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Key Points: 16 

• The high frequency limit (HFL) of Saturn Kilometric Radiation (SKR) is obtained during the 17 
13-year Cassini mission. 18 
• The average HFL is found to be above and below 600 kHz in the northern and southern 19 
hemisphere, respectively.  20 
• A rotational modulation of HFL is verified statistically and by simulation, which excludes a 21 
magnetic field anomaly. 22 

Plain Language Summary 23 

Auroral radio emission from Saturn, namely the Saturn Kilometric Radiation (SKR), is generated 24 
along high latitude magnetic field lines via the resonance between energetic electrons and a wave’s 25 
electric field. The first work on the high frequency limit (HFL) of SKR dates back to 1991. Using data 26 
from the Voyager Saturn fly-by, scientists found an asymmetry when the HFL is organized by the 27 
longitude of the Sun. Based on this asymmetry, a hypothesis about the existence of a magnetic anomaly 28 
in Saturn's magnetic field was proposed, which was a novel and breakthrough discovery at that time, but 29 
the later Cassini measurements did not confirm this magnetic anomaly. Cassini’s expedition around 30 
Saturn with 13-year continuous measurements provided an opportunity to re-study the HFL of SKR. The 31 
long-term statistics allow us to exclude the magnetic anomaly hypothesis and instead attribute the 32 
asymmetry to a modulation which is introduced by an ionospheric/magnetospheric current system at 33 
Saturn. A simulation suggests that both temporal and spatial effects play a role to a certain degree. The 34 
average frequency and visibility of the HFL are also discussed. These new results provide new insights 35 
into the studies of cyclotron maser-related radio emissions. 36 
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Abstract 37 

The high frequency limit (HFL) of the Saturnian Kilometric Radiation (SKR) can probe the deepest 38 
SKR sources, closest to Saturn’s ionosphere. In this study, we determined and analyzed the SKR HFL 39 
throughout the entire Cassini Saturn orbital tour. The maximum frequency of the northern SKR, whose 40 
distribution peaks at ~ 625 kHz, is shifted by +100 to +200 kHz from the distribution of southern SKR 41 
HFL, consistent with the magnetic field offset towards the northern hemisphere at Saturn. The uniformly 42 
observed SKR HFL in the vicinity of Saturn suggests a broad extent and beaming of the SKR source. 43 
When the observer is confined to certain locations, the rotational modulation of the SKR HFL is clearly 44 
observed. This modulation feature of the SKR HFL is statistically established and analyzed in this study. 45 
The modulation of HFL is best observed at mid-latitudes between 10° and 40° and at almost all local 46 
times. We perform a simulation that suggests that the modulation of HFL requires the superposition of a 47 
“clock” like and a rotating source behaviour. By comparing the derived HFL modulation using different 48 
longitudes with variable and fixed rotation periods, we can exclude the existence of a magnetic anomaly 49 
that was proposed in a previous study based on the Voyager data. The calculation of the least-square 50 
periodogram confirms that the modulation observed in HFL is similar to the ones previously detected at 51 
Saturn. 52 

1. Introduction 53 

Saturn‘s Kilometric Radiation (SKR) was discovered in the 1980s during the Voyager 1 Saturn 54 
approach (Kaiser et al., 1980) and was later studied in depth by the Cassini mission (Lamy et al., 2008a, 55 
2008b; Cecconi et al., 2009; Fischer et al., 2009, see the review of Lamy, 2017 and refs therein). SKR is 56 
generated along auroral magnetic field lines above Saturn's polar regions via the cyclotron maser 57 
instability (CMI) (Wu & Lee. 1979; Zarka, 1998; Lamy et al., 2010, 2011, 2018; Mutel et al., 2008; 58 
Menietti et al., 2011, Treumann, 2006). It is mainly emitted in the free space Right-Hand Extraordinary 59 
(R-X) mode, which is highly circularly polarized with the wave frequency near the local electron 60 
cyclotron frequency (𝑓௖௘( 𝐻𝑧)~ = 28 ∗ 𝐵 (𝑛𝑇) with B the local magnetic field), typically ranging from 61 
a few kilohertz (kHz) to 1 megahertz (MHz). Therefore, higher frequency SKR is generated in the region 62 
with a stronger magnetic field, i.e., at lower altitudes above the polar regions, if compared to the lower 63 
frequency SKR sources. SKR sources were first identified by Voyager to reside on the dawnside sector 64 
of the magnetosphere (Kaiser et al. 1982). The later direction-finding analyses of Cassini measurements 65 
revealed that SKR sources lie at all longitudes along flux tubes mapping to the main UV auroral oval, 66 
while being brighter at dawn (Farrell et al., 2005, Cecconi et al., 2009, Lamy et al., 2009, 2011).  67 

The CMI-produced emissions are beamed at large angles along the surface of a thin (a few degrees 68 
wide) hollow cone whose axis is aligned with the local magnetic field in the source (Mutel et al., 2010). 69 
This beaming pattern is responsible for a highly anisotropic emission with strong visibility effects, so the 70 
observed SKR time-frequency features highly depend on the observers’ location (Lamy et al., 2008b, 71 
2013, Cecconi et al., 2009). Because the magnetic field directions in the two hemispheres are opposite, 72 
the R-X mode emissions with right-hand polarization with respect to the magnetic field direction would 73 
show two different circular polarization senses in the data-derived Stokes parameter related to either 74 
north or south. The SKR observed at high latitudes exhibits circular polarization, either >0 (in the south) 75 
or <0 (in the north), whereas a superposition of the north and south SKR at the low latitude region 76 
produces a very complicated polarization pattern. 77 

SKR activity has been studied and linked to magnetospheric dynamics (Kurth et al., 2005; Jackman 78 
et al., 2010; Lamy et al., 2013). The SKR radiated power is strongly correlated with the solar wind 79 
dynamic pressure fluctuations (Desch, 1982; Desch & Rucker, 1983; Jackman et al., 2010; Taubenschuss 80 
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et al., 2006; Zarka et al., 2007). The Low-Frequency Extensions (LFE) of SKR have been used as a proxy 81 
for reconnection events and compression-induced hot plasma injections (Bunce et al., 2005; Jackman & 82 
Arridge, 2011; Jackman et al., 2009, 2010; Reed et al., 2018). The high frequency limit (HFL) of SKR 83 
was also found to be linked mainly to the solar wind dynamics near Saturn, but also to the rotation of the 84 
planet (Saturn’s longitude) (Galopeau, Ortega-Molina, and Zarka, 1991; Galopeau and Zarka, 1992). 85 
While SKR maximal frequencies were measured as high as 1200 kHz using Voyager observations 86 
(Kaiser et al., 1980), they remained generally below 1000 kHz when measured from Cassini, with a 87 
50-100 kHz offset of the northern SKR relative to the southern SKR (Lamy et al., 2008a). Long-term 88 
variations of the SKR northern and southern maximal frequencies were tested and no relation between 89 
the maximal frequency and the solar wind or solar EUV flux was found (Kimura et al., 2013). 90 

The SKR HFL was studied earlier using the data obtained during the Voyager 1&2 Saturn fly-bys. A 91 
sinusoidal variation was observed when the HFL was organized as a function of the sub-solar longitude 92 
(Galopeau, Ortega-Molina, and Zarka, 1991; Galopeau and Zarka, 1992). This asymmetry was 93 
tentatively explained by non-axisymmetric high-order terms in the spherical harmonics decomposition of 94 
Saturn’s magnetic field, mainly resulting in a magnetic anomaly in Saturn’s northern hemisphere. Indeed, 95 
for a source fixed in local time (LT) as was thought to be the case for the SKR in the 1990s (Warwick et 96 
al., 1981), a rotating magnetic anomaly would cause a periodic variation of fce in the source while the 97 
plasma frequency (fpe) remains constant to first order, leading to a periodic variation of the SKR HFL 98 
with the sub-solar longitude (i.e., with the rotation of the planet), as explained in Fig. 4 of Galopeau, 99 
Ortega-Molina, and Zarka (1991). During the Cassini era, the subsequent in-situ magnetic field 100 
measurements obtained above the northern auroral region did not confirm the presence of such an 101 
anomaly (Cao et al., 2011, 2020; Dougherty et al., 2018). The importance of the SKR HFL comes from 102 
the fact that it reflects the characteristics of the SKR source regions closest to Saturn, hence probing the 103 
high-order terms of the magnetic field and the upper ionosphere. Long-term measurements recorded 104 
during the Cassini tour offer the unique possibility to explore further the characteristics of the SKR HFL 105 
well beyond the brief Voyager measurements (3-4 months for each fly-by). This work analyzes the SKR 106 
HFL obtained from the Cassini radio data during its 13 years in orbit around Saturn. The data and the 107 
algorithm developed to find the HFL are described in Section 2. We discuss the observed characteristics 108 
of HFL (N/S asymmetry, global distribution, and longitudinal modulation) in Sections 3-6. We compare 109 
them to simulations of the SKR visibility in Section 7 and we summarize our results in Section 8.  110 

2. Data and Method 111 

The High Frequency Receiver (HFR) of the Radio and Plasma Wave Science (RPWS) instrument 112 
onboard Cassini measured the radio wave electric field from 3.5 kHz to 16.125 MHz (Gurnett et al., 113 
2004). SKR usually covers a broad frequency range, from a few kHz to around one MHz (Kaiser et al., 114 
1980; Lamy et al., 2008a; Kimura et al., 2013). In this work, we analyze the electric field spectrograms 115 
over frequencies ranging from 200 kHz to 1300 kHz and from 2004 day 001 (day of year) to 2017 day 116 
258. The wave polarization data (Stokes V, i.e., circular polarization degree, Kraus, 1986) used in this 117 
study are obtained from the goniopolarimetric inversion of auto- and cross-correlations of RPWS 118 
antenna signals (Cecconi & Zarka, 2005) under the assumptions that either： 119 

(1) The emissions originate from the centre of Saturn; this inversion produces the so-called n3d level 120 
data (Cecconi, Lamy, and Zarka, 2017a), or 121 

(2) The emissions are purely circularly polarized, with linear polarization parameters Q=U=0; this 122 
inversion produces the n3e level data (Cecconi, Lamy, and Zarka, 2017b). Under this assumption, the 123 
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derived circular polarization can also be less than 1 (|V|<1), because of a lower degree of total 124 
polarization. 125 

To find the SKR HFL, we first eliminate the unwanted data (e.g., instrumental interference, 126 
harmonics of SKR (Wu et al., 2022a)) in the wave intensity and polarization spectrograms. For that 127 
purpose, we apply the selection criteria below:  128 

(1) Data points with circular polarization (Stokes V in both n3e and n3d data) value abs(Vn3e)<0.3 129 
and abs(Vn3d)<0.3 are deleted from the intensity and circular polarization spectrograms. 130 

(2) Data points with intensity<10 dB are deleted (in n3e and n3d data) from the intensity and circular 131 
polarization spectrograms. 132 

Secondly, to mitigate the contamination from low-frequency O mode emissions, e.g., Saturn 133 
narrowband emissions (mostly below 70 kHz and mainly near 5 and 20 kHz, Ye et al., 2009; Wu et al., 134 
2021), Saturn Anomalous Myriametric radiation (below 30 kHz, Wu et al., 2022b), and the O mode SKR 135 
(below 100 kHz, Lamy et al., 2008a), which are superimposed and mixed with the SKR emissions from 136 
time to time, we eliminate the data with frequencies below 200 kHz. Because the O mode SKR emissions 137 
are only marginally observed with weaker intensity and the occurrence is relatively rare (Lamy et al., 138 
2008a), the possible high frequency O mode SKR emissions are simply ignored.  139 

A 2-D median filter (with 3*3 channels in the time-frequency plane) is then applied to the 140 
processed intensity and circular polarization spectrograms to eliminate isolated emission pixels. Finally, 141 
we find the maximum frequency of both the right-hand and left-hand polarized SKR waves at each time 142 
step. The data point identified as the maximum frequency should satisfy that: (1) intensity > 20 dB, (2) 143 
circular polarization (abs (V)) > 0.3, (3) intensities are continuous below the maximum frequency for at 144 
least 4 adjacent frequency channels. 145 

 146 
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the same interval as Panels (a)-(b). Panels (e)-(f) zoom into the black box of Panels (c)-(d) over a 151 
duration of 34 hours. Panels (g)-(h) zoom into the black box of Panels (e)-(f) over a duration of 3 hours. 152 
The superimposed pink and black lines mark the identified HFL of the SKR emissions based on the 153 
polarization sense, with pink for right-hand and black for left-hand. 154 

The example in Figure 1 illustrates the performance efficiency of the selection criteria in finding 155 
the SKR HFL. The unprocessed wave electric field intensity and circular polarization spectrograms from 156 
2012-07-21 to 2012-07-26 are shown in Figure 1 Panels (a)-(b). The processed data and the zoom-in 157 
results are given in Panels (c)-(d) and Panels (e)-(h). The overlapped pink and black lines mark the SKR 158 
HFL found for the right-hand and left-hand polarized waves, respectively. The obtained HFL lines are 159 
well aligned on the top of the SKR emission, suggesting that the algorithm is good enough to capture the 160 
temporal variations of the SKR HFL. At low latitudes, the north and south SKR are overlaid together as 161 
shown in Figure 1 Panels (f) and (h). The algorithm can pick up both the north and south SKR at each 162 
time step according to the polarization sense, e.g., at 07-24 19:00 in Panel (h). Because at low latitudes 163 
the lower HFLs from one hemisphere may be polluted by the superposition effect of emissions from the 164 
other hemisphere, only the higher HFL is kept at each time step. Finally, 9147518 (~4.64 years) and 165 
6957390 (~3.53 years) HFL values were obtained for the north and south, respectively. The time 166 
resolution of the RPWS data is typically 16s and depends on the operation mode of the receiver. 167 

3. The North-South Asymmetry of the SKR HFL 168 
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 169 

Figure 2. North-South asymmetry of the SKR HFL distributions. Panels (a)-(d): Positions of Cassini 170 
during the observation of SKR HFL with (a): Latitude, (b): Longitude of Cassini, derived from the SLS5 171 
system (Ye et al., 2018), (c) Local time, (d) Radial distance. Panel (e): Histogram of the identified SKR 172 
HFL with normal fits superimposed. The blue and red bins represent the observations of north and south 173 
SKR, respectively. The dark blue color indicates regions with an HFL from both northern and southern 174 
SKR (the overlap of light blue and red bars). Panel (f): The fce values as a function of radial distance 175 
calculated using the Cassini-11 magnetic field model (Dougherty et al., 2018) at Lshell=15. The north fce 176 
(blue line) is larger than the south fce (red line) due to the northward offset of the magnetic field at Saturn. 177 
Panel (g): Calculated difference fce(r)North - fce(r)South (solid black line) is plotted versus the northern fce, 178 
and compared with that derived from the model fits in Panel (e) (pink dashed line and diamonds). The 179 
pink diamonds (frequency differences) are taken at the same percentile from the two curves in Panel (e). 180 
The good match confirms that the N-S difference in the HFL is generated by the offset of Saturn’s 181 
magnetic field. 182 
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The average frequency of the north and south SKR HFL are estimated in Figure 2. To check any 183 
possible bias caused by the anisotropic beaming pattern of SKR and the observing geometry of Cassini 184 
(Lamy et al., 2008a, 2008b, 2013), the positions of Cassini when the SKR HFL are identified are plotted 185 
in Figure 2, Panels (a)-(d). The observation positions of Cassini for all Saturn orbits during the 13 186 
year-tour are almost symmetric in the northern and southern hemispheres, which allows us to exclude the 187 
uncertainty caused by the geometry effects in estimating the average frequency. The longitude of Cassini 188 
used in Panel (b) is derived from the Saturn Longitude System 5 (SLS5, Ye et al., 2018, 𝜆sc = 189 
𝜆sun+(12-LTsc)*15°, 𝜆sc is the longitude of the spacecraft, 𝜆sun is the longitude of the sun, LTsc is the 190 
spacecraft local time). Because Cassini was inserted in Saturn’s orbit from the southern hemisphere in 191 
2004 along orbits with apokrones in the southern hemisphere in the first year of the tour, there is a slight 192 
excess of observations of the southern SKR HFL at larger radial distances (not shown), e.g., with radial 193 
distance > 70 Rs (Saturn Radius=60268 km). This is a source of bias for the southern HFL at the larger 194 
radial distance, and therefore we remove long distance (>70 Rs) observations to eliminate the possible 195 
bias in the estimation of the average frequency. 196 

The fitted average SKR HFL frequencies of the north (~625 kHz) and south (~539 kHz) are 197 
estimated using normal (Gaussian) fits of the histograms in Figure 2 Panel (e). Note here that the shapes 198 
of the histograms in Panel (e) do not fully represent the characteristics of normal distributions, which 199 
causes uncertainties for derived average HFL values. However, this rough estimation is sufficient to 200 
draw conclusions. The ~87 kHz difference in frequency is consistent with the previous results of a 201 
50-100 kHz range in Lamy et al. (2008a), as previously computed over a more restricted time interval 202 
that was proposed to result from the ~0.0466 Rs northward offset of the kronian magnetic field (Lamy et 203 
al. 2008a). As SKR is produced close to the local fce (Lamy et al., 2018), directly proportional to the local 204 
magnetic field, the higher average frequency HFL in the north implies that the source region of the 205 
northern SKR lies in a position with a stronger magnetic field than the southern SKR source region. The 206 
“minimum altitude” of SKR source is primarily determined by the density depletion in the ionosphere 207 
and it should be similar in both hemispheres, one can expect similar altitudes of northern and southern 208 
SKR sources above the surface of Saturn, because particle densities in the ionosphere rather depend on 209 
the gravity field and not on the magnetic field.  210 

Consequently, the explanation of the north-south differences in the average HFL resides in the 211 
northward offset of Saturn’s magnetic field (the magnetic equator is shifted northward from the 212 
planetographic equator by ~0.0466 Rs (Dougherty et al., 2018). Using the Cassini-11 magnetic field 213 
model (Dougherty et al., 2018), fce values along a typical SKR L-shell (L=15, corresponds to invariant 214 
latitude = 75°) were calculated and plotted versus the radial distance in both hemispheres in Figure 2 215 
Panel (f). The L-Shell (McIlwain, 1966) corresponds to the distance (normalized to planetary radius) of a 216 
dipolar field line apex in the equatorial plane. The calculated fce in the northern hemisphere is larger than 217 
in the southern hemisphere at the same altitudes, and the difference becomes larger at smaller radial 218 
distances, which is because the magnetic field decays with the cube of the radial distance. This feature 219 
implies that the North-South differences in the HFL will also increase as the HFL increases. A 220 
comparison is given in Panel (g), where the calculated difference fce(r)North - fce(r)South from the Cassini-11 221 
model is plotted versus the northern fce (solid black line), and compared with that measured from the 222 
normal fits in Panel (e) (pink dashed line with diamonds). The solid black line is directly calculated using 223 
the two lines in Panel (f). The pink dashed line with diamonds is calculated using the two normal fits in 224 
Panel (e), e.g., the peak-peak frequency difference (difference of 50% - 50% percentile values for the two 225 
distributions) is 625.4 kHz – 538.6 kHz ~=87 kHz as indicated by the vertical dashed lines in Panel (e). 226 
The percentile values (at 50%, 66%, 80%, 90%, 95%, 98%, 99.5%, 99.9%) of the two normal fits in the 227 
two distributions are measured and the corresponding frequency differences are plotted in Panel (g) as 228 



t229 
230 

g231 
i232 

233 
234 

b235 
t236 
E237 

238 

4239 

240 

F241 
t242 

243 
r244 
H245 

246 
247 

b248 

249 
250 
251 
252 

p253 
254 

i255 
d256 

the diamond
fewer data p
good match 
is responsibl

Another
frequency va
by previous 
the LFE at S
Extensions (
study. 

4. The spa

Figure 3. Di
the instantan
separately fo
relative HFL
HFL in SLS
sub-solar SL
superimpose
blue lines gi

The dis
Cassini (in L
(g)-(h). To e
(Galopeau, O
period) runn
േ1 sigma va
in each pane
due to the an

m

ds. The two l
points for HF
between the
le for the ob
r interesting 
ariations in H
studies (Gal

Saturn (Jackm
(HFE) of SK

atial visibilit

istributions o
neous – rotat
or the northe
L vs local tim
S5 longitude 
LS5 in Panel
ed to the mea
ive the +1σ (
stributions of
Latitude, Loc
eliminate lon
Ortega-Moli
ning-average
alues of the c
el. Exploring
nisotropic be

manuscript sub

ines deviate 
FL at high fr
e solid black 
served diffe
point here is
HFL as large
lopeau, Orte
man et al., 2

KR and their 

ty of the rela

of the relativ
tion-average
ern and south
me and radia
system, usin

ls (i)-(j). The
an) relative H
(solid) and -
f the relative
cal Time, Ra

ng period, ex
ina, and Zark
e was subtrac
correspondin
g the relative
eaming of SK

mitted to Journ

from each o
requencies an

line and the
rence in the 
s the spread 
e as ~400 kH

ega-Molina, 
009; Reed e
connection 

ative SKR H

ve HFL. The 
d HFL. Pane
hern hemisph
al distance. P
ng different l
e black lines
HFL derived
1σ (dashed) 

e SKR HFL a
adial distanc
xternally-con
ka, 1991; Ga
cted from the
ng relative H
e HFL distrib
KR, which c

nal of Geophys

 9

other slightly
nd the uncer
e pink dashed
northern an
of HFL (sigm

Hz could be 
and Zarka, 1
t al., 2018).
to the solar w

HFL 

quantity sho
els (a)-(b) sh
here. Panels

Panels (g)-(h
longitude fra
mark the m

d from data w
extent of the

are overplott
ce, and Long
ntrolled varia
alopeau and 
e instantaneo

HFL distribut
bution along
couples the d

sical Research

y at high freq
rtainty on the
d line confir
d southern S
ma values in
related to so

1991; Taube
The link bet
wind dynam

own along th
how the relati
s (c)-(d) and 
h) and (i) -(j)
ames: spacec

mean (solid) a
with absciss
e relative HF
ted in Figure
gitude in Pan
ations of the
Zarka, 1992
ous HFL. Th
tions are ove
g a single spa
different spat

h: Space Physic

quencies. Th
e normal dis
rms that the m
SKR HFL. 
n Figure 2 Pa
olar wind dyn
enschuss et a
tween the H

mics would b

he y-axis is th
ive HFL dist
(e)-(f) are th

) are the distr
craft SLS5 i
and the medi
sa in the corr
FL distributi

e 3 as a functi
nels (a)-(b), (
e HFL, e.g., d
2), a 10.6 hou
he calculated
rlapped as so
atial paramet
tial paramet

cs 

his is likely d
stribution fits
magnetic fie

anel (e)). Th
namics as su

al., 2006), sim
igh- Frequen

be worth a fu

he relative H
tributions in
he distributio
ributions of 
n Panels (g)
ian (dashed,
responding b
ion at each a
ion of the loc
(c)-(d), (e)-(
due to the so
ur (1 Saturn 
d mean, med
olid and dash
ter is not rew
ers. 

due to the 
s. The 
eld offset 

he 
uggested 
milar to 
ncy 

uture 

HFL, i.e., 
latitude, 

ons of 
relative 

)-(h) and 
 nearly 

bin. The 
abscissa. 
cation of 
f) and 

olar wind 
rotation 

dian and 
hed lines 
warding 



manuscript submitted to Journal of Geophysical Research: Space Physics 

 10

All means and medians are flat and close to zero as indicated by the black lines in Figure 3, 257 
confirming the absence of bias and suggesting that the beaming of SKR beam statistically covers all 258 
spatial regions around Saturn. No particular position is found for which the absolute HFL would be 259 
predominantly above or below the 10.6-hour running average. In Panels (a)-(b), more counts are 260 
observed at low latitudes (the reddish peak near 0°) because Cassini spent a long time in the equatorial 261 
region, but without changing the mean or median. The fewer points of HFL above 60 degrees in latitude 262 
in Panels (a)-(b) are because most SKR emissions are observed below 60 degrees. There are also fewer 263 
HFL observed beyond a distance of ~50 Saturn radii in Panels (e)-(f), which is due to the fact that Cassini 264 
spent most of its time within 50 Saturn radii. There are more points around 20 Saturn radii, because 265 
Cassini also spent a long time there, mainly during the numerous Titan fly-bys. Note here that the 266 
standard deviations of the relative HFL are always slightly higher in the northern hemisphere than in the 267 
southern hemisphere (for all 5 displayed coordinates), which agrees with the general normal fits for north 268 
& south HFL in Figure 2 Panel (e). We also organized the relative HFL as a function of sub-solar 269 
longitude in Panels (i)-(j) for a first check of a possible asymmetry like the one found in Voyager data 270 
(Galopeau, Ortega-Molina, and Zarka, 1991). No such asymmetry is observed. But as 13-year statistics 271 
may smooth any asymmetry, we further explore these distributions by restricting the Cassini location to 272 
small (LT, latitude) intervals, as discussed in the next Section. 273 

5. The longitudinal modulation of the relative SKR HFL 274 
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Figure 4. Examples of longitudinal modulation of the relative SKR HFL. Columns (a)-(b), Examples of 276 
the longitudinal modulation of relative SKR HFL observed in the northern and southern hemispheres. 277 
Different sub-panels give observations at various (Latitude, LT) positions of Cassini. The black lines 278 
show the mean (solid) and median (dashed, hardly visible) relative HFL versus sub-solar longitude 279 
(SLS5, Ye et al., 2018). The red lines are the sinusoidal fits of the solid black lines. +1σ and -1σ width of 280 
the relative HFL distribution at each abscissa are plotted by solid and dashed blue lines, respectively. 281 
Columns (c)-(d) and (e)-(f) repeat the analysis from Columns (a)-(b) but using different longitude 282 
systems, derived from different tentative rigid rotation periods of Saturn, 10.6 hours in Columns (c)-(d) 283 
and 10.8 hours in Columns (e)-(f). 284 

We restrict the location of Cassini to small spatial bins in local time and latitude (4° Lat × 2 hours 285 
LT) to further explore the relative HFL variation as a function of sub-solar longitude. The SLS5 286 
longitude system used in this work is derived from the long-term tracking of average SKR peak 287 
intensities. The zero degree of sub-solar longitude in SLS5 corresponds to the maxima of SKR intensity, 288 
which usually peaks on the morning side (Ye et al., 2018; Lamy et al., 2009). The SLS5 system follows 289 
two time-variable periods, one per hemisphere, clearly distinct (~10.6 h and ~10.8 h) from 2004 until the 290 
end of 2008 (Gurnett et al., 2009). The two periods started to converge around the vernal equinox of 291 
Saturn in 2009 and crossed each other briefly in late 2009 before starting to oscillate around 10.7 h for 292 
four years. The southern period remained at 10.7 h until the end of the mission, whereas the northern 293 
period slowed down in 2014 and 2015 to end up at ~10.8 h for the last two years until September 2017 294 
(see the introduction of Ye et al., 2018). The SKR-intensity derived SLS5 naturally contains information 295 
on the modulation of SKR generation, which is further related to the modulation of a field-aligned 296 
current system at Saturn (Southwood and Cowley, 2014; Provan et al., 2018). When confining the 297 
observer to particular LT bins, the sub-solar longitude is related to the spacecraft longitude via a simple 298 
shift (𝜆௦௖ = 𝜆௦௨௡ + (12 − 𝐿𝑇௦௖) × 15°). The relative HFL observed from a fixed location is then stacked 299 
and binned as a function of sub-solar longitude. This procedure allows us to exclude the effects of 300 
observation geometry and to mitigate the effect of the SKR beaming.  301 

As shown by the averaged relative HFL (solid black lines) in Figure 4 Columns (a)-(b), the mean 302 
relative HFL shows regular quasi-sinusoidal variations as observed from the different locations in local 303 
time (different sub-Panels) in both hemispheres. A sinusoidal fit (red lines in Figure 4, 𝐴 ∗304 
𝑠𝑖𝑛(𝜆௦௨௡ + 𝜑) + 𝑜𝑓𝑓𝑠𝑒𝑡, A: amplitude, 𝜑: phase) is computed for the variations of the average relative 305 
HFL in each spatial bin. Broad enough bins in local time (2 hours) and latitude (4 degrees) are needed to 306 
gather enough data points in each bin and thus guarantee the accuracy of the calculation of the average 307 
relative HFL. In each spatial bin, we require that relative HFL data represent an observation time larger 308 
than three Saturn rotation periods (thus ~32 hours). The observation time for each bin is given in Figure 309 
A1 in the Appendix. To increase the resolution of the sinusoidal fit, there is a 50% overlap between 310 
consecutive bins (i.e., 1 hour steps in LT and 2 degrees in latitude), leading to a total of 816 spatial bins. 311 
For the sinusoidal fit in each spatial bin, the root mean square deviation (RMSD) is used to measure the 312 
fit quality and discard the poor fits (that correspond to RMSD>0.1; ~40% of the fits have RMSD larger 313 
than 0.1; see their distribution in Figure A1).  314 

The sinusoidal variations of relative HFL observed in some bins are reminiscent of the first 315 
results from Galopeau, Ortega-Molina, and Zarka, (1991), which was tentatively explained by the 316 
presence of a magnetic anomaly. However, in our case the relative HFL is organized as a function of 317 
SLS5, which is not related to the rotation of the planet but to that of a particular current system (Ye et al., 318 
2018; Andrews et al., 2011; Cowley and Provan, 2017). To give an intuitive illustration of the SKR 319 
intensity and HFL modulation with SLS5, an example is given in Figure A2. The recurring emission 320 
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occurrence peaks on the spectrum in Figure A2 show the characteristic SKR periodic modulation. The 321 
pink lines on top of the SKR emission, as well as the relative HFL in Figure A2 Panel (d), indicate that 322 
the HFL & relative HFL also experience a modulation that mirrors the repetition of the SKR emission 323 
occurrence peaks. 324 

To explore further whether this modulation in relative HFL could reveal a magnetic anomaly or is 325 
controlled by the SLS5 modulation, the relative HFL are further organized by using a series of longitude 326 
systems derived assuming fixed rotation periods. For example, in Figure 4 Columns (c)-(d) and (e)-(f) 327 
10.6 hours and 10.8 hours rotation periods are adopted. Should this variation be generated due to a 328 
magnetic anomaly that corotates with the planetary magnetic field, the longitude derived using a fixed 329 
rotation period should better organize the variation in relative HFL. As can be seen from Figure 4 330 
Columns (c)-(d) and (e)-(f), weaker amplitudes or even lack of modulation are observed when the 331 
relative HFL are organized in fixed-period longitude systems. All rotation periods from 10.5 to 11 hours 332 
by step of 0.1 hour were also tested (not shown), but none led to a relative HFL longitudinal modulation 333 
better organized (i.e. deeper) than the one obtained with SLS5. 334 

For confirmation, a Least-Square-Spectrum-Analysis (LSSA) periodogram was built using the 335 
relative HFL series obtained in this study, which is presented in Figure 5. The LSSA, also known as 336 
Lomb-Scargle analysis (Lomb, 1976; Scargle, 1982), is a method for estimating the time-frequency 337 
spectrum of a time series, which is particularly suitable for the analysis of unevenly sampled data with 338 
gaps. The LSSA parameters used to produce Figure 5 are the same as those adopted by Ye et al. (2018). 339 
For more information about the LSSA method, readers are referred to Ye et al. (2016, 2018) and Gurnett 340 
et al. (2009). 341 
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reversal. The white lines mark the SKR rotational modulation rates for the north in Panel (a) and the 356 
south in Panel (b). Panels (c) and (d) show the results of the calculations using the relative HFL time 357 
series obtained in this work. The relative HFL series used here are adapted by subtracting the 358 
running-mean values of two rotation periods from the absolute HFL values. This was done to mitigate 359 
possible bias caused by the process of subtracting one rotation period, as the modulation periods are close 360 
to one Saturn rotation period of 10.6 hours. One can easily recognize similar modulation features 361 
between the SKR intensity and the relative SKR HFL by comparing Panels (a) and (c), and Panels (b) and 362 
(d). Note that the integrated SKR intensities in Panels (a)-(b) are obtained by dividing one rotation period 363 
average values from the integrated intensities according to the previous work (Ye et al., 2016; 2018; 364 
Gurnett et a., 2009). Therefore, the values of the normalized modulation power in Panels (a)-(b) are 365 
smaller, whereas the normalized modulation power in Panels (c)-(d) is larger due to the subtracting 366 
process. This calculation directly confirms the modulation of HFL with variable periods and excludes the 367 
possibility of constant period modulation or the existence of a magnetic anomaly. 368 

It is interesting to note that the northern SKR (Figure 5 Panels (a) and (c)) also has a second period 369 
from early 2005 to the end of 2009 of around 800 deg/day, which is the same period as that of the 370 
southern SKR. This might either result from an incorrect separation of northern and southern sources, or 371 
electron populations from the south bounce to the north, where they also generate northern SKR with the 372 
southern period as suggested by Hunt et al. (2015) and Kivelson and Jia. (2017). It is worth noting that 373 
this secondary period of northern SKR at 800 deg/day seems to have a larger modulation signal as the 374 
primary northern period around 820 deg/day in the rotational analysis of the relative HFL. Furthermore, 375 
there is some deviation in the northern period calculated from the SKR intensity (white line) compared to 376 
the result from the relative SKR HFL, and the first deviation can be seen in Panel (c) in the time interval 377 
from Saturn equinox (August 2009) until mid-2010. There the relative HFL modulation signal slightly 378 
above 810 deg/day is about 3 deg/day higher than the white line. The second deviation occurs during the 379 
year 2011, where the rotation of the northern SKR intensity denoted by the white line is about 3 deg/day 380 
quicker than the northern HFL modulation signal. This second deviation could be caused by the intense 381 
secondary signal from southern hemisphere, but this is not the case for the first deviation. The differences 382 
between the SKR modulation period and the one derived from the magnetic field from 2009-2013 were 383 
discussed in Fischer et al. (2015), and the relative HFL modulation signal slightly above 810 deg/day 384 
from equinox to mid-2010 rather agrees with the period derived from the magnetic field (Cowley and 385 
Provan 2016). Other than that, the modulation features between the relative SKR HFL and the SLS5 are 386 
quite similar. 387 

6. The distribution and phase of the relative HFL modulation features 388 



389 

F390 
n391 
l392 

393 
A394 

395 
t396 
H397 

398 
T399 
t400 
c401 
r402 
r403 

404 

 405 
406 

w407 
2408 

409 
o410 

411 
412 

T413 

Figure 6. D
normalized a
latitude (amp
fitted sinuso
Appendix). P
function). Th
the poor fits
HFL. The fi
= ሾ−22° −1
The real amp
times where
correspondin
red boxes in
right-hand s
functions. 
     Case s

sources are d
whereas the 
2011). It has
sector (Lamy
of the modu
amplitude (w
each spatial 
The blank bi

m

istribution o
amplitude of
plitude is no

oidal function
Panels (c)-(d
he bin size o
 is 0.1. Pane
tted sinusoid

18°ሿ for the s
plitude of ea

e the stronger
ng SLS5 ran

n both Panels
ide boxes). T

studies and s
distributed a
intensities o

s also been k
y et al., 2009

ulation, i.e., a
with A the am
bin is then c
ins are due t

manuscript sub

of the modula
f the relative

ormalized by
n, RMSD is 
d): same form
of Panels (a)-
el (e): local t
dal curves in
southern hem

ach modulati
r modulation

nges of the m
s (e) and (f))
The black st

statistical dir
at all longitud
of SKR maxi
known for lon
9; Ye et al., 2
at which plac
mplitude of 
color-plotted
o the lack of

mitted to Journ

ation of relat
e SKR HFL i
y the root me

the calculat
mat as the P
-(d) is [4° La
ime slice of 

n each local t
misphere in P
on is indicat

n and relative
maxima (SLS
) and minima
ars for each 

rection-findi
des along th
ima are in th
ng that the S
2016; 2018).
ce the modu
the fitted sin

d as a functio
f data and po

nal of Geophys

 16

tive SKR HF
in the north 

ean square de
ed root mean
anels (a)-(b)

at × 2 hours L
the sinusoid
time bin are 
Panel (f). Th
ted near the t
e stable phas

S5N=ሾ20° 11
a (SLS5N=ሾ
curve mark 

ng analyses 
he magnetic f
he morning L
KR intensity
 Therefore, i
lation is stro
nusoidal fun
on of local ti
oor fits. The 

sical Research

FL. Panels (
and south as
eviation: A/R
n square dev
) but for the 
LT] and the 
dal fits of the
displayed at

he plotted cur
ticks to the le
se of the sinu
15°], SLS5S
220° 300°], 
the maxima

using Cassin
field lines m
LT (Cecconi
y modulation
it is interesti
onger? The d
ction) and p
ime and latit
modulation 

h: Space Physic

(a)-(b): distri
s a function 
RMSD, A is 
viation, see m
fitted phase 
RMSD thres
e modulation
t Lat = ሾ16°

rves are norm
eft. The red b
usoidal fits a

S=ሾ5° 110°] f
SLS5S=ሾ17

a and minima

ni data sugg
mapping to th

i et al., 2009
n is best obse
ng to explor

distribution o
hase (φ) of t
tude in Figur
of relative H

cs 

ibution of th
of the local t
the amplitud

more details 
(𝜑 of the si

shold used to
n of the north
° 20°ሿ and a
malized in am
boxes mark 
are observed
for the left-h
70° 260°] for
a of the sinu

gested that SK
he UV aurora
9, Lamy et al
erved in the 
re further the
of the modul
the sinusoida
re 6 Panels (
HFL can be o

he fitted 
time and 
de of the 
in 

inusoidal 
o discard 
h SKR 

at Lat 
mplitude. 
the local 

d, and the 
hand side 
r the 

usoidal 

KR 
al oval, 
l., 2009, 
morning 

e features 
lation 
al fit for 
(a)-(b). 
observed 



manuscript submitted to Journal of Geophysical Research: Space Physics 

 17

in most of the spatial bins as shown by Panels (a)-(b) but with some asymmetries with respect to the 414 
latitude and LT.  415 

Strong modulation in both north and south is observed at 𝑎𝑏𝑠(𝐿𝑎𝑡) ≥ 10°. The modulation 416 
amplitude is stronger in the north than in the south. The weaker modulation amplitude observed at 417 
−10° ≤ 𝐿𝑎𝑡 ≤ 10° could be due to the beaming geometry of SKR, as the superposition of SKR from the 418 
two hemispheres near the equatorial plane may affect the HFL, or may be simply due to the strongly 419 
modulated source regions not being visible in these low latitude regions. The phases in Panels (c)-(d)（𝜑 420 
of the sinusoidal functions, 𝜑 ~ 0° implies that 𝐴 ∗ 𝑠𝑖𝑛(𝜆௦௨௡ + 𝜑) function peaks at 𝜆௦௨௡~90°）of 421 
these regions with strong modulation amplitudes are clustered and show small phases around zero. 422 

In Panel (a) of Figure 6, a region exhibiting weaker modulation and scattered phases can be 423 
observed in the morning side LT, e.g., from 5:00 to 10:00 LT. The cause of this phenomenon may be 424 
attributed to the shorter observation time in these local times, as suggested in Figure A1 Panels (a)-(b), or 425 
it could be due to the merging of signals from numerous intense morning side sources that are 426 
continuously distributed throughout the morning sector and continuously illuminate the nearby region at 427 
different phases of their modulation. This may result in difficulties for recognizing the modulation 428 
features in these bins, as suggested by the large RMSD (poor sinusoidal fits) shown in Figure A1 Panels 429 
(b) and (d). Additionally, the modulation also appears weaker from 20:00 to 22:00 LT. Weakly 430 
modulated signal from the nearby LT to the 20:00 to 22:00 sector may result in weak modulations seen 431 
there. 432 

To give an intuitive illustration of the relative HFL modulation at different LT bins, the fitted 433 
sinusoidal curves at Lat = [16°, 20°] in the northern hemisphere are shown in Panel (e) (the 24 sub-panels 434 
for different local times are normalized in the vertical direction to address the phase relation, the real (or 435 
"physical") amplitude of each curve is indicated near the ticks to the left). The red boxes mark the local 436 
time intervals where the stronger modulation and relative stable phase of the sinusoidal fits are 437 
consistently observed. The black stars for each curve mark the maxima and minima of the sinusoidal 438 
functions. As shown by Figure 6 Panel (e), the curves with larger amplitude mostly show similar 439 
modulation phases, e.g., indicated by the red box with LT=11~19 and LT=0~4, whereas the curves with 440 
smaller amplitude show dispersed phases, e.g., LT=5~10 and LT=20~23, which could be related to the 441 
shorter observation time in the corresponding bins and poor fits caused by the strong modulated morning 442 
side SKR sources. The southern modulation pattern has similar features, as shown in Panel (f), for a 443 
latitudinal slice at Lat = [-22°, -18°]. The choice of the two latitude slices in Panels (e)-(f) is because 444 
these latitudes cover most of the local times as can be seen in Figure 6 Panels (a)-(b), as the other 445 
latitudes have more blank bins due to poor fits or lack of data. 446 

7. Simulation of the SKR visibility 447 

To explain the relative HFL modulations observed in Sections 5-6, simple simulations have been 448 
carried out using a dipole field with a magnetic moment of 0.21 Gauss and an empirical beaming angle 449 
derived from data in a previous work (adopted from the black dashed line in Figure 9 of Lamy et al., 450 
2013). The wave frequencies are assumed to be equal to the local fce. The SKR sources can be distributed 451 
on a set of Lshells of given longitudes, at altitudes corresponding to the emitted frequencies. The SKR 452 
spectrogram seen by an observer at a given LT and latitude is obtained by calculating the angles between 453 
the location of the observer and the magnetic field vector in SKR sources at each frequency / Lshell / LT 454 
/ longitude. The frequencies for which these angles match the emission beaming cone are visible for the 455 
observer, the others are not. The thickness of the hollow cone wall is set to be 5° in our simulation 456 
(Lamy et al., 2013). For one set of given SKR sources, the SKR visibility spectrogram during 1 Saturn 457 
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different local times, i.e., 01:00 for Panel (b) and 17:00 for Panel (c), the HFL peak times are identical 506 
and at time step 92, i.e., when the sub-solar longitude reaches 91°.  507 

For Scenario (2), we set the SKR sources along L=15 field lines at all longitudes (1°-360°, 508 
step=1°), from 400 kHz to 700 kHz (step = 5 kHz). Then we applied a sinusoidal variation to the 509 
frequency range of SKR sources as a function of the longitude as can be seen in Panels (d) in Figure 8. 510 
The maximum frequency at each longitude as a function of rotating time is quantitatively given in Figure 511 
8 Panel (d). The color code in Panel (d) suggests that the maximum frequency of a longitude-fixed 512 
rotating source produces a complicated pattern in view of a fixed observer at a certain LT and as a 513 
function of time. Clear sinusoidal (or quasi-sinusoidal) variations in the HFL are observed in Figure 8 514 
Panels (e)-(f), which is calculated using the source configuration in Figure 8 Panel (d). The observers at 515 
different LT observe different phases with the HFL peaking at 38.5° in Panel (e) and 255° in Panel (f), 516 
which is similar to the small phase shifts as observed in Figure 6 Panels (e)-(f).  517 

 518 

 519 

 520 
 521 

 522 

Figure 9. Simulated northern HFL modulation at Lat = 18°and different LTs. Format is similar to 523 
Figure 6 Panel (e). Panel (a) displays the results of the scenario (1) simulation (LT-fixed but 524 
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time-variable sources). Panel (b) displays the results of the scenario (2) simulation (Longitude-fixed, 525 
rotating sources). 526 

The simulation results at Lat = 18° and different LTs are given in Figure 9 in the same format as 527 
Figure 6 Panels (e)-(f) (at the same latitude with Lat = 18°). The results of Scenario (1) simulation are 528 
shown in Figure 9 Panel (a). At all LTs where the SKR is visible, the observed HFL change together with 529 
no phase shifts. Results of Scenario (2) simulation displayed in Panel (b) are similar to the results in 530 
Panel (a) but with a shift at each LT. These shifts are introduced by the rotation of the planet as shown in 531 
Figure 8 Panel (d). 532 

A combination of both scenarios is needed to explain the observations. Scenario (1) provides 533 
modulations in HFL with stable phases, and scenario (2) provides intermittent small phase shifts. The 534 
maxima and minima of the obtained sinusoidal curves are mostly concentrated at fixed longitudes as 535 
indicated by the red boxes in Figure 6 Panels (e)-(f) and only small phase shifts are observed, which are 536 
possibly generated by the rotation of the source region as suggested by Scenario (2) simulation. 537 
Therefore, the sinusoidal modulation phenomenon of the relative SKR HFL could be generated by the 538 
combination of the two simulated situations, that is, the SKR sources corotate with the planet, but many 539 
of them show a strong time-variation and may be fixed in local time. 540 

8. Discussion and Summary 541 

The initial understanding of the SKR is a “clock” like source, which means that the SKR sources 542 
are fixed in LT and change emission characteristics (intensity, HFL) as a function of time or sub-solar 543 
longitude (Warwick et al., 1981; corresponding to Scenario (1) simulation in the last Section), whereas 544 
later studies show that the SKR sources also behave as a rotating beam that corotates with the planet and 545 
goes over all longitudes with time, along a circumpolar oval whose intensity peaks at dawn (Lamy et al., 546 
2009; Cecconi et al., 2009; Andrews et al., 2011; similar to Scenario (2) simulations). Hence the 547 
modulation of SKR tends to be a combination of the temporal and spatial effects, as shown by Cassini 548 
radio direction-finding and magnetic measurements (Lamy, 2011, Andrews et al., 2011) and modeled in 549 
our Scenarios. The same is found for the relative HFL modulation studied in this work.   550 

       The source altitudes of the SKR rely on both the CMI conditions (i.e., fpe/fce) and the electron 551 
distribution (Wu & Lee, 1979; Lamy et al., 2009, 2018). The CMI condition is not likely to cause the 552 
source altitude variation because the plasma density at the SKR source region is mainly related to the 553 
ionospheric plasma density, which decays exponentially. The ~ 1 rotation period modulation of relative 554 
HFL can be observed both on the dayside and on the nightside, which suggests the ionospheric 555 
conductance does not play a major role in producing the modulation. Hence the formation of the 556 
shell-like electron distribution is a likely reason for the modulation of the source altitudes, which is 557 
further related to particle transport and associated current systems. The corotating source structure could 558 
be formed naturally because electron precipitation is different at different longitudes, leading to the 559 
formation of complex source regions. Further details to understand the SKR source variations would 560 
require simulations of the electron precipitation, forming of the field-aligned currents and calculation of 561 
the wave growth rate, which are beyond the scope of this work. 562 

The previous work of Galopeau, Ortega-Molina, and Zarka, (1991) analyzed Voyager-Saturn 563 
data for 3-4 months around each fly-by to study the SKR HFL. Because the fly-bys of the Voyager 564 
spacecraft only covered limited local time and latitude ranges, these authors also observed a sinusoidal 565 
variation of the relative HFL as a function of sub-solar longitude. Their explanation of this variation in 566 
terms of a magnetic field anomaly was a logical one (that can be reproduced by our simulations). More 567 
than 40 years after the Voyager Saturn fly-bys in 1980 & 1981, having Cassini observations at all LT and 568 
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Figure A1. Observation time and the RMSD in each of the spatial bins. Panel (a) gives the observation 588 
time of Cassini in each spatial bin when the north HFL is observed. Panel (b) give the calculated RMSD 589 
for the sinusoidal fits of the relative HFL with respect to the SLS5 longitude when using SLS5-N. Panels 590 
(c)-(d) give the results in the same format as Panels (a)-(b) but for the southern hemisphere. 591 

The observation time and the calculated RMSD of the sinusoidal fits are given in Figure A1. The 592 
calculated results of the spatial bins shown in Figure 6 Panels (a)-(b) have to satisfy two criteria: (1) data 593 
inside each bin must have an observation time larger than 3 rotation periods (1 Saturn rotation time ≅ 594 
10.6 hours); (2) The RMSD value is less than 0.1 (roughly 40% of all the bins exhibit RMSD >0.1).  595 

RMSD defined as: ටଵ
௡

∑ (A ∗ sin (𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒(𝑖) + 𝜑) − 𝑚𝑒𝑎𝑛௛௙௟(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒(𝑖)))ଶ௡
௜ୀଵ , n is the number 596 

of the data points in the fitting. Here n=90 since we use a longitude step = 4°. A and 𝜑 are the amplitude 597 
and phase obtained by the fittings, respectively. As can be seen from the comparison between the 598 
calculated RMSD in Figure A1 Panels (b) and (d) and the modulation amplitude in Figure 6 Panels 599 
(a)-(b), the fitted bins with smaller RMSD also show a stronger modulation amplitude in general. The 600 
poorly-fitted bins with larger RMSD usually show rather random patterns, so that their removal does not 601 
affect the results. 602 
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as well as the SKR intensity (in Panel (c)) and relative HFL (in Panel (d)), indicate that the HFL & 615 
relative HFL also experience a modulation that mirrors the repetition of the SKR emission peaks. 616 
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