exceed the elastic domain. In
the first case, the propagation of austenite/martensite
interfaces results in lattice defects (mainly composed
of slip dislocations (plasticity)) and residual stress-
induced martensite (RSIM) (initiated due to internal
stress accumulation) [5, 6, 7]. Then, the effects of the
interactions are gradually accumulated, leading to a
degradation of the functional properties. In the sec-
ond case, plastic effects are more intense and complex.
In some works [8, 9, 10, 11], the authors investigated
this phenomenon and analyzed the evolution of differ-
ent parameters during high stress experiments. It was
highlighted that for temperatures much higher than
Af , dislocation slip can occur during transformation,
resulting in a considerable amount of unrecoverable de-
formation and changing considerably the kinetics of
MT (martensitic transformation) or DT (detwinning).

Therefore, the understanding of phase transforma-
tion (MT and DT) kinetics and its interactions with
other mechanisms become a key-factor to the design
of SMA-based devices. But despite the large amount
of studies on these mechanisms, very few studied its
impact on a macroscopic scale, which is the scale of
usage.

The understanding of the aforementioned mech-
anisms is also fundamental for modeling aspects.
Presently, several modeling strategies can be employed
to simulate the behavior of SMAs. The models can be
defined at micro, micro-macro and macroscopic scales.
Typically, in micro and micro-macro approaches (ex-
tensively detailed models), the phenomena are treated
at the grain/crystal or lattice particles levels. Its mod-
eling is mostly based on the Ginzburg-Landau the-
ory or on molecular dynamics and the description of
effects such as nucleation or interface motion are of-
ten implemented [12, 13, 14, 15]. On the other hand,
for macroscopic approaches, phenomenological consid-
erations and experimental fitting are employed to de-
termine the interactions between the most influential
mechanisms and its kinetics.

Different investigation methods are employed to
analyze the kinetics and interactions at different scale
levels. The most implemented techniques are the
observations of the microstructure by transmission
electron microscopy (TEM) [5, 6, 9, 16], high-energy
X-ray diffraction [8, 5] or in-situ electric resistivity
[17, 18, 19, 20, 21]. The amount of data provided
by each of these methods varies a lot, as well as the
cost of their usage. While X-ray diffraction and TEM
analysis contribute with precise and fine resolution
images of the microstructure and its rearrangement,
electric resistivity measurements provide the user with
real-time microstructural state response in a more
approachable way.

The purpose of the present work is to analyze
the kinetics of the phase transformation for a NiTi
wire and some of its main interaction mechanisms
at a macroscopic level (usage scale). The experi-
ments are performed by employing electric resistivity
measurement under different thermomechanical load-
ing paths. The impact of elastic and plastic strain in-
teractions during phase transformation is determined
by using two phase proportioning techniques imple-
mented in a macroscopic approach. Is worth mention-
ing that, in most of the similar studies, the effect of
elastic and plastic strain components are not consid-
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ered [19, 22, 23, 24, 25].
Furthermore, the validity of the most employed

relation to the description of the kinetics of MT/DT (a
linear correspondence between the volume fraction of
the stress-induced martensite and the transformation
strain component [26, 27]) is also evaluated through
the comparison of two different microstructural states.

2. Materials and experimental procedures

2.1. Studied materials

In this study, two NiTi wires have been considered.
The first is a 0.51 mm diameter NiTi equiatomic wire
produced by Dynalloyr and the second is a 0.39 mm
diameter wire produced by Fort Wayne Metalsr

(graded as #6).
The Dynalloy wire (DN) is designed to actuation

end and shows TWSME (Two-way shape memory
effect). The most common procedure used to provide
this property to SMAs is the training [17, 28, 29, 30,
31, 32]. The Fort Wayne Metalsr wire (FW) does not
show TWSME, it is also indicated to actuation usage.

First, phase transformation temperatures Ms,
Mf , As, Af , Rs and Rf of both wires were determined
by differential scanning calorimetry (DSC) in order
to set the temperature conditions for testing. These
parameters indicate at which temperature the forward
phase transformation and reverse phase transformation
starts (temperatures with subscripts ”s”) and finishes
(subscripts ”f”) in a stress-free condition. In
some cases, an intermediate phase, the R-phase
(rhombohedral) is also present in the material and it
is denoted by Rs/f . All transformation temperatures
are presented in figure 1. In order to identify the
mechanical and the electrical response of the NiTi
wires, thermomechanical tests were performed with
displacement, force and electric voltage measurements.
In these tests, the two different commercial wires were
used.

2.2. Experimental conditions

The thermomechanical experiments were performed
using a Zwick electromechanical testing machine
(Zwick Z050) equipped with an extensometer to
measure the axial strain ε, with a thermal chamber
(Zwick BW91250) to control the temperature T
surrounding the specimen and with a 500 N load cell
to determine the axial stress σ.

Two different loading paths were used to analyze
the behavior of the wires: isothermal tests were
performed to investigate the superelastic (SE) and
pseudoplastic (PP) behaviors, while anisothermal tests
investigate the shape memory effect.
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Figure 1: DSC test for DN (a) and FW (b) wires.

For isothermal loading, a low strain rate of 10−4 /s
was set, whereas for anisothermal ones, a temperature
rate of ± 4 °C/min was imposed. In both types
of loading, the temperature was measured by a K-
type thermocouple placed on the specimen and a
four-wire lead measurement method was used to feed
the specimen with DC current and to record the
voltage variation between extensometers as shown in
figure 2a. This method consists in applying a low
constant electric current between the ends of the
wire and in measuring the resulting electric voltage
between the pair of extensometer arms. For this, the
specimen needs to be electrically isolated from the
testing machine and from the extensometer to avoid
external noise (see figure 2b). The resulting voltage is
used to calculate the resistivity of the specimen during
testing (see next section).

2.3. Resistivity analysis

By adopting the same procedure as in [33], it is
possible to calculate the voltage variation during
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Figure 2: Experimental setup for voltage variation
measurement.

thermomechanical loading. The voltage variation is
linked to phase transformations and to the geometrical
changing of the specimen during testing. Equation
1 shows that the specimen’s electric resistance is a
function of the electric resistivity of the material,
geometrical characteristics and axial strain when the
volume of the specimen is considered constant.

R =
L2

V0
ρ =

(L0(1 + ε))
2

V0
ρ, (1)

∆R =
2L

V0
ρ∆L+

L2

V0
∆ρ, (2)

where R is the electric resistance, L the length, V the
volume, ρ the total resistivity and ε the strain of the
wire. The subscript ”0” indicates the initial value of
each parameter.

By differentiating this equation and using the rela-
tion equation (3), the connection between the voltage
variation and the two major contributing factors are
demonstrated in equation (5) and equation (6).

∆U = i∆R, (3)

∆U = U0
∆R

R0
= U0

(
∆Rε

R0
+

∆Rρ

R0

)
, (4)

∆Uρ = U0
∆Rρ

R0
= U0(1 + ε)2

∆ρ

ρ0
, (5)

∆Uε = U0
∆Rε

R0
= 2U0(1 + ε)ε, (6)

In this study, only the resistivity related to the phase
transformation electric voltage (∆Uρ) is analyzed and
the final expression for the resistivity measurement is
then presented in equation (7).

ρ = ρ0

(
1 +

∆Uρ

U0(1 + ε)2

)
. (7)

The electric resistivity itself can be written as a
function of the electric resistivity of each pure state
present in the material, volume fraction of the states
and the temperature as
ρ = ρ (ρA, ρMT , ρMσ , ρR, zA, zMT , zMσ , zR, T ) , (8)
where the subscripts A,MT ,Mσ and R are used to
indicate the resistivity (ρi) and volume fraction (zi)
of the austenite, thermally-induced martensite, stress-
induced martensite and R-phase, respectively. In
this work, all the R-phase components will not be
considered in the analysis (ρR and zR = 0), since their
appearance does not occur on the different loading
paths considered here [30, 34, 35].

Therefore, each of the others remaining pure states
(A,MT and Mσ) may be considered a function of
temperature, elastic and plastic strain [17, 33], as

ρi = ρi(T, ε
el, εp), (9)

by differentiating this equation, the following can be
obtained,

∆ρi =
∂ρi
∂T

∆T +
∂ρi
∂εel

∆εel +
∂ρi
∂εp

∆εp. (10)

In this equation, one can observe the possible
contribution of three different mechanisms on the
variation of the resistivity of a pure state.

Finally, by using the serial mixture-law in conjunc-
tion with condition that the sum of all volume fractions
is equal to one, the resistivity relationship is given by:

ρ = (1− zMT − zMσ )ρA + zMT ρMT + zMσρMσ . (11)

In the next sections, two different techniques of
phase proportioning based on resistivity measurements
are presented. These approaches will be essential to
clarify the influence of the strain and temperature
components on the resistivity response.

2.4. Two-state phase proportioning post processing

In order to study the MT kinetics and the volume frac-
tion of the different states during thermomechanical
loading, a two-state phase proportioning method based
on the electric resistivity variation is implemented [18].
For this approach, only the thermomechanical loading
paths that one single state/phase transformation fol-
lows can be analyzed (A ←→ Mσ or MT −→ Mσ). In
this case, the total resistivity of the material is calcu-
lated by the following relation:

ρ(T ) = (1− zMσ )ρl(T ) + zMσρMσ (T ), (12)

where l represents MT or A state. The resistivity
of each pure phase/state (ρi, with i = Mσ,MT or
A) is considered to be temperature-dependent only
(the change in resistivity due to elastic and plastic
deformations is not accounted for):

ρi(T ) = µiT + ρ0i , (13)
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where µi is the slope of electric resistivity response,
corresponding to ∂ρi/∂T and the strain components
are zero (∂ρi/∂εel and ∂ρi/∂ε

p = 0) and ρ0i is the
reference electric resistivity value at 0 °C.

By rearranging the elements in equation (12), the
volume fraction of each state (A + Mσ or MT + Mσ)
is then given by:

zMσ =
ρ(T )− ρl(T )

ρMσ (T )− ρl(T )
, (14)

zl = 1− zMσ . (15)

Thus, by measuring the temperature and the
resistivity during loading and by using the resistivity
of pure phases/states, it is possible to determine the
volume fraction of each state/phase during certain
loading paths.

2.5. Three-state phase proportioning post processing

For more complex loading paths, in which three
different states can be present, another approach is
proposed. The adopted method is the same as the
one developed by [17], for a CuAlBe SMA. In this post
processing, the effective elastic modulus (E) and the
resistivity (ρ) are dependent on the volume fraction
of each state. The effect of the plastic strain is not
considered, then the total strain can be decomposed
into three components (elastic, transformation and
thermal), as shown in equation (16).

ε = εel + εtr + εth, (16)

The strain components are calculated as,

εel =
σ

E(zMσ , zMT , zA)
, (17)

εth = α(T − T0), (18)

where σ, is the nominal stress, α is the thermal ex-
pansion coefficient and T0 is the reference temperature.
To evaluate the transformation strain, a supplementary
equation is necessary. The relation between the volume
fraction of stress-induced martensite and the transfor-
mation strain (equation (19)), proposed by [26, 36, 37]
is adopted. This relation assumes that the evolution
of stress-induced martensite volume fraction is propor-
tional to the transformation strain, as shown in the
experiment of [18], performed on a CuAlBe alloy.

zMσ =
εtr

γ
, (19)

The parameter γ corresponds to the maximum
transformation strain.

In this approach, the resistivity evolution of each
pure state is also considered as temperature-dependent
only (equation (13)), as in the previous post processing
technique.

Finally, the transformation strain and the volume
fraction of each of the three states are estimated by
using equations (20) to (25):

σ = (a+ bεtr)(ε− εel − εth), (20)

where σ corresponds to mechanical stress and a and b
terms to:

a =

(
1− ρ− ρA

ρMT − ρA

)
EA +

(
ρ− ρA

ρMT − ρA

)
EM , (21)

b =

(
1− ρMσ − ρA

ρMT − ρA

)
EM − EA

γ
, (22)

where EM and EA are the elastic moduli of
the martensite (considered the same for thermally-
induced and stress-induced martensite) and austenite,
respectively. The transformation strain is given by:

εtr =

√
(a− b(ε− εth)2 − 4b(σ − a(ε− εth))

2b

− (a− (b(ε− εth))

2b
,

(23)

and the volume fraction of each state is calculated as:

zMT =
ρ− ρA

ρMT − ρA
− εtr

γ

ρMσ − ρA
ρMT − ρA

, (24)

zA = 1− zMT − zMσ , (25)

3. Results and discussion

3.1. Identification of material parameters

Given the experimental procedure, the aim of this
section is to identify the material parameter values
needed for the phase proportioning. First, in
order to collect the standard characteristics of pure
phases, different tests were realized and the identified
parameters values are presented in tables 1 and 2.

The elastic moduli and the γ parameter were ex-
tracted from superelastic tests at different tempera-
tures and in different phases (figures 3a and 4a). Ad-
ditional material parameters and the phase diagrams
are presented in figures 5 and 6. Then, the electric
properties µ and ρ0 were extracted from shape memory
effects tests at different stress levels (figures 7 and 8)
and by considering that the evolution of the resistivity
of a pure phase is a linear function of the temperature
as in equation (13).

The resistivity diagram of each wire are shown
in figures 7 and 8. The curves represent the
evolution of electric resistivity at different levels
of loading. Each linear stage, corresponds to an
almost pure thermally-induced martensite, stress-
induced martensite or austenite. The non-linear
stages (transient state) reveal the phase transformation
process.
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As mentioned in the previous section, the R-phase
can also be present in the wires’ microstructure. The
apparition of the R-phase is very prominent in the
resistivity diagram due to its higher electric resistivity
value and thus easy to identify in certain conditions,
as indicated by the arrows in figures 7 and 8. For
the studied wires, the A ←→ R and the R −→
Mσ/MT phase transformations can take place. The
conditions in which they occur are estimated by using
the resistivity measurements and the temperature-
stress slope (CR) as 20MPa/°C, based on the literature
([22, 34, 38, 39]), and they are indicated by a darker
zone on the phase diagrams (figures 5 and 6).

It is worth noting that the curves signaled as ”Th.
tr” denote Thermally Treated. In fact, due to the
accumulation of internal stress in training process, the
trained wires (in this case, the DN) do not show a
thermally-induced pure state in any thermomechanical
condition. So, in order to achieve this pure state
for the phase proportioning calculation, a mild and
short tempering process with maximum temperature
of 250 °C (value far from the melting point or aging
treatment temperatures [28]) was performed.

Table 1: DN wire properties.

Phase E γ µ x10−9 ρ0 x10−7

state (GPa) (%) (Ω.m/K) (Ω.m)

Mσ

44.6
6.5

1.34 7.07

MT 1.34 7.69

A 80.9 0.34 6.88

Table 2: FW wire properties.

Phase E γ µ x10−9 ρ0 x10−7

state (GPa) (%) (Ω.m/K) (Ω.m)

Mσ

45.2
6.7

1.39 8.66

MT 1.08 7.35

A 82.9 0.29 7.34

In figure 7, one can note that the resistivity evolution
for the pure austenite phase is the same for the Th.
tr. and as received DN wire. In addition, the stress
vs. strain response (figure 9) shows the typical slight
difference between trained and as built SMAs [30].
Thus, in this case, the employed procedure can be seen
as a thermal flash, used to eliminate the residual
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Figure 3: SE/PP (a) and SME (b) tests for DN wires.
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martensite from the material, that does not change
considerably the microstructural state [40, 41].

Once the thermomechanical and electrical properties
are acquired, the analysis of the MT/DT kinetics and
the influence of the plasticity on resistivity measures
can be performed. In the next sections, phase
proportioning methods will be used in order to observe
each of those phenomena in the material.

3.2. Results of two-state phase proportioning

After post-processing of acquired test data, the
obtained results are plotted in two different figures for
each loading.

First, a pseudoplastic loading was performed
(figures 10 to 13). By observing only the stress
vs. strain response, the behavior seems to agree
with the standard SMA-response based on literature
experimental curves [1, 2, 29]

Typically, the end of SP (strain plateau) is
associated with the end of phase transformation or
reorientation. Meanwhile, when the resistivity is
observed, it shows an increase before and after the SP
section. The same pattern is observed by analyzing the
zMσ evolution in figures 11b and 13b.

This behavior indicates that after the phase
transformation/reorientation takes place (SP section),
other microstructural motions occur. Similar analyses
performed in NiTi by [42, 43] are in agreement with
these observations and show that this microstructural
rearrangement corresponds to a twinning mode in
martensite of (001) type (also called compound twin)
during pseudoplastic loading. Besides, in figure 13b,
the relation between zMσ and εtr is almost linear until
the end of the SP and then, a slope lower than 1/γ is
achieved. This highlights the fact that after the SP, a
different kinetics evolution takes place due to the multi-
stage character of the martensite reorientation. This
change of kinetics can be associated with an intrinsic
NiTi characteristic and plastic effects, originated from
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Figure 10: Stress\ resistivity vs. strain (a) and
resistivity vs. temperature (b) for an isothermal
loading at -40 °C - DN wire.
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Figure 11: Stress\ volume fraction vs. strain (a) and
volume fraction vs. transf. strain (b) for an isothermal
loading at -40 °C - DN wire.
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Figure 12: Stress\ resistivity vs. strain (a) and
resistivity vs. temperature (b) for an isothermal
loading at -40 °C - FW wire.
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Figure 13: Stress\ volume fraction vs. strain (a) and
volume fraction vs. transf. strain (b) for an isothermal
loading at -40 °C - FW wire.
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high-stress levels or training processes. Independently
from its origin, a non negligible difference between the
supposed linear evolution between zMσ and εtr and
the kinetic of MT/DT of this material is observed.
This discrepancy can have an unfavorable effect on
modeling and design aspects since, by default, this
linear relationship is employed in NiTi SMAs.

In the next sections, the impact of this assumption
will be evaluated and then the influence of the elastic
and plastic strain on the resistivity measurements will
also be clarified.

3.3. Results of three-state phase proportioning

As it was already described before, a relation between
zMσ and εtr is required for the three-state phase
proportioning processing. By considering the linear
relation this approach in NiTi wires, figures 14 and 15
shows the composition of different states during an
isothermal loading at 100 °C. When analyzing the
evolution of each volume fraction during the loading
in figure 15a, the result shows an unreal composition.

First, at 100 °C no thermally-induced martensite
should be present in the wire, as it can be checked
in the phase diagram (figure 5) and yet, an amount
of ±15% is reached at 6 % of load. Moreover,
negative values for zMT are indicated. In addition,
negative values for zMT are obtained, where they are
inconsistent with a real condition.

Tests using the same method were carried out in
FW wires and at other thermomechanical conditions
and similar results were obtained. It can therefore be
deduced that equation (19) shows some limitations for
this type of alloy and that its adoption may lead to
erroneous results when designing NiTi based structures

3.4. Elasticity influence on electric resistivity

Once the limits of the MT/DT and the phase
proportioning methods are evaluated, the next step is
to determine the influence of the elastic and plastic
strain on the resistivity measurements. First, an
isothermal loading-unloading path (0 MPa→ 400 MPa
→ 0 MPa → start of MT) is proposed to analyze
elasticity effect on electric resistivity. The results of
loading in both wires are presented in figures 16 to 19.

For stress values below 400 MPa, the wires behave
elastically and in this zone the resistivity does not
evolve considerably. Then, for higher stress values the
resistivity starts to rise, indicating the beginning of MT
or apparition of Mσ, before the SP zone, as already
mentioned. Thus, one can consider ∂ρA/∂ε

el = 0.
Then, to evaluate the relations ∂ρMT /∂εel and

∂ρMσ/∂εel, some tests were performed, but no con-
clusive results on the irrelevancy of elastic deformation
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Figure 14: Stress\ resistivity vs. strain (a) and
resistivity vs. temperature (b) for an isothermal
loading at 100 °C - DN wire.
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loading at 100 °C - DN wire.
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Figure 16: Stress\ resistivity vs. strain (a) and
resistivity vs. temperature (b) for an isothermal
loading at 100 °C - DN wire.
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Figure 17: Stress\ resistivity vs. strain (a) and
resistivity vs. temperature (b) for an isothermal
loading at 100 °C - DN wire.

on the variation of resistivity in the MT or Mσ state
were obtained. In fact, since the MT/DT starts and
ends in the surroundings of the SP, a pure elastic
state will only appear in a very narrow window at low
temperatures. So, in these conditions, it is not possible
to differentiate whether or not there is an influence of
the elasticity. Based on the results for austenite phase
and on other observations from the literature ([33]), the
resistivity of all phases will be considered independent
from the elastic strain.

3.5. Plasticity influence on electric resistivity

To investigate the impact of plastic strains, observa-
tions during pseudoplastic and superelastic loading for
both wires were performed.

First, when comparing figure 10 and figure 12, a
considerable difference on resistivity evolution can be
observed, especially in the zone with higher strain
values. At this state, the wire is subjected to
higher stress condition, triggering the apparition of
dislocation slips [5, 8, 44].

Furthermore, for the FW wire, the resistivity
increases very little after the end of the SP while for
the DN one, the resistivity decreases. This difference
between the two responses can be associated with the
interaction between plasticity and detwinning. In this
case, as the DN wire was subjected to training, it has
more accumulated dislocations than the FW one and
when the loading evolves to a higher stress zone, the
impact of plasticity is more pronounced.

By examining the impact of plasticity in figure 10a,
one can observe that zMσ rises until 7 % of deformation,
and then it starts decreasing. This reduction would
take place only in case of reverse phase transformation,
but this condition is possible considering the loading
history. Then, it can be inferred that plasticity
mechanisms are responsible for this apparent reduction
of the stress-induced martensite volume fraction, so
the resistivity of the stress-induced martensite depends
on the interaction between plasticity and martensite
transformation.

In order to highlight the effect of plasticity in
resistivity measurements, two last tests were performed
in a severe stress condition for the DN wire. Figures 20
and 21 show the result for an imposed 14 % strain
on a DN wire. It can be noted that the maximum
stress achieved was about 1400MPa, a value probably
beyond the elastic limit of the material. Then, for
the stress vs. strain curve, the evolution of zMσ

corresponds to the occurrence of plasticity mechanisms
in two different moments. First, during the effective
phase transformation, dislocation slips are probably
triggered by transformation-induced plasticity (TRIP)
mechanisms [8, 31, 45, 46], which is linked to the
change in the slope of the zMσ evolution. Second, when
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Figure 18: Stress\ resistivity vs. strain (a) and
resistivity vs. temperature (b) for an isothermal
loading at 100 °C - FW wire.
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Figure 19: Stress\ resistivity vs. strain (a) and
resistivity vs. temperature (b) for an isothermal
loading at 100 °C - FW wire.

the phase transformation is finished, the twinning-
induced plasticity (TWIP) becomes the major actor,
which is responsible for the abrupt change of zMσ/εtr

relation and for the zMσ value beyond 1 [10, 11, 47].
Furthermore, the resistivity curve shows again an

incompatible evolution with the presented loading in
figure 21, increasing over the maximum possible value
of (resistivity for the full stress-induced martensite). In
this case, the main cause for the exceedance of the zMσ

and ρMσ values is the plasticity, the only additional
effect introduced in the loading, when compared to the
same loading performed in figure 14. The same pattern
can also be seen in the thermomechanical loading in
figures 22 and 23. For this loading the plasticity
mechanisms are more pronounced during the reverse
transformation.

Two other relations remain to be defined (∂ρMT /∂εp

and ∂ρA/∂ε
p). However, they are harder to be

highlighted by conventional testing conditions. The
occurrence of thermally-induced martensite associated
with plastic strain is possible but unlikely, because
the twinned martensite will detwin and transform
into stress-induced martensite before reaching higher
stress values (when the plasticity would appear). Still,
a comparison between two different microstructural
states (with and without dislocations) could be
performed in order to indirectly evaluate the impact
of the εp, but this mentioned experiment was not
performed in this work, thus, the first mentioned
relation still remains to be evaluated. For the
second relation, the possible impact of the plasticity
on the austenite phase will be only possible under
severe temperature condition, approaching to unusable
operating conditions for superelastic and SME SMAs.
So, it is as well considered non-influent in this analysis.

Finally, one can say that one of the responsible
factors for the difference between the supposed linear
evolution of zMσ/εtr and the found results for the NiTi
alloy is the plasticity.

4. Conclusion

In order to study the kinetics of the phase transforma-
tion as well as the impact of plasticity on the thermo-
mechanical behavior of NiTi wires, phase proportion-
ing methods based on electric resistivity measurements
were employed.

At first, the performed experiments demonstrated
that for this material, a multi-stage reorientation of the
martensite can take place during pseudoelastic loading.
This suggests that, contrary to the employed linear
relation that supposed a single microstructure motion,
a different kinetics evolution can occur.

Then, it is evidenced that the plasticity affects the
relation between martensite volume fraction and
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Figure 20: Stress\ resistivity vs. strain (a) and
resistivity vs. temperature (b) for an isothermal
loading at 100 °C - DN wire.
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Figure 21: Stress\ volume fraction vs. strain (a) and
volume fraction vs. transf. strain (b) for an isothermal
loading at 100 °C - DN wire.
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Figure 22: Strain\ resistivity vs. temperature (a) and
resistivity vs. temperature (b) for an anisothermal
loading at 600 MPa - DN wire.
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Figure 23: Strain\ volume fraction vs. temperature
(a) and volume fraction vs. transf. strain (b) for an
anisothermal loading at 600 MPa - DN wire.
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transformation strain. Meanwhile, results show that
plastic strain and its accumulation via training effects
change considerably the supposed linear relation.
Thus, tasks involving this assumption can provide
erroneous results as the ones presented with the three-
phase proportioning post processing.

In addition, the influence of elasticity and plasticity
on resistivity measurements was evaluated. It was
revealed that there is no influence on the resistivity of
pure phases caused by elastic deformation. However,
it was shown that the plastic deformation has a
significant impact on the resistivity variations. These
results highlight the effect of plasticity on the MT/DT
kinetics.

In summary, it can be concluded that the plasticity
plays an import role in the kinetics of the MT
and DT on NiTi wires, and it can be observed by
macroscopic resistivity measurements. Then, a new
relation describing this phenomenon must be establish.
However, the quantification of this influence was not
performed. Further studies on the quantification of the
impact of plastic strain on the resistivity is required.
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