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The fracture toughness of glass is increased by the introduction of reinforced platelets made of a second constituent with high modulus, strength and/or ductility. In such composites different toughening mechanisms appear. In particular, the borosilicate glass/Al 2 O 3 platelet composite introduced in 1996 is a very attractive solution for industrial purposes, since it is a environmentally friendly and low-cost material. In this paper the toughening mechanisms that correspond to a change in the crack path due to the presence of platelets is analysed from the point of view of the Coupled Criterion, together with the Matched Asymptotic approach.

Introduction

Glass is increasingly used in structural applications, especially in architecture [START_REF] Schneider | Characterisation of the scratch resistance of annealed and tempered architectural glass[END_REF], owing to its numerous advantages: oxidation and corrosion resistance, hardness, and wear resistance. However, the main drawback of glass is its very low fracture toughness. New glass composites have been developed to face this 5 problem. One of these materials is based on the addition of a second constituent, with either higher Young's modulus, higher strength, or higher ductility, under the form of platelets, powders, or whiskers. Among others, the first glass composites were developed in 1960 [START_REF] Bernardo | Al2o3-platelet reinforced glass matrix composites from a mixture of wastes[END_REF].

A good example is the borosilicate glass/Al 2 O 3 platelet composite, fabricated by uniaxial hot-pressing, in which alumina platelets are embedded in a borosilicate glass matrix. It was introduced and experimentally characterized by [START_REF] Boccaccini | Toughening and strengthening of glass by al203 platelets[END_REF]. Since then, multiple studies have been made to explore its capabilities, numerically and experimentally. At first, in [START_REF] Todd | Thermal residual stresses and their toughening effect in al2o3 platelet reinforced glass[END_REF], residual stresses in the composite were measured by experimentation. Later, they were calculated in a numerical analysis [START_REF] Cannillo | Numerical models for thermal residual stresses in al2o3 platelets/borosilicate glass matrix composites[END_REF]. On the other hand, in [START_REF] Boccaccini | Fracture surface roughness and toughness of al2o3-platelet reinforced glass matrix composites[END_REF] and [START_REF] Kotoul | Toughening effects quantification in glass matrix composite reinforced by alumina platelets[END_REF] a characterization of the material by means of the roughness in the fracture surface was proposed.

Then, new manufacturing processes were described in [START_REF] Bernardo | Sintering behaviour and mechanical properties of al2o3 platelet-reinforced glass matrix composites obtained by powder technology[END_REF] and [START_REF] Bernardo | Al2o3-platelet reinforced glass matrix composites from a mixture of wastes[END_REF].

The potential advantage of these composites is the enhancement in the fracture properties with respect to those of the matrix, especially in terms of fracture toughness. It can be noted that different toughening mechanisms were experimentally observed in [START_REF] Boccaccini | Fracture surface roughness and toughness of al2o3-platelet reinforced glass matrix composites[END_REF] and [START_REF] Kotoul | Toughening effects quantification in glass matrix composite reinforced by alumina platelets[END_REF], such as the penetration of a crack into the platelet, or a deflection. An emphasis will be put in the current analysis on the size effect related to the smallness of these platelets. In this first paper, the toughening mechanisms related to crack propagation interacting with a single platelet is studied.

Hence, the aim of this work is to examine a range of possible toughening mechanisms according to the size effects. The approach is based on Matched Asymptotic Expansions (MAE) and the Coupled Criterion (CC), entering in the framework of Finite Fracture Mechanics (FFM) [START_REF] Hashin | Finite thermoelastic fracture criterion with application to laminate cracking analysis[END_REF]. Two arguments enter into this CC: an energy and a stress condition. This makes this paper original, it differs significantly from the standard approaches used in general to model these phenomena. In e.g. [START_REF] Ali | Finite element analysis of boron nitride nanotubes' shielding effect on the stress intensity factor of semielliptical surface crack in a wide range of matrixes using rve model[END_REF], the authors examine the influence of nanotubes on the stress intensity factor along a crack front located entirely in the matrix.

Thus they neglect the direct interaction between the crack and the nanotubes and use a classical Griffith energy argument leaving aside a stress condition. Li and Zhou [START_REF] Li | Prediction of fracturess toughness of ceramic composites as function of microstructure: Ii. analytical model[END_REF] refer to He and Hutchinson's [START_REF] He | Crack deflection at an interface between dissimilar elastic materials[END_REF] analysis of a crack deflected by an interface. The major difference with the present approach lies in the fact that the interface is more or less considered as infinite, i.e. far larger than the crack increment of FFM, statement which is not true in general when the platelet is small [START_REF] Leguillon | Crack nucleation at stress concentration points in composite materials-application to crack deflection by an interface[END_REF]. Finally, we can notice [START_REF] Dlouhy | Nano-fillers (nanotubes, nanosheets): do they toughen brittle matrices?[END_REF] where the authors try to answer experimentally to our problematic: "Nano-fillers (nanotubes, nanosheets): do they toughen brittle matrices?" This paper is divided into 6 sections. In Section 2 material properties are described and the problem is posed. In Sections 3 and 4 the the MA approach and the CC are briefly described. Then, in Section 5 the results are presented, before drawing conclusions in Section refsec:conclusions

Description of the problem

In experiments made by [START_REF] Boccaccini | Toughening and strengthening of glass by al203 platelets[END_REF] and [START_REF] Kotoul | Toughening effects quantification in glass matrix composite reinforced by alumina platelets[END_REF] on the borosilicate glass/Al 2 O 3 platelet composite, the alumina platelets have hexagonal shape with the major axe measuring d = 5-25 µm and the thickness is t = 0.2 d, which means that the dimensions of the platelets are much much smaller than the tested specimens, whose standard cross-section of 12mm 2 has a rectangular shape. Hence, a schematic view of the specimen is shown in Fig. 1. Because of the symmetric 3-point bending loading mode, the pre-existing crack impinging the platelet is under opening mode I. Moreover, as mentioned in [START_REF] Boccaccini | Fracture surface roughness and toughness of al2o3-platelet reinforced glass matrix composites[END_REF], the interface between the platelet and the matrix is considered as strong. It is important to emphasize on the high variability of the fracture toughness K IC and the strength σ c of a ceramic material, since they are very dependant on the micro-structure [START_REF] Danzer | On the relationship between ceramic strength and the requirements for mechanical design[END_REF]. In this case, these parameters were experimentally obtained for glass in [START_REF] Boccaccini | Toughening and strengthening of glass by al203 platelets[END_REF] and [START_REF] Kotoul | Toughening effects quantification in glass matrix composite reinforced by alumina platelets[END_REF]. However, no experimental data were provided for alumina platelets, being these parameters even more difficult to obtain, since they sometimes differ from the values measured in a bulk material. In [START_REF] Cannillo | Numerical modelling of the fracture behaviour of a glass matrix composite reinforced with alumina platelets[END_REF], a range for σ c was estimated by the values given in the National Institute of Standards and Technology1 . Furthermore, in [START_REF] Cannillo | A simple approach for determining the in situ fracture toughness of ceramic platelets used in composite materials by numerical simulations[END_REF] a parametric study is proposed, obtaining a possible value for the fracture toughness based on a comparison with experimental observations, among an initial range taken from the literature [START_REF] Evans | Fracture toughness determinations by indentation[END_REF], [START_REF] Anstis | A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements[END_REF]. Notice that in table 1 the thermal coefficients are given. They can be used 70 to obtain the residual stresses generated after manufacture. However, these residual stresses will not be considered in the present analysis mainly focused on the role of the size effect due to the smallness of the inclusion. To that aim, although in the experiments d = 5 -25 µm, the range selected herein is d = 2 -300 µm. For the same purpose, the understanding of the role of 75 smallness, and for simplicity, the analysis is conducted under the assumption of plane strain 2D elasticity.

Constituents E [GPa] ν α t [10 -6 /K] σ c [MPa] K IC [MPa m

Matched Asymptotic approach

The MA approach [START_REF] Leguillon | Computation of singular solutions in elliptic problems and elasticity[END_REF] provides a two-scale analysis of an elastic problem including a small perturbation in the domain where the problem is posed. This method can be applied if the size of the perturbation is much smaller than the specimen dimensions. In the present case, see Fig. 1, where Ω d is the actual perturbed domain, the platelet is assumed to be the perturbation, and therefore the initial hypothesis of this methodology is fulfilled. The corresponding elastic displacement is denoted as U d (x 1 , x 2 ). The index d recalls the dependence of the solution to the perturbation. In the framework of MA, U d (x 1 , x 2 ) can be approximated by an outer and an inner expansions. The first one can be written as

U d (x 1 , x 2 ) = U 0 (x 1 , x 2 ) + small correction, (1) 
where the leading term U 0 (x 1 , x 2 ) corresponds to the solution of the same elastic problem settled in the so-called outer domain Ω 0 , i.e., assuming the perturbation (the platelet) is too small to be visible in the specimen, and thus, is neglected.

This approximation is expected to be relevant far away from the location of the platelet, but becomes meaningless close to it.

In the neighbourhood of the crack tip in Ω 0 , the behaviour of U 0 (x 1 , x 2 ) is described by the Williams' expansion [START_REF] Williams | Stress singularities resulting from various boundary conditions in angular corners of plates in extension[END_REF], in this case for a crack under Mode I. It is expressed in the polar coordinates system (r, θ) with origin at the crack tip as

U 0 (r, θ) = U 0 (0, 0) + K I √ ru I (θ) + ..., (2) 
where K I is the stress intensity factor and u(θ) is the opening shape function.

On the other hand, the inner expansion is obtained by a change of variables

x i = dy i (i = 1, 2) and r = dρ.
The assumption of smallness brings us to consider the limit as d → 0, it defines an unbounded domain, called inner domain Ω in , see Fig. 2. The inner expansion is written as

U d (x 1 , x 2 ) = U d (dy 1 , dy 2 ) = F 0 (d)V 0 (y 1 , y 2 ) + F 1 (d)V 1 (y 1 , y 2 ) + ... (3) 
Contrary to the outer expansion, this expression approximates U d (x 1 , x 2 ) in the 85 neighbourhood of the perturbation. Since both the inner and the outer expansions are approximations of U d (x 1 , x 2 ), there must be an intermediate region where both solutions coexist, i.e., the solution close to the crack tip in the outer domain must match with the solution far away from the platelet in the inner domain. These are the so-called matching 90 conditions,

F 0 (d) = 1, V 0 (y 1 , y 2 ) ∼ U 0 (0, 0) when ρ → ∞, (4) 
F 1 (d) = K I √ d, V 1 (y 1 , y 2 ) ∼ √ ρu(θ) when ρ → ∞, (5) 
where ∼ means "behaves like". From Eq. ( 4) it is easily seen that V 0 (y 1 , y 2 ) = U 0 (0, 0). On the other hand, the solution V 1 (y 1 , y 2 ) must be numerically cal-culated in an artificially bounded domain imposing the condition Eq. ( 5) at a very large distance from the perturbation. To that aim, a Finite Element (FE) simulation is performed using the software FEniCS [START_REF] Langtangen | Solving PDEs in Python[END_REF] to numerically obtain the term V 1 (y 1 , y 2 ) in the inner problem. Notice that, from the theoretical point of view, V 1 (y 1 , y 2 ) has not a finite energy when ρ → ∞, which means that the solution is not properly determined according to Lax-Milgram theorem. To establish the existence of the solution, a superposition procedure can be followed [START_REF] Leguillon | Computation of singular solutions in elliptic problems and elasticity[END_REF].

The actual solution in the neighbourhood of the platelet is expected to be approximated by the inner expansion. Moreover, the actual stress tensor

σ d (x 1 , x 2 )
is expressed in the vicinity of the perturbation as

σ d (x 1 , x 2 ) = 1 d C : ∇ y U d (dy 1 , dy 2 ) = K I √ d C : ∇ y V 1 (y 1 , y 2 ) + ... (6) 
where ∇ y denotes the gradient operator with respect to the space variables y 1 and y 2 .

In addition, notice that the use of the MA approach allows only one calculation to be made regardless of the actual size of the platelet. In this regard, the strong gradients in the mesh size, needed to solve directly the problem on the actual domain, are avoided, which results in a more accurate solution in the neighbourhood of the perturbation, i.e. the platelet at the crack tip.

The Coupled Criterion

The well-known theory of Griffith [START_REF] Griffith | VI. the phenomena of rupture and flow in solids, Philosophical transactions of the royal society of london[END_REF] can only be applied in an homogeneous (at least locally around the crack tip) material or along an interface between homogeneous materials. Moreover, it is easily seen, in [START_REF] Evans | Fracture toughness determinations by indentation[END_REF] for instance, that the CC coincides with Griffith's criterion in these cases and that the stress condition plays no role. In the inner problem an heterogenous micro-structure is considered. Therefore, the theory of Griffith may not be used in all the possible paths for crack propagation that will be studied in the following sections. By applying the CC the stress condition is added to calculate the crack increment.

This criterion, which is generally used to predict the crack nucleation in brittle materials, coincides with the theory of Griffith for crack propagation when the latter can be applied. According to the CC, a crack increment is produced if 120 two necessary and sufficient conditions are simultaneously fulfilled: (i) an energy condition based on an energy balance, and (ii) a stress condition [START_REF] Leguillon | Strength or toughness? a criterion for crack onset at a notch[END_REF].

(i) The energy balance is obtained considering two states of the loaded structure, before and after a crack onset. The change in potential and kinetic energy are denoted as ∆Π p and ∆Π k respectively, whereas the fracture energy is defined as G c S, being G c a material property and S the newly created crack surface. Hence, the energy balance leads to

∆Π p + ∆Π k + G c S = 0. ( 7 
)
Which reduces, in a bidimensional problem, to

∆Π p + ∆Π k + G c δl = 0, ( 8 
)
where δl is the newly created crack length (a priori unknown), knowing that Eq. ( 8) holds per unit thickness of the specimen.

Since the initial state is assumed to be quasi-static, ∆Π k ≥ 0, and therefore

∆Π p + G c δl ≤ 0. ( 9 
)
This can be written as a function of the incremental energy release rate, denoted as G inc (δl),

- ∆Π p δl = G inc (δl) ≥ G c . (10) 
(ii) The stress condition is based on the tensile strength σ c . The tensile stress σ must be higher than σ c all along the expected crack path. Therefore,

σ(s) ≥ σ c , for 0 ≤ s ≤ δl, ( 11 
)
where s is the coordinate along the expected crack path.
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It is shown in [START_REF] Leguillon | Strength or toughness? a criterion for crack onset at a notch[END_REF] that fracture abruptly occurs from 0 to δl. This incremental form in which a crack of finite size is instantaneously nucleated, is the foundation of Finite Fracture Mechanics (FFM) [START_REF] Hashin | Finite thermoelastic fracture criterion with application to laminate cracking analysis[END_REF]. . Thus, Eq. ( 9) is rewritten as

∆Π p + G A c δl A + G B c δl B ≤ 0, ( 12 
)
where δl A and δl B are the newly created crack lengths in materials A and B.

Then the energy condition can be written

-∆Π p δl A + δl B = G inc (δl A , δl B ) ≥ G A c δl A + G B c δl B δl A + δl B . ( 13 
)
On the other hand, Eq. ( 11) splits into two conditions, described as

σ(s) ≥ σ A c , for 0 ≤ s ≤ δl A , (14) 
σ(s) ≥ σ B c , for δl A ≤ s ≤ δl A + δl B . (15) 
In order to apply the CC, the actual elastic solution at the vicinity of the crack tip is estimated from the inner expansion. Thus, the incremental energy release rate in the inner problem G in inc (δl) is numerically calculated releasing one by one the set of pair of nodes of the Finite Element mesh along the supposed crack path. For each released pair of nodes, δl in is the distance from that node to the origin expressed in the dimensionless y i variables. Then, G d inc (δl) is estimated by

G d inc (δl) = -∆Π d p (δl) δl , (16) 
where

∆Π d p (δl) = ∆W d (δl), (17) 
being W d (δl) the strain energy in the system, defined as

W d (δl) = 1 2 Ω d C : ∇ x U d : ∇ x U d dx 1 dx 2 . ( 18 
)
Among the two states considered in ∆W d (δl) = W d (δl) -W d (0), only the crack is changing in the solid. Therefore, ∆W d (δl) can be approximated by the inner expansion, ∆W d (δl) = d ∆W in (δl in ), where

W in (δl in ) = 1 2 Ω in C : ∇ y V 1 : ∇ y V 1 dy 1 dy 2 , (19) 
and δl in = δl d is the dimensionless newly created crack length in the inner domain Ω in . Thus, Eq. ( 19) is numerically obtained and the incremental energy release rate is approximated as

G d inc (δl) = d ∆W in (δl in ) d δl in = ∆W in (δl in ) δl in , ( 20 
)
where it is observed that G d inc (δl) does not depend on the length of the platelet, d.

The apparent fracture toughness, K app IC is taken as the minimum value of K I for which both the energy and the stress conditions are fulfilled, among all the possible studied crack paths. The aim is to analyse the different factors that could increase K app IC , compared to the fracture toughness K IC of glass.

Analysis of toughening mechanisms

In the following sub-sections the equivalent 2D model presented in Section 3 is considered to numerically determine the apparent fracture toughness K app IC of the composite, as a function of d and α. Three different orientations are presented in this paper, α = 0 • , 45 • , 90 • . For the sake of simplicity, the superscript d related to the actual solution in Section 3, is omitted in the notation.

Furthermore, K g IC , σ g c denote the fracture properties of glass, and K a IC , σ a c those of alumina.

Results for α = 0 •

When α = 0 • , the platelet is parallel to the pre-existing crack and we assume the crack to impinge the platelet at its corner. In that case, only one crack path seems likely to occur, it is the one located along the interface between glass and alumina, see Fig. 3. As it was already mentioned, the interface is considered as strong [START_REF] Kotoul | Toughening effects quantification in glass matrix composite reinforced by alumina platelets[END_REF], therefore its fracture properties are those of glass. 

The dependence of K app

IC on the size of the platelet is represented in Fig 4,

where it is shown that K g IC is enhanced only if d > 50 µm. However, if d < 50 µm, then K app IC < K g IC . It can be explained by the stress singularities located at the corners of the platelet. The effect of these singularities, i.e. very high stresses that tend to infinity at the corners, is felt all along the face of the platelet if it is small. µm, the apparent fracture toughness remains constant, since the evolution of the failure is governed by the energy condition, and G inc does not depend on d, see Section 4.

As an example, in Fig. 5a the CC is analysed for d = 10 µm. In the graphic, the superscript i represents either g or a. It should be noted that there is a small peak in the stress condition at the end of the interface (x 1 = 10), due to the singularity at the corner point. Furthermore, notice that this is a non standard result of the CC, which is baptized as negative geometry [START_REF] Weißgraeber | Crack nucleation in negative geometries[END_REF], since the 

Results for α = 90 •

Another relative position of the platelet is given when it is perpendicular to the pre-existing crack, α = 90 • . Since a priori the crack path is unknown, different options are investigated, studied in the following subsections.

Single deflection, decohesion and step over

This section describes the analysis made by the CC on different examples, for those possible crack paths where fracture properties of glass determine the evolution of the failure. A first option is given when the crack encounters the platelet and deflects along the interface, as shown in Fig. 6a. Another possible mechanism is a lateral decohesion of the interface, see Fig. 6b. Finally, the situation in which the crack reinitiates on the opposite face of the platelet, leading to a nucleation in the glass region, has also been studied. It is called the step over case, represented in Fig. 6c. This kind of mechanism can be met in rock mechanics for instance [START_REF] Quesada | The role of the interbed thickness on the step-over fracture under overburden pressure[END_REF].

However, results have shown that it is not a relevant mechanism in the present case, since the apparent fracture toughness obtained for this case is much higher than the ones obtained for the rest of the cases. Therefore, it is not likely to happen in the material under study.

Firstly, in Fig. 7 an example of the crack deflection is explained, for d = 50

µm. The stress condition is a decreasing function, whereas the energy curve is increasing with x 1 . It is shown that the newly created crack length is shorter than the interface length. It is important to highlight that the case of a double symmetric deflection can also be studied even in a simpler way considering a half of the domain in
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the problem, and applying the corresponding symmetry conditions. Although both a single and a double symmetric deflection were studied, no significant differences have been observed between the two cases, as it was done in [START_REF] García | Debonding at the fibre-matrix interface under remote transverse tension. one debond or two symmetric debonds?[END_REF].

For this reason, in this paper only the results for a single deflection are presented. 

Penetration

A separate case in which the crack penetrates in the platelet is presented in In Fig. 10 the function K app IC (d) is studied for the range of σ a c . It is observed that the apparent fracture toughness is increased with the strength of alumina and the size of the platelet. On the other hand, Fig. 11 shows that the influence of K a IC on the apparent fracture toughness is more significant when d is increased. As a general remark, the greater the fracture properties of alumina, the greater values of K app IC (d) given in the composite. As an example, a description of the CC for K a IC = 2 MPa•m 1/2 and σ a c = 300

MPa is given in Fig. 12, where two cases are shown. In Fig. 12a the crack propagates inside the alumina platelet, whereas in Fig. 12b a more standard fulfillement of the CC is represented, for a longer platelet. 

Comparison between mechanisms

Finally, in Fig. 13 the expected crack paths presented in Sections 5.2.1 and 5.2.2 are compared to determine the predominant toughening mechanism, which is the one associated with the lowest K app IC , i.e. with the lowest critical load. For the sake of simplicity, only two cases are chosen for penetration, corresponding to the most extreme values of the Al 2 O 3 fracture properties, given in table 1. The minor case, in which K a IC = 2 MPa • m 1/2 , σ a c = 300 MPa, and the major case, where K a IC = 5 MPa•m 1/2 , σ a c = 400 MPa. Notice that they constitute an upper and a lower bound in the curves given in Fig. 13 for the case of penetration. It is observed that the major case is never predominant. Moreover, for very short platelets the predominant mechanism is the penetration. Then, if d > 6 µm the predominant mechanism depends on the fracture properties of Al 2 O 3 , and it can be either a decohesion, either a penetration. Finally, for long platelets d > 160 µm a deflection through the interface glass/alumina or a penetration can occur, depending, again, on the fracture properties of alumina.

In 1989, He and Hutchinson [START_REF] He | Crack deflection at an interface between dissimilar elastic materials[END_REF] explained the necessary condition for a crack to either penetrate or deflect through the interface of a semi-infinite domain divided into two phases, in this case, glass and alumina, with a pre-existing crack in glass. For a right angle, H&H's condition for a crack to be deviated is

G g c G a c < G p G d , (21) 
whereas it penetrates in the reverse situation. The energy release rate related to deflection and penetration are denoted as G d and G p respectively. In [START_REF] Leguillon | Crack nucleation at stress concentration points in composite materials-application to crack deflection by an interface[END_REF] this ratio is expressed in terms of the asymptotic solution, as a function dependant on the ratio E a /E g . In the bi-material case studied this ratio E a /E g = 1.902.

Hence, G d /G p = 0.68.

Two different values of G a c are considered, the upper and lower bound of the alumina fracture toughness, see table 1. Hence, according to H&H, for K a IC = 2

MPa m 1/2 the ratio G g c /G a c = 0.906 and the crack will penetrate, whereas for K a IC = 5 MPa m 1/2 the ratio G g c /G a c = 0.145 and it will deflect. In Fig. 13, the numerical toughening mechanisms studied for α = 90 • were compared. If K a IC = 2 MPa m 1/2 , the penetration clearly predomines. However, if K a IC = 5 MPa m 1/2 , the predominant mechanism is the deflection for d < 160 µm and the decohesion if d > 160 µm. This observation agrees with the theoretical results, since they refer to a semi-infinite domain, which would correspond to the case of very large platelets. The predominant crack path is obtained by comparing the apparent fracture toughness of the three options, see Fig. 16. In Fig. 18 the three expected crack paths are compared, where the so-called major and minor cases were described in Section 5. On the other hand, Fig. 19 shows the three possible crack paths analysed for the case of β = 45 • , i.e. when the crack penetrates straight into the platelet. 

Conclusions

As a general conclusion, a size effect is observed. When the length of the platelet is very small, it is the energy condition that is governing the failure, and consequently the apparent fracture toughness remains constant. Notice that similar conclusions were also observed for bending tests on microcantilever beams at the micro-scale in [START_REF] Jiménez-Alfaro | Finite fracture mechanics at the micro-440 scale. application to bending tests of micro cantilever beams[END_REF]. The size of the platelet d plays also a role on the newly created crack length. If the platelet is short, the crack evolves in an unstable manner joining the glass region beyond the platelet, whereas if it is long, the crack increment remains inside the platelet, or along the interface glass/alumina.

Moreover, in some cases with very short platelets, as α = 0 • , a change in the crack path is not enough to enhance the apparent fracture toughness. It means that other toughening mechanisms should be invoked for improving K app IC , such as a significant increase in the mechanical properties.

The influence of the alumina fracture properties on the toughening mechanisms has been analysed. It can be concluded that both K a IC and σ a c have an impact on the composite fracture properties. However, K a IC has a greater influence on K app IC . Some simplifications have been made in this paper. One of them is that only several representative examples of the expected crack path were analysed. This analysis could be complemented by a first calculation of the expected crack path among all the numerous possibilities, for example, using the Phase Field methodology, assumming much higher computational costs. This paper constitutes the first half of the study. In a second part [START_REF] Jiménez-Alfaro | Modeling of glass reinforced matrices by the coupled criterion. part ii: role of the residual stresses and multiple 445 platelets[END_REF], the role of multiple platelets will be considered, by introducing a surrounding homogeneous equivalent material, whose properties are obtained from experimental results found in the literature. On the other hand, the effect of residual stresses will be analysed. They are produced during cooling after the manufacturing process, where the temperature exceeds 500 • C. It is important to highlight that a separate analysis of these three toughening mechanisms (the deviation of the crack path, the improvement of the material properties, and the presence of residual stresses) is a key tool for an optimal material design, since it allows to study their individual contribution to enhance the material fracture properties. Furthermore, this individual analysis is much more difficult to obtain through experiments.

Figure 1 :

 1 Figure 1: Schematic view of the symmetric 3-point bending test. An alumina platelet with a certain inclination α, is embedded in the glass matrix. The pre-existing crack impinges the platelet.

Figure 2 :

 2 Figure 2: Schematic view of the inner domain. Notice that the length of the alumina platelet is 1.

  Remark: A special care must be brought when the crack is nucleated in a heterogeneous material. Hence, assuming a crack path formed by two segments, one in material A and the other in material B, with different material properties, the energy and stress condition are expressed as a function of the fracture properties of the two materials G A, B c and σ A, B c

Figure 3 :

 3 Figure 3: Schematic view of the inner domain for α = 0 • . The supposed crack path starts from the corner of the platelet (red arrow).

Figure 4 :

 4 Figure 4: Evolution of K app IC /K g IC with respect to d, for α = 0 • .

  energy curve is not an increasing function in the glass region. Other examples of the application of the CC are given in Fig. 5b for d = 20 µm and Fig. 5c, for d = 100 µm.

  (a) d = 10 µm (b) d = 20 µm (c) d = 100 µm

Figure 5 :

 5 Figure 5: Examples of the application of the CC for α = 0 • .

Figure 6 :

 6 Figure 6: Scheme of the inner domain and the supposed crack path (red arrow) for α = 90 • , for different toughening mechanisms.

Figure 7 :

 7 Figure 7: Application of the CC for α = 90 • in the case of deflection, shown in Fig. 6a, for d = 50 µm.

  On the other hand, two examples are given for d = 100 µm and d = 200 µm 200 in Figs. 8a and 8b, respectively. In the first case, d = 100 µm, the crack grows until the end of the lateral interface glass/alumina. In the second case, d = 200 µm, the crack jump is bigger and the initiation length ends in the glass region.

Figure 8 :

 8 Figure 8: Application of the CC for α = 90 • in the case of decohesion, shown in Fig. 6b.

205Fig. 9 ,

 9 Fig. 9, in which the fracture properties of Al 2 O 3 , defined through a range of possible values, determine the evolution of the failure.

Figure 9 :

 9 Figure 9: Scheme of the inner domain and the supposed crack path (red arrow) for α = 90 • and penetration.

Figure 10 :

 10 Figure 10: Evolution of K app IC /K g IC with d for several values of σ a c in the case of a crack penetration, considering an average value of the fracture toughness K a IC = 3.35 MPa • m 1/2 .

Figure 11 :

 11 Figure 11: Evolution of K app IC /K g IC with d for several values of K a IC in the case of a crack penetration, considering an average value of the strength σ a c = 350 MPa.

Figure 12 :

 12 Figure 12: Application of the CC for α = 90 • in the case of penetration, shown in Fig. 9, considering K a IC = 2 MPa • m 1/2 and σ a c = 300 MPa.

Figure 13 :

 13 Figure 13: Evolution of K app IC /K g IC with respect to the length of the platelet d, for a single deflection, a decohesion and a penetration, when α = 90 • .

5. 3 .

 3 Results for α = 45 • In the case α = 45 • two more parameters are used to define the expected crack path, as illustrated in Fig. 14. The angle β, the first deflection angle of the crack when it penetrates in the alumina platelet, and the angle γ, a secondary deflection when the prescribed crack penetrates from the alumina platelet to the glass matrix. To differentiate the possible toughening mechanisms that can be given in this situation, three possible values for each angle, β, γ = 0 • , 45 • and 90 • , are studied.

Figure 14 : 5 . 3 . 1 .

 14531 Figure 14: Scheme of the expected crack path in the inner problem for α = 45 • . A new localcoordinates system is defined (z 1 , z 2 ), so that z 1 is always oriented with the supposed crack path.

Figure 15 :

 15 Figure 15: Scheme of the inner domain for α = 45 • and β = 0 • and the supposed crack paths (red arrows).

Figure 16 :

 16 Figure 16: Evolution of K app IC /K g IC with d for several values of γ in the case of β = 0 • .

Figure 17 :

 17 Figure 17: Scheme of the inner domain for α = 45 • and β = 90 • and the supposed crack paths (red arrows).

  (a) Minor case (b) Major case

Figure 18 :

 18 Figure 18: Evolution of K app IC /K g IC with d for several values of γ in the case of β = 90 • .

Figure 19 :

 19 Figure 19: Scheme of the inner domain for α = 45 • and β = 45 • and the expected crack paths (red arrows).

  (a) Minor case (b) Major case

Figure 20 :

 20 Figure 20: Evolution of K app IC /K g IC with d for several values of γ in the case of β = 45 • .

Figure 21 :

 21 Figure 21: Evolution of K app IC /K g IC with d for several values of β.

Table 1

 1 lists the mechanical properties of the constituents borosilicate glass and Al 2 O 3 .

Table 1 :

 1 Mechanical properties of the constituents.

	1/2 ]

  2.3. As it was observed forother cases, different behaviours can be distinguished. They are related to the different results arised by the CC analysis. A zoom inside each graph highlights the region of short platelets. Clearly, when the fracture properties of alumina are improving, K app IC is increasing. In fact, for very short platelets it is observed that the crack deflection for the minor case is not enough to increase K app IC with
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respect to K g IC for very low values of the alumina fracture properties.

https://srdata.nist.gov/CeramicDataPortal/Pds/Scdaos
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