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ARTICLE

Brain Connectivity-Based Prediction of Combining Remote Semantic Associates 
for Creative Thinking
Marcela Ovando-Tellez a*, Yoed N. Kenett b*, Mathias Benedek c, Matthieu Bernarda, Joan Beloa, 
Benoit Berangere, Theophile Bietha,d, and Emmanuelle Volle a

aSorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, Paris, France; bFaculty of Data and Decision Sciences, Technion – 
Israel Institute of Technology,Haifa Israel; cInstitute of Psychology, University of Graz, Graz, Austria; dNeurology department, Pitié-Salpêtrière 
hospital, AP-HP, Paris, France; eSorbonne University, CENIR at Paris Brain Institute (ICM), INSERM, CNRS, Paris, France

ABSTRACT
Associative thinking plays a major role in creativity, as it involves the ability to link distant concepts. 
Yet, the neural mechanisms allowing to combine distant associates in creative thinking tasks 
remain poorly understood. We investigated the whole-brain functional connectivity patterns 
related to combining remote associations for creative thinking. Using a connectome predictive 
modeling approach, we examined whole-brain functional connectivity patterns related to con-
necting close and distant remote associates in the Combination Association Task (CAT). Brain 
connectivity networks predicting CAT performance showed contributions from brain functional 
connectivity mostly related to the Default Mode Network, likely related to associative processes 
required in all trials of the task. Besides, the functional connectivity pattern of associative remote-
ness linked to CAT trials also largely involved the Executive Control Network, Dorsal Attention 
Network and Somatomotor networks, suggesting that more controlled processes played an 
important role in trials with higher associative remoteness. Critically, the functional connectivity 
patterns related to higher creative demands of the task share similarities with functional connec-
tivity patterns previously found to predict divergent thinking. Thus, our work potentially offers 
insights into neural mechanisms that play a role in both convergent and divergent remote 
thinking.
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Introduction

Creative thinking allows people to solve problems, inno-
vate, and adapt to new situations (Lopez-Persem, Bieth, 
Guiet, Ovando-Tellez, & Volle, 2021). Creativity is 
therefore of undeniable societal and individual interest, 
as it is essential for the blossoming and progress of 
individuals and societies. Despite its importance, the 
cognitive mechanisms underlying creative abilities are 
far from understood (Beaty, Benedek, Silvia, & Schacter,  
2016; Benedek & Fink, 2019).

Two main creative thinking abilities that have been 
studied over the past years are divergent and convergent 
thinking (Kenett et al., 2020). Divergent thinking refers 
to an ideational process which involves generating 
a broad range of solutions or ideas to a given task and 
is considered the hallmark of creative ability (Acar & 
Runco, 2019; Runco & Acar, 2012). Conversely, con-
vergent thinking involves exploring different ideas to 

select the pertinent one, or to find the correct solution to 
a given problem (Brophy, 2001; Lee & Therriault, 2013). 
While the neuroscientific research of creativity has sig-
nificantly increased over the past two decades (Kenett 
et al., 2020), most of this research focuses on divergent 
thinking, and far less is known on the cognitive and 
neural mechanisms related to convergent thinking 
(Benedek, Christensen, Fink, & Beaty, 2019). The exist-
ing research on convergent thinking is largely motivated 
by the associative theory of creativity, and the Remote 
Association Task (RAT) developed to study this theory 
(Mednick, 1962).

Based on Mednick’s associative theory, creative 
thinking relies on combining remote associative ele-
ments in a novel and effective way. Hence, the more 
remote these elements are, the more creative the process 
of combining them is (Mednick, 1962). This model 
further hypothesizes that creative abilities partly depend 
on the organization of the concepts in semantic memory 
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(e.g., Abraham & Bubic, 2015; He et al., 2021). Previous 
research supports the role of associative thinking in 
creativity showing that more creative individuals are 
able to link distant concepts more easily, rate unrelated 
words as less semantically distant and are faster in jud-
ging the relatedness of concepts (Beaty, Silvia, 
Nusbaum, Jauk, & Benedek, 2014; Benedek & 
Neubauer, 2013; Rossman & Fink, 2010; Vartanian, 
Martindale, & Matthews, 2009), have more flexible 
semantic associations and connect more distant con-
cepts or words (Bendetowicz et al., 2018; Bendetowicz, 
Urbanski, Aichelburg, Levy, & Volle, 2017; Benedek, 
Könen, & Neubauer, 2012; Kenett, Anaki, & Faust,  
2014; Volle, 2018). These findings suggest that remote 
elements in memory may be more strongly intercon-
nected in creative individuals. In addition, brain- 
damaged patients have shown more rigid semantic asso-
ciations related to poor creative abilities (Bendetowicz 
et al., 2018; Ovando-Tellez, Bieth, Bernard, & Volle,  
2019; Paulin, Roquet, Kenett, Savage, & Irish, 2020). 
Overall, associative thinking has been related to creative 
abilities as measured by different framework-based tasks 
(Beaty, Silvia, Nusbaum, Jauk, & Benedek, 2014; 
Benedek, Jurisch, Koschutnig, Fink, & Beaty, 2020; 
Benedek, Könen, & Neubauer, 2012; Mednick, 1962).

Despite the importance of associative thinking in 
creativity, the neural mechanisms allowing to connect 
and combine distant associates in creative tasks remain 
poorly understood. Importantly, it is still unclear how 
the process of making associative combinations is 
reflected at the level of the brain, and how it depends 
on varying levels of associative remoteness between 
concepts. In the current study, we examine this issue 
by applying a machine learning approach to examine 
how whole-brain neural functional connectivity pat-
terns predict different aspects of a creative associative 
task, based on the original RAT (Mednick, 1962), and 
how these brain patterns are similar or differ when 
predicting the successful combination of associates 
with lower or higher associative remoteness.

In the RAT, participants are presented with three 
unrelated cue words and are required to find a fourth 
word offering a semantic link to all cues (e.g., blue, 
cottage, cake; response: cheese). While still debated 
whether the RAT more strongly relates to intelligence 
or creativity (Lee & Therriault, 2013), recent studies are 
applying state-of-the-art methods to unpack the cogni-
tive processes and neural mechanisms involved in per-
forming this task, focusing on automatic, spontaneous, 
and controlled, executive, cognitive processes (Becker, 
Davis, & Cabeza, 2022; Becker, Kühn, & Sommer, 2020). 
For example, process analyses of RAT performance have 
shown that it involves incrementally constrained search 

processes, where participants make an association to 
one cue and then evaluate its fit to the other cues 
(Smith, Huber, & Vul, 2013). Conversely, RAT has 
been also highly related to insight problem solving 
(Bowden & Jung-Beeman, 2003; Kounios & Beeman,  
2014). Over the years, variations of the original RAT 
have been developed. For example, the compound RAT 
focuses on the formation of compound words by com-
bining the cues and the target words (Bowden & Jung- 
Beeman, 2003). More recently, Bendetowicz and collea-
gues (Bendetowicz et al., 2018; Bendetowicz, Urbanski, 
Aichelburg, Levy, & Volle, 2017) developed the com-
bined association task (CAT). This task measures the 
ability to find associative links between three cue words, 
and trials differ as a function of the cues’ associative 
remoteness (or associative distance) to the solution. To 
this aim, the authors varied and controlled the semantic 
distance (or measured based on French associative 
norms; http://dictaverf.nsu.ru/pages/dict_sanfn.php? 
lang=fr) between the expected solution and the three 
cue words. The CAT was developed to test Mednick’s 
hypothesis, according to which the more remote the 
elements to be combined, the more creative the process 
(Mednick, 1962). Indeed, Bendetowicz et al. (2018) 
showed that a difference in performance between dis-
tant (i.e., higher semantic distance between cue words 
and solution) and close (i.e., shorter semantic distance 
between cue words and solution) trials of the CAT 
correlated with other creativity measures such as diver-
gent thinking. Compared to classic RAT versions, this 
task allows to assess the effect of associative remoteness 
on the successful combination of cue words, and to 
study the brain correlates of this effect. However, while 
associative abilities are widely acknowledged as playing 
a major role in creative thinking (Benedek, Könen, & 
Neubauer, 2012), performance in such remote associa-
tion tasks (standard, compound, or combined) is far 
from understood. One way to further elucidate perfor-
mance in such associative tasks in relation to creativity 
is by studying the neural correlates of performance in 
such tasks.

Existing MRI-based neuroimaging studies have iden-
tified a large set of brain regions involved in creative 
cognition (Beaty et al., 2018; Beaty, Seli, & Schacter,  
2019; Boccia et al., 2015; Gonen-Yaacovi et al., 2013; 
Volle, 2018). A growing body of creativity neuroscience 
research has highlighted the importance of functional 
interactions within and between several brain networks, 
including the executive control network (ECN), salience 
network and the default mode network (DMN) 
(Zabelina & Andrews-Hanna, 2016). Additionally, 
semantic and episodic memory regions (Benedek et al.,  
2018; Cogdell‐brooke, Sowden, Violante, & Thompson,  
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2020; Gonen-Yaacovi et al., 2013; Liu et al., 2021; 
Madore, Thakral, Beaty, Addis, & Schacter, 2019), and 
the motor and premotor regions have been shown to 
play a role in creative cognition (Gonen-Yaacovi et al.,  
2013; Matheson & Kenett, 2020; Ovando-Tellez et al.,  
2022). The advantage of a whole-brain functional con-
nectivity approach over a localization-based approach is 
to provide a holistic and functional view of how brain 
networks relate to creative thinking. For example, rest-
ing-state functional connectivity as well as task-based 
functional connectivity within and between these net-
works were shown to predict individual-differences in 
creative abilities (Beaty et al., 2018; Chen et al., 2014; 
Frith et al., 2021; Wei et al., 2012).

Only a few studies have so far examined the neural 
substrates related to associative thinking as assessed 
with the RAT, and most studies using the RAT-like 
tasks focused on the insight phenomenon (Wu, 
Huang, Chen, & Chen, 2020). These studies include 
structural (Bendetowicz, Urbanski, Aichelburg, Levy, 
& Volle, 2017; Tu, Kuan, Li, & Su, 2017), task-based 
(Becker, Kühn, & Sommer, 2020; Becker, Sommer, & 
Kühn, 2020a, 2020b; Benedek, Jurisch, Koschutnig, 
Fink, & Beaty, 2020; Tik et al., 2018; Wu & Chen,  
2021b; Wu, Chan, & Chen, 2021; Wu, Tsai, & Chen,  
2020) and resting-state (Wu & Chen, 2021a) functional 
MRI, patient (Bendetowicz et al., 2018) and neural 
modeling (Kajić, Gosmann, Stewart, Wennekers, & 
Eliasmith, 2017) research. The structural and functional 
MRI studies consistently demonstrate the role of the left 
inferior frontal gyrus – a key region of the ECN also 
involved in semantic control – in such association tasks, 
(Becker, Kühn, & Sommer, 2020; Becker, Sommer, & 
Kühn, 2020a; Benedek, Jurisch, Koschutnig, Fink, & 
Beaty, 2020) and is considered to be critical in retrieving 
remote associations or link remote concepts (Evans, 
Krieger-Redwood, Alam, Smallwood, & Jefferies, 2020; 
Krieger-Redwood et al., 2022; Vatansever, Smallwood, 
& Jefferies, 2021). In addition, performance in the RAT 
has been related to higher efficiency of the DMN (Wu & 
Chen, 2021a, 2021b; Wu, Tsai, & Chen, 2020), 
a network that has been broadly associated with heigh-
tened associative abilities (Benedek, Jurisch, 
Koschutnig, Fink, & Beaty, 2020; Marron et al., 2018; 
Marron, Berant, Axelrod, & Faust, 2020). Finally, per-
formance in the RAT has been related to strong bilateral 
activation in the insula (Becker, Sommer, & Kühn,  
2020b), a key region of the salience network, 
a network related to orienting and attention to stimuli 
(Uddin, 2015). Critically, all three brain networks have 
been strongly linked to performance in divergent think-
ing tasks (Beaty et al., 2018; Beaty, Seli, & Schacter,  
2019).

Using the CAT, Bendetowicz, Urbanski, Aichelburg, 
Levy, and Volle (2017) found that higher performance 
in combining remote associates was related to lower 
gray matter volume in the left rostrolateral prefrontal 
cortex (PFC) and in the left inferior parietal lobule. In 
a follow-up study, Bendetowicz et al. (2018) examined 
patients with focal frontal lesions as they performed the 
CAT. The authors found that damage to the right med-
ial PFC in the DMN affected patients’ ability to generate 
remote associations, whereas damage to the left rostro-
lateral PFC in the ECN spared remote association ability 
but impaired the combination ability required by the 
CAT. These results converge with recent findings 
(Evans, Krieger-Redwood, Alam, Smallwood, & 
Jefferies, 2020) showing that forming remote associa-
tions involves intra-DMN regions (including the rostro-
medial PFC) while combining remote associates recruits 
the functional connectivity between DMN and ECN 
regions, in particular in the inferior frontal gyrus 
(IFG). They also are consistent with recent evidence 
(Becker, Kühn, & Sommer, 2020) showing that 
increased semantic distance during compound RAT 
recruit IFG control-related regions, indicating that the 
DMN may not be sufficient during RAT-like associative 
thinking tasks. Overall, existing findings indicate that 
RAT performance depends on the remoteness of the 
solution word and requires both associative and con-
trolled combination processes supported by distinct 
regions and networks (Bendetowicz et al., 2018, see 
also Becker, Davis, & Cabeza, 2022; Smith, Huber, & 
Vul, 2013). This data also highlights the need for whole- 
brain functional connectivity studies to further elucidate 
the interaction of these networks in combining remote 
associates.

A recent approach in neuroimaging research is con-
nectome-based predictive modeling (CPM; Shen et al.,  
2017), which uses machine learning methods to identify 
patterns of functional connectivity that predict complex 
cognitive functions, including divergent thinking ability 
(Beaty et al., 2018; Frith et al., 2021; Goldfarb, 
Rosenberg, Seo, Constable, & Sinha, 2020; P. Liu et al.,  
2021; Ren et al., 2021; Rosenberg et al., 2016; Shen et al.,  
2017). The relationship of individual differences in 
brain functional organization and creative abilities 
using a CPM approach has so far only been investigated 
with divergent thinking tasks (Beaty et al., 2018; Frith 
et al., 2021), while more convergent tasks such as the 
RAT or CAT have not yet been explored with this 
connectome-based approach.

In this study, we used a CPM approach to examine 
the functional connectivity patterns predicting indivi-
dual differences in creative performance as measured by 
the CAT. We analyzed task-based functional brain 
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connectivity under well-defined conditions while parti-
cipants performed a semantic relatedness judgment 
task. This approach allowed us to assess brain connec-
tivity while all participants were performing the same 
task but yet independent of task-related brain activation 
(see Methods). Importantly, the functional connectivity 
patterns during task conditions improves the predic-
tions beyond resting-state functional connectivity 
(Cole, Ito, Cocuzza, & Sanchez-Romero, 2021). Finally, 
we applied the predictive model built on task-related 
functional connectivity data to the resting-state data of 
the participants as an internal validation and evaluation 
of the generalization of the predictive model to rest data.

The advantage of using the CAT, rather than the 
classic RAT, is that creative performance in trials with 
lower and higher associative remoteness can be assessed 
separately by varying associative distance between cue 
and solution words across CAT trials. We hypothesize 
that, similar to divergent thinking, the associative 
mechanisms recruited for performing in the CAT can 
be predicted by whole-brain functional connectivity 
patterns. Specifically, we predict that such functional 
connectivity patterns will involve, in particular, connec-
tions within and between the DMN, ECN, and salience 
networks (Beaty et al., 2018; Beaty, Benedek, Kaufman, 
& Silvia, 2015; Becker, Sommer, & Kühn, 2020b; 
Bendetowicz et al., 2018). Moreover, based on previous 
results (Bendetowicz et al., 2018) showing the recruit-
ment of the executive control network for distant trials, 
we expected to observe a higher involvement of control 
networks for trials with higher associative remoteness.

Materials and methods

Participants

Data collected for this study were part of a larger study 
examining the role of neural and cognitive networks in 
creative thinking (Ovando-Tellez et al., 2022, 2022). We 
recruited 101 healthy right-handed participants (48 
women, aged 22–40 years, mean age 25.6 ± SD 3.7) 
without neurological disorder, cognitive disability or 
medication affecting the central nervous system. All 
participants were French native speakers and had nor-
mal or corrected-to-normal vision. Eight participants 
were excluded from the fMRI analysis due to the dis-
covery of MRI brain abnormalities (6 participants), fall-
ing asleep during the acquisition of the data (1 
participant) and claustrophobia episode at the begin-
ning of the MRI scanning (1 participant). The partici-
pant that experienced the episode of claustrophobia 
performed the task outside the scanner and this data 
was included in the behavioral analysis. In total, the data 

collected from 94 participants (44 women, mean age 
25.4 ± 4.2) were considered for the behavioral analyses, 
and the data from 93 participants were considered for 
the fMRI analyses (44 women, mean age 25.4 ± 3.4). The 
study was approved by a national ethical committee 
(CPP Number 180,103; ID-RCB 2017-A03109-44). 
Participants gave written informed consent and received 
a monetary compensation for their participation.

Materials

General procedure

After being informed about the experiment and overall 
visit, the participants first completed the fMRI session 
while performing semantic relatedness judgments, fol-
lowed by a resting-state session. Then, outside the scan-
ner, and after a self-paced break, they completed 
the CAT.

Combined associates task (CAT)

The CAT (Bendetowicz et al., 2018; Bendetowicz, 
Urbanski, Aichelburg, Levy, & Volle, 2017) is an adap-
tation of the RAT (Mednick, 1962) and measures the 
ability to combine remotely associated words. In this 
task, three cue words with no obvious link are presented 
to the participants and they have to come up with 
a fourth word that is semantically related to all the 
three cue words. CAT trials vary according to the 
mean associative distance between each of the three 
cue words and the expected solution, based on French 
association norms (Debrenne, 2011). This database 
enables to compute an associative strength (or fre-
quency) that quantifies the percentage of native French 
speakers (n > 450) who produced the word B when they 
were given the word A in a free word association task. 
Therefore, each trial had a value measuring the mean 
associative strength between the cues and the expected 
solution, where lower values represent higher remote-
ness (i.e., lower associative strength between the cue 
words and the solution), while higher values represent 
lower remoteness (i.e., higher associative strength 
between the cue words and the solution). The task con-
sisted of 100 trials, half of which could be categorized as 
either close or distant trials based on a median split of 
the mean associative strength (median value 6.5; range 
from 0.3 to 38.8).

The time course of the task consisted of presenting 
the 100 trials successively to the participants on the 
computer screen, including a self-paced break after 50 
trials (Figure 1). The sequence of trials counterbalanced 
quasi-randomly across the participants. For each trial, 
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the three cue words were displayed on the computer 
screen and participants had 30 s to come up with the 
response. They were asked to press the space bar once 
they had its answer and to type in the word response via 
a keyboard. After the participants wrote their response, 
they were asked to report whether the solution was 
found by insight (Eureka) or not (Kounios & Beeman,  
2014; Topolinski & Reber, 2010) by pressing either the 
key V (insight) or N (no-insight) on the keyboard. The 
written instructions were as follows: “After finding the 
solution, please indicate whether you solved the pro-
blem with a Eureka phenomenon. That is, if the solution 
came to your mind suddenly, like an illumination. This 
phenomenon corresponds to a solution that appeared 
all of a sudden, without effort. It is the opposite of 
finding the solution via progressive steps where several 
possible answers are successively tested. The question is 
therefore about the feeling you had in the moment 
before you gave your answer.” If the participant did 
not find the solution within the 30 s, a new trial was 
proposed.

For each trial, participants could provide only one 
solution. A given response was considered as correct 
when it was related to each of the three cues of the 
trial, based on the French dictionary of associative 
norms (Dictaverf; http://dictaverf.nsu.ru/pages/dict_ 
sanfn.php?lang=fr). Responses that were lexically simi-
lar to responses considered as correct were also accepted 
(i.e., words with a same root, such as, “STOP” and 
“STOPPER”).

For each participant, we computed seven different 
CAT scores: 1) The solving performance was quantified 
by the percentage of correct responses in total 

(CAT_all), and for close (CAT_close) and distant 
(CAT_distant) trials, separately; 2) The mean reaction 
time for correct responses considered the time from the 
onset of cue words to the moment when the participant 
pressed the space bar, in total (CAT_all_RT), in close 
(CAT_close_RT) and distant (CAT_distant_RT) trials, 
separately; and 3) To account for the processes carried 
out by the participants to solve the CAT trials, we 
calculated the percentage of correct responses that 
were solved through a Eureka phenomenon 
(CAT_eureka).

Finally, in order to examine the effect of the associa-
tive remoteness of CAT trials on the individual’s per-
formance, we assessed individual differences in the 
ability of performing CAT at varying levels of associa-
tive remoteness. We took advantage of the associative 
strength value of each CAT trial and examined the effect 
of this variable on the probability of solving the CAT 
trials at the individual level via a logistic regression 
analysis (Bieth et al., 2021). As we expected the associa-
tive strength of the trials to be correlated with the 
individual’s RTs, we controlled for RTs in the regression 
analysis. For each individual, we estimated the intercept 
and the slope of the regression analysis. We assumed 
that the intercept reflects the predicted mean probability 
of solving the CAT trial and labeled it CAT_ability, and 
the slope, reflects the predicted change in the probability 
of solving CAT trials when the associative strength 
varies, and labeled it CAT_sensitivity. Since the slope 
shows the relationship between performance and asso-
ciative remoteness, a negative slope indicates higher 
probability of solving CAT trials when the associative 
remoteness increases (i.e., lower strength of association 

Figure 1. Time course of a CAT trial. CAT trials are presented for close (magenta frame) and distant (green frame) trials. Each trial starts 
with the presentation of the cue words for either a close or a distant trial for up to 30 seconds. Once the participant thinks of 
a solution, they press the space bar and type the response using a keyboard within a time limit of 5 seconds. Then, if the participant 
provides a response, they are asked whether they experienced a Eureka. The response is provided using the ‘v’ (yes) or the ‘n’ key (no). 
Trials were separated by an intertrial of 0.5 seconds.
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between cue words and solution), while a positive slope 
indicates a lower probability when the associative remo-
teness increases. Overall, the CAT_ability represents the 
probability of finding the solution of the CAT trials and 
therefore, the ability to successfully perform the task. 
We expect CAT_all and CAT_ability to both capture 
overall performance in CAT. CAT_sensitivity represents 
how much the probability of solving the CAT trials 
decreases as the remoteness of the trials increases. 
Therefore, CAT_sensitivity should reflect individual 
sensitivity of performance to associative remoteness. 
We expect that it relates to the difference in perfor-
mance between close and distant trials. A summary of 
all the CAT scores is provided in the Table 1.

Relatedness judgment task (RJT)

Participants underwent the RJT task during a multi- 
echo fMRI acquisition. Before the performance of the 
RJT, participants underwent a motor and a task train-
ing. The motor training consisted of 25 trials, in which 
participants were presented with a number in the center 
of the screen, along with a visual scale going from 0 to 
100. Using a trackball, they were instructed to localize 
the number into the scale and to validate their response. 
At the end of each trial, participant received a feedback 
indicating the value within the visual scale correspond-
ing to the position of the trackball at the moment of the 
validation. The task training consisted of 15 trials, and 
the instructions given to the participants were the same 
than the actual task. The difference between the training 
and the actual tasks were the pairs of words used as 
stimuli. Both trainings considered the same parameters 
of time than the actual task, as detailed below.

The task consisted of judging the relatedness between 
595 pairs of words (Benedek et al., 2017; He et al., 2021; 
Ovando-Tellez et al., 2022). These pairs of words con-
sisted of all possible pair word combinations from a set 
of 35 words. The set of 35 words was selected via 
computational methods which allowed controlling for 
semantic and linguistic properties of the words, and the 
proportion of the theoretical semantic distance between 
all possible pairings between two different words. The 

theoretical semantic distance was measured based on 
French verbal association norms (http://dictaverf.nsu. 
ru/pages/dict_sanfn.php?lang=fr). For further details 
of the building of the RJT see Bernard, Kenett, Ovando- 
Tellez, Benedek, and Volle (2019).

The 595-word pairs were used as trials for the 
RJT. The 595 trials were presented successively to 
the participants, and they were asked to judge the 
relatedness between the words. Each trial began with 
the display of the pair words with a visual scale 
below ranging from 0 (unrelated words) to 100 
(strongly related words). Each trial consisted of the 
reflection period, the response period and an inter- 
interval trial period. During the reflection period, 
participants were given 2 s to think about the relat-
edness between the words. After this time, during the 
response period, a cursor appeared in the middle of 
the visual scale and participants were able to move 
the slider, using an MRI-compatible trackball, to give 
their response. Participants had 2 s to move the 
slider and to localize it on any of the values of the 
visual scale according to their relatedness judgment. 
Participants were asked to validate their response by 
clicking on the trackball. We registered the position 
of the slider at the moment of the validation or at 
the end of the response period, that was considered 
as the relatedness judgment value between words 
given by the participant. Each trial included an inter- 
trial interval jittered ranging from 0.3 to 0.7 
s (interval = .05).

We distributed the 595 trials in six runs composed by 
100 trials each, except for the last run with only 95 trials. 
Each run lasted 530 s and was composed by four blocks 
of 25 trials (20 trials for the last run of the sixth run) 
separated by 20 s of cross fixation. At the beginning and 
at the end of each run, a 10-s cross fixation was dis-
played on the screen. The last 2 s of the rest period, the 
cross changed of color to warn the participants the 
beginning or continuation of the task. Between runs, 
participants stayed inside the scanner and had a self- 
paced break. For each participant, we computed the 
mean relatedness judgment across all RJT trials 
(meanRJT).

Table 1. Description of CAT scores.
CAT scores Measure

CAT_all Solving CAT trials performance
CAT_close Solving CAT close trials performance
CAT_distant Solving CAT distant trials performance
CAT_all_RT Mean reaction times for the total of correct responses
CAT_close_RT Mean reaction times for the correct responses in the close trials
CAT_distant_RT Mean reaction times for the correct responses in the distant trials
CAT_eureka Correct responses solved through a Eureka phenomenon
CAT_ability Ability of solving CAT trials (computed in the logistic regression)
CAT_sensitivity Ability of solving CAT trials when varying the associative remoteness of the trials (computed in logistic regression)
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MRI data acquisition and preprocessing

Participants completed the RJT task in six separated 
runs during the fMRI acquisition data. FMRI data 
were collected on a 3T MRI scan (Siemens Prisma, 
Germany) with 64-channel head coil using multi-echo 
echo-planar imaging (EPI) sequences. Each run 
included 335 whole-brain volumes acquired with para-
meters as follows: repetition time (TR) = 1,600 ms, echo 
times (TE) for echo 1 = 15.2 ms, echo 2 = 37.17 ms and 
echo 3 = 59.14 ms, flip angle = 73°, 54 slices, slice thick-
ness = 2.50 mm, isotropic voxel size 2.5 mm, field of 
view (FoV) = 210 mm, Ipat acceleration factor 2, multi- 
band 3 and interleaved slice ordering. At the end of the 
six functional runs, a T1-weighted structural image was 
acquired with the parameters as follows: TR = 2,300 ms, 
TE = 2.76 ms, flip angle = 9°, 192 sagittal slices with a 1  
mm thickness, isotropic voxel size 1 mm, FoV = 256  
mm, Ipat acceleration factor 2 and interleaved slice 
ordering. A 15-min resting scan was collected after the 
T1 acquisition. No dummy scan was recorded during 
the acquisition; therefore, we did not discard any 
volume.

The fMRI data was preprocessed in three different 
steps. First, we preprocessed the fMRI data for each 
run separately using the afni_proc.py pipeline from 
AFNI (Cox, 1996). The AFNI pipeline included 
despiking, slice timing correction, and realignment to 
the first volume (computed on the first echo). 
The second preprocessing step consisted of denoising 
the data using the TE-dependent analysis of multi- 
echo fMRI data (TEDANA), version 0.0.9 (Kundu 
et al., 2013; Kundu, Inati, Evans, Luh, & Bandettini,  
2012). The acquisition of multi-echo EPI sequences 
allowed us to preprocess the data by assessing the 
BOLD and non-BOLD signal through the ICA-based 
denoising method. This method improves the cleaning 
of the data and the reliability of the functional con-
nectivity-based measurement (Lynch et al., 2020). 
Using the TEDANA pipeline, we first performed an 
optimally combination of the single-echo time series 
across echoes. The dimensionality of the combined 
data was then reduced using a principal component 
analysis (PCA) and independent component analysis 
(ICA) to decompose the multi-echo BOLD data. 
Similar ICA-based approaches have been previously 
used as a robust strategy for removing motion arti-
facts from fMRI data (Pruim et al., 2015). Finally, the 
resulting components were classified as BOLD or 
non-BOLD, and the exclusion of the non-BOLD com-
ponents allowed the removal of thermal and physio-
logical noise such as the artifacts generated by the 
movements, respiration and cardiac activity.

The last step of the preprocessing was performed 
with the Statistical Parametric Mapping (SPM) 12 pack-
age running in Matlab (Matlab R2017b, The 
MathWorks, Inc.,USA). The denoised data was co- 
registered on the T1-weighted structural image 12 pack-
age running in Matlab (Matlab R2017b, The 
MathWorks, Inc., USA). We then normalized the data 
to the Montreal Neurological Institute (MNI) template 
brain, using the transformation matrix computed from 
the normalization of the T1-weighted structural image, 
performed with the default settings of the computa-
tional anatomy toolbox http://dbm.neuro.uni-jena.de/ 
cat/ (CAT 12; Gaser, Dahnke, Thompson, Kurth, & 
Luders, 2022) implemented in SPM 12. To covary out 
the task-related signal from each run, we entered the 
data in a general linear model (GLM) in SPM. For the 
GLM analysis, we entered the 24 motion parameters 
(standard motion parameters, first temporal derivatives, 
standard motion parameters squared and first temporal 
derivatives squared) and the onsets and durations of the 
task-related events as confounds to be regressed from 
the BOLD signal. Finally, we concatenated the residuals 
of each task run and we standardized and detrended the 
resulting data before concatenating the six runs. The 
rest periods between runs (6 volumes in total) were 
removed from the concatenation. This method follows 
the background connectivity approach (Cole et al.,  
2019). This choice was motivated by previous studies 
showing subtle differences in intrinsic networks during 
task performance compared to rest, which are largely 
individual-specific (Gratton et al., 2018) and facilitate 
the prediction of individual traits and differences in 
brain–behavior relationships (Cole, Ito, Cocuzza, & 
Sanchez-Romero, 2021; Greene, Gao, Scheinost, & 
Constable, 2018; Jiang et al., 2020). The final dataset 
composed of the concatenated residuals of the six task- 
runs was used as input for the subsequent task-based 
functional connectivity analyses.

As an internal validation, we additionally explored 
whether the predictive models based on the task-based 
functional connectivity are generalizable to participants’ 
resting-state functional connectivity. Note that “task- 
based functional connectivity” refers to the functional 
connectivity explored during the performance of the 
RJT following the background connectivity approach 
(Cole et al., 2019).

Building the task-based functional connectivity 
matrices

We estimated the task-based functional connectivity 
matrices of each participant using Nilearn v0.3 
(Abraham et al., 2014) in Python 2.7. To define the 
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region of interest (ROIs), we used the Schaefer brain 
atlas consisting of 200 ROIs distributed into 17 func-
tional subnetworks across 8 main functional networks 
(Schaefer et al., 2017). We selected the Schaefer atlas 
because the definition of the different parcels was based 
on resting-state functional connectivity by integrating 
two approaches of local gradient and global similarity, 
and because it has more functionally homogeneous 
brain parcellations than other atlases, both when explor-
ing resting-state and task-based functional connectivity 
data (Schaefer et al., 2017). We extracted the BOLD 
signal during the RJT task for each ROI separately 
(averaged across voxels) and computed the Pearson 
correlation coefficients between all pair of ROIs. For 
each participant, we built a 200 × 200 matrix in which 
the rows and columns represented the ROIs and the 
convergent cell between ROIs represented the correla-
tion coefficients between them. This matrix corresponds 
to the functional connectivity network of each 

participant in which ROIs are the nodes, and correlation 
coefficients the links. These matrices were Z- Fisher- 
transformed and rescaled to the maximum value for the 
subsequent analyses.

Connectome-based predictive modeling (CPM)

The CPM analyses were performed using Matlab 
Statistical Toolbox (Matlab R2020a, The MathWorks, 
Inc., USA). The pipeline for the CPM is adapted from 
the Shen protocol (Shen et al., 2017). Using the CPM 
approach (Beaty et al., 2018; Rosenberg, Hsu, Scheinost, 
Todd Constable, & Chun, 2018; Shen et al., 2017), we 
explored whether creativity scores measured by the 
CAT task can be predicted from patterns of functional 
connectivity during the RJT task.

We performed independent CPM-based predictions 
of the CAT scores (CAT_all, CAT_close, CAT_distant, 
CAT_all_RT, CAT_close_RT, CAT_distant_RT and 

Figure 2. CPM-based prediction of the CAT scores. (a) We defined 200 brain ROIs based on the Schaefer atlas. For each participant, we 
measured the BOLD activity during the relatedness judgement task (RJT) and built a 200 by 200 functional connectivity matrix. The 
columns and rows represent the 200 ROIs, and each cell (links) is the coefficient of correlation between ROIs during the RJT task. Since 
we ran a leaving-out-one cross-validation, each of the CPM steps were analyzed in N-1 subjects. First, the values in each cell in the 
functional connectivity matrix were correlated to the creativity scores of each participant using Spearman correlations. We retained 
the links that were either positively or negatively correlated to the CAT scores (p < .01) in a positive and a negative model network, 
respectively. (b) We computed the strength of functional connectivity of the positive and the negative model networks. (c) the 
network connectivity computed in the positive and the negative model network were used as regressors to build the predictive linear 
model. (d) We calculated the positive and negative model network properties in the left-out participant. These values were the input 
in the predictive model estimated in (c) to predict its creativity scores.
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CAT_eureka) and of the individual’s intercept 
(CAT_ability) and slope (CAT_sensitivity) estimated 
from the logistic regression analysis. By following the 
method described in 2017), we used the leave-one-out 
cross-validation that consisted in building the predictive 
model iteratively on N-1 participants (training) and test 
the prediction on the left-out participant. To ensure that 
motion patterns were not increasing artifactually the 
prediction of the CAT measures, we estimated the 
mean framewise displacement (meanFD), that is the 
sum of the absolute values of the derivatives of the six 
realignment parameters (Power et al., 2014), and added 
the meanFD value as a regressor in the predictive model.

We performed independent CPM computations for 
each CAT measure. The CPM analysis consisted of four 
different steps. In the first step, the significant features 
of brain connectivity were selected to build the model 
brain networks (Figure 2a). In the training set (N-1) we 
performed Spearman correlations to select the links of 
the functional connectivity matrix (correlation coeffi-
cients between the ROIs) that correlated (threshold p  
< .01) either positively (the positive model network) or 
negatively (the negative model network) to a given CAT 
measure across participants. Since we performed the 
selection of the significant features on each N-1 training 
set, each iteration can account for a slightly different 
number of significant links. The selection of the p-value 
threshold was motivated by previous studies using 
a p-value < .01 to capture the most significant edges 
related to different cognitive behaviors (Beaty et al.,  
2018; Finn et al., 2015; Rosenberg et al., 2016). To 
ensure that our selection represents the optimal thresh-
old (Shen et al., 2017), we assessed which p-value 
threshold led to the greatest overall brain-behavioral 
predictive efficacy for all CAT measures (as in Ren 
et al., 2021). We considered four thresholds: .05, .01, 
.005, and .001; and used the r between the predicted and 
the observed values for each variable as the evaluation 
index. Among these four thresholds for determining 
edge selection, the correlation between the predicted 
and observed CAT scores was highest for p < .01. This 
result supported the selection of the p < .01 for our 
study.

The second step of the CPM analysis consists in 
estimating the strength of functional connectivity 
within the positive and negative model networks for 
each participant (Shen et al., 2017); (Figure 2b). These 
values were the input in the third step to build the 
predictive model and apply it to a novel participant 
(the one left out for each iteration) (Shen et al., 2017) 
in the last step. We built a single linear model com-
bining the strength of functional connectivity of the 
positive and negative model networks as predictors of 

the CAT measures. The meanFD motion parameter 
was included in the model to avoid any possible effect 
of the head motion related to fMRI acquisition on the 
CPM process (Figure 2c). Finally, we estimated the 
strength of connectivity of the positive and the nega-
tive model networks in the left-out participant, 
entered these values in the linear model and com-
puted the predicted value of the CAT measure tested 
(Figure 2d).

To evaluate the power of the predictive model, we 
performed Spearman correlations between the pre-
dicted and the observed CAT measure values (Shen 
et al., 2017). When the predictions were positively sig-
nificant (p < .05) we used a permutation testing to assess 
the statistical significance of the results. To this end, we 
randomly shuffled the values of the CAT measures 1,000 
times, and we ran the new random data through the 
pipeline of our predictive model in order to estimate the 
distribution of the test statistic. The calculation of the 
p-value of the permutation test is reported for the sig-
nificant CAT measures predictions.

Exploring the brain model network

To explore the functional connectivity patterns pre-
dicting the CAT measures, we characterized the brain 
substrates of the CPM-based model network. 
Considering that each iteration within the leave-one- 
out cross-validation resulted in slightly different links 
to build the model networks, we considered the links 
that were selected in all the leave-one-out iterations. 
We explored the distribution of the connections at the 
intrinsic network level (within and between the 8 
main functional networks defined by the Schaefer 
atlas). In addition, for descriptive purposes, we high-
light the nodes (i.e., ROIs) with a highest degree, that 
are the nodes with the highest number of functional 
connections to it (k), and we explored its location 
within the intrinsic networks. Note that, the identifi-
cation of the highest degree nodes was based on the 
number of connections to the other nodes into the 
predictive networks and was not based on statistical 
analyses. To better describe the model networks pre-
dicting the performance of close and distant trials, we 
characterize the links that were common or distant- 
specific in the positive and negative model networks. 
Then, we identified the most connected nodes and 
most important links at the intrinsic functional net-
works level. Note that distant-specific links refers to 
the brain edges of the predictive models of the distant 
trial performance that were not observed in the pre-
dictive model of the close trial performance.
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Internal validation: prediction of the CAT 
performance from resting-state functional 
connectivity

We applied the predictive model built on the task-based 
fMRI data to participants’ resting-state data. We used 
the strength of functional connectivity within the posi-
tive and negative model networks during the resting- 
state acquisition to predict our CAT measures. We 
evaluated the validity of the model with the Spearman 
correlations between the predicted and the observed 
CAT performance values.

Results

Combined associates task (CAT) performance

Descriptive statistics for the different CAT measures 
are provided in Table 2. We compared the accuracy 
and RTs for close and distant trials. Shapiro-Wilk 

test was performed and showed that the distribution 
of CAT_close departed significantly from normality, 
W = .95, p = .002. A Wilcoxon signed rank test indi-
cated higher accuracy in close compared to distant 
trials, W = 4278, p < .001 (Figure 3a). A students’ 
independent samples t-test was performed to com-
pare RTs in correct close and distant trials showing 
that RTs for distant trials were significantly longer 
than in close trials, t(93) = 8.4, p < .001 (Figure 3b).

We examined how the associative remoteness 
relate to solving CAT trials by computing 
CAT_ability (mean = −0.098, SD = 0.61) and 
CAT_sensitivity (mean = 0.35, SD = 0.24) for each 
participant using a logistic regression analysis 
(Figure 3c). These variables were used for the follow-
ing analyses. The correlations between the different 
CAT performance measures and the behavioral mea-
sures of RJT are provided in the Supplementary 
Table S1.

Table 2. Descriptive statistics of CAT scores. Data are shown for CAT 
scores, including accuracy and RTs for the entire task (CAT_all; 
CAT_all_RT), and for close (CAT_close; CAT_close_RT) and distant 
(CAT_distant; CAT_distant_RT) trials separately, Eureka performance 
(CAT_eureka), CAT_ability and CAT_sensitivity.

Mean SD Min Max

Creativity scores

CAT_all 0.48 0.12 0.13 0.73
CAT_close 0.57 0.13 0.20 0.84
CAT_distant 0.38 0.12 0.06 0.64
CAT_all_RT 5.85 2.10 0.99 10.85
CAT_close_RT 5.37 2.07 0.90 10.74
CAT_distant_RT 6.58 2.38 1.15 12.59
CAT_eureka 0.70 0.20 0 1
CAT_ability −0.10 0.61 −2.13 1.46
CAT_sensitivity 0.35 0.24 −0.13 1

Figure 3. Combined Associates Task (CAT) performance in trials with lower and higher associative remoteness. Boxplots with jittered 
points are shown for the a) accuracy and b) RTs in close (purple) and distant (green) trials. Dots symbolize individual accuracy and 
mean RTs, respectively. Bars show the median across participants. c) CAT_ability and CAT_sensitivity values obtained from the 
individual logistic regressions of four individuals were used to plot their fitting curves. The continuous lines represent a lower (red) 
and higher (black) CAT_ability and the dashed lines represent a lower (red) and higher (black) CAT_sensitivity. We used a range of [−10 
10] in the x-axis for visualization purposes. *** p < .001.
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Prediction of creative ability from brain 
connectivity

We applied the CPM approach to explore whether task- 
based functional connectivity patterns can predict the 
CAT performance measuring creative abilities. We 
computed the CPM-based prediction for the CAT mea-
surements, estimating the strength of connectivity of the 
brain model networks. Independent CPM-predictive 
models were performed using the strength of connec-
tivity of the positive and negative brain model networks 
to predict the CAT performance. The CPM prediction 
was significant for the CAT_all, r = .328, p = .016; 
CAT_close, r = .292, p = .048; CAT_distant, r = .300, p  
= .037; CAT_ability, r = .396, p = .001; and 
CAT_sensitivity, r = .337, p = .016, Figure 4) but not for 
the other CAT scores (all p’s > .05). Thus, CPM analyses 
show that individual’s ability in solving CAT trials, the 
performance in CAT, and the sensitivity to associative 
remoteness (more close or distant trials) can be reliably 
predicted from the task-based functional connectivity 
patterns related to semantic relatedness judgments.

Functional anatomy of the predictive brain 
connectivity patterns

We characterized the positive and negative model net-
works, whose functional connectivity is correlated to 
a lower and higher creativity based on CAT perfor-
mance, respectively. To understand the role of associa-
tive distance in CAT performance, we first examined the 
results for the overall task performance (CAT_all), and 
later compared results separately for the close 
(CAT_close) and distant (CAT_distant) CAT trials in 
a descriptive way. As the descriptive comparison 
between the predictive networks of close and distant 
CAT trial performance prevented us from making sta-
tistical inference, we characterized the positive and 
negative model networks predicting the individual’s 
logistic regression values CAT_ability and 
CAT_sensitivity. The first representing the ability of 
performing CAT trials and the latter of solving the 
CAT trials when increasing the associative remoteness, 
which allowed statistical inference on functional con-
nectivity patterns that relate to associative distance in 

Figure 4. CPM predicted CAT measures. Different CPM-based analyses were performed to predict the CAT measures. Each analysis 
considered the computation of the strength of functional connectivity in both the positive and the negative model network. Results 
with significant Spearman correlations between the predicted values (y-axis) and the observed values (x-axis) are shown for CAT_all 
(black), CAT_close (magenta) and CAT_distant (green) at the top, and for CAT_ability and CAT_sensitivity at the bottom. In the upper- 
left side or the lower right side of each graph, we provide the coefficient of correlation and the p values after permutation test.
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CAT performance. The names of the brain regions (i.e., 
nodes) provided in the characterization of the predictive 
model networks are the node names given in the 
Schaefer atlas (Schaefer et al., 2017).

Brain correlates of overall task performance

We characterized the positive and negative model net-
works whose functional connectivity is correlated to 
a lower and higher creativity score, respectively. For 
the prediction of the overall performance in CAT 
(CAT_all score) the analyses revealed that 119 links 
positively correlated with a higher CAT_all score con-
necting 73 different nodes (total of possible links =  
19,900 links). The model network predicting higher 
CAT_all score (i.e., correlated to a higher creativity 
score) had a whole brain distribution. When exploring 
the network model at the functional networks level, 
most of the links belong to default, somatomotor and 
dorsal attention, followed by control and salience net-
works. The highest number of links were between 
default and somatomotor networks, between default 
and dorsal attention network, and between default and 
salience networks. The highest degree nodes were 
mainly in the left hemisphere being part of the default 
mode network (precuneus posterior cingulate cortex, k  
= 30; dorsal prefrontal cortex, k = 5), dorsal attention 

network (post central, k = 18; superior parietal lobe, k  
= 8), temporoparietal network (temporoparietal, k =  
10), salience network (frontal medial, k = 5) and visual 
network (extrastriate cortex, k = 5). In the right hemi-
sphere, highest degree nodes were found in regions of 
the somatomotor network (somatomotor, k = 21) and 
default mode network (medial prefrontal cortex, k = 6; 
precuneus posterior cingulate cortex, k = 6).

The negative model network of the CAT_all score 
was composed of 20 links connecting 20 different nodes 
with a whole-brain distribution mainly in the left hemi-
sphere. At the functional networks level, most of the 
links connect to brain regions that belong to DMN and 
ECN (Figure 5). The highest degree nodes were loca-
lized in the right hemisphere being part of the tempor-
oparietal networks (temporoparietal, k = 9) and DMN 
(dorsal PFC, k = 5) and in the left hemisphere in regions 
of the DMN (precuneus posterior cingulate, k = 3, tem-
poral, k = 2; ventral PFC, k = 2) and ECN (intraparietal 
sulcus, k = 2) (Figure 5).

Brain correlates of close and distant trial 
performance

Starting with the prediction of CAT_close, the analyses 
revealed that 29 links connecting 27 different nodes 
positively correlated with the performance in CAT 

Figure 5. Functional anatomy of the CPM-based predicted CAT performance. the links of the positive model network predicting 
CAT_all is described. The positive (left) and negative (right) model networks of the CAT_all representing higher creative abilities are 
overlapped on the brain. The color of the nodes represents the different functional networks showed inside the brown frame. For 
descriptive display purposes, the size of the nodes is proportional to their degree, and the highest degree nodes are indicated by 
arrows representing the functional network to which they belong. The highest degree nodes were found mainly in the dorsal 
attention network (dark green arrows) in the left hemisphere and in the default mode network (orange arrows) in both hemispheres. 
Middle: The distribution of the links examined at the intrinsic functional networks level is presented in the correlation matrix. Each cell 
represents the number of links within and between the 8 main functional networks defined in the Schaefer atlas, in red colors for the 
positive model network and in blue colors for the negative model network. SM: somatomotor network, DAN: dorsal attention network, 
Sal: salience network, ECN: executive control network, DMN: default mode network, Temp: temporoparietal network.
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close trials (total of possible links = 19,900 links). This 
positive model network had a whole brain distribution 
with most of the links connecting brain regions between 
DMN and somatomotor networks, between DMN and 
post central regions of the dorsal attention network 
(DAN), and between the precuneus/posterior cingulate 
region of the DMN and medial frontal and parietal 
operculum regions of the salience network. No links 
were observed within DMN, within ECN or between 
DMN and ECN. The highest degree nodes were mainly 
localized in the left hemisphere being part of the DMN 
(precuneus posterior cingulate cortex, k = 10; temporal, 
k = 3), DAN (post central, k = 8) and somatomotor net-
works (somatomotor, k = 2). In the right hemisphere, 
highest degree nodes were found in regions of the 
somatomotor networks (somatomotor, k = 8) and 
DMN (precuneus posterior cingulate cortex, k = 2; med-
ial PFC, k = 2) (Figure 6a).

The negative model network, reflecting functional 
connectivity correlated with lower performance in 
close trials was composed of 35 links connecting 37 

different nodes with a whole-brain distribution. At the 
functional networks level, most of the links connected 
brain regions that belong to DMN and ECN networks 
(Figure 6a). The highest number of links were within 
DMN. Other links connecting DMN and ECN net-
works, and DMN and limbic networks were observed. 
Connections between intraparietal nodes within ECN 
also participated in the negative model network. The 
highest degree nodes were found in the left hemisphere 
being part of the DMN (precuneus/posterior cingulate 
cortex, k = 9), and in the right hemisphere in regions of 
the DMN (dorsal PFC, k = 8) and temporoparietal net-
works (temporoparietal, k = 5) (Figure 6a). The infor-
mation of the main node’s location, the functional 
network they belong to, and MNI coordinates are pro-
vided in Supplementary Table S2.

Then, we characterized the positive and negative 
model networks whose functional connectivity is corre-
lated to a higher and lower CAT score in distant trials, 
respectively. For the prediction of CAT_distant, the 

Figure 6. Positive and negative predictive networks of CAT solving of close and distant trials. the positive (left) and the negative (right) 
predictive model networks are superimposed on a volume rendering of the brain with a lateral and medial views for (a) close and (b) 
distant trials. For descriptive display purposes, the size of the nodes is proportional to their degree, and we indicate the highest degree 
nodes with arrows. The color of the nodes and arrows represent the functional network they belong to and are color coded as 
indicated at the bottom of the figure (brown frame). For the (a) close and (b) distant trials, the matrix represents the number of links 
within the model network occurring within and between the eight intrinsic brain networks. In red colors are presented the number of 
links that belong to the positive network and in blue are the links of the negative network. SM: somatomotor network, DAN: dorsal 
attention network, Sal: salience network, ECN: executive control network, DMN: default mode network, Temp: temporoparietal 
network.
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analyses revealed that 165 links positively correlated 
with a higher creativity score connecting 92 different 
nodes. The model network predicting better perfor-
mance in distant trials had a whole brain distribution 
with most of the links connecting brain regions between 
DAN and DMN, DAN and ECN, and between ECN and 
somatomotor network. The highest degree nodes were 
mainly in the left hemisphere being part of the DMN 
(precuneus posterior cingulate cortex, k = 20), DAN 
(superior parietal, k = 21; post central, k = 16; temporal 
occipital, k = 12) and visual network (extrastriate, k =  
10). In the right hemisphere, highest degree nodes were 
found in regions of the somatomotor (k = 27) and DMN 
(medial PFC, k = 10) networks (Figure 6b).

The negative model network predicting poor perfor-
mance in distant trials was composed of 10 links con-
necting 12 different nodes with a whole-brain 
distribution. At the functional networks level, most of 
the links connect to brain regions that belong to DMN  

and ECN (Figure 6b). The highest number of links were 
within the intraparietal sulcus in the ECN, and between 
DMN and temporoparietal networks. The highest 
degree nodes were localized in the left hemisphere 
being part of the temporoparietal networks (temporo-
parietal, k = 5), limbic (orbital frontal cortex, k = 2) and 
ECN (intraparietal sulcus, k = 2) networks and in the 
right hemisphere in regions of the DMN (dorsal PFC, k  
= 2) and ECN (intraparietal sulcus, k = 2) (Figure 6b). 
The information of the main node’s location, the func-
tional network they belong to, and MNI coordinates are 
provided in Supplementary Table S3.

Similar and different brain connectivity patterns 
predicting close and distant conditions

We compared the model networks predicting the per-
formance in close and distant trials in a descriptive 
manner. We first identified the shared links for the 

Figure 7. Shared and distant-specific patterns of prediction for CAT solving of close and distant trials. the positive (left) and the 
negative (right) predictive model networks are superimposed on a volume rendering of the brain with a lateral and medial views for 
(a) the common links between prediction models for solving CAT in close and distant trials, and (b) links that were uniquely found in 
prediction networks for solving CAT in the distant trials. For descriptive display purposes, the size of the nodes is proportional to their 
degree, and we indicate the highest degree nodes with arrows. The color of the nodes and arrows represent the functional network 
they belong to and are color coded as indicated at the bottom of the figure (brown frame). The matrix represents the number of links 
within the model network occurring within and between the eight intrinsic brain networks. In red colors are presented the number of 
links that belong to the positive network and in blue are the links of the negative network for the common (a) and distant-specific (b) 
networks. SM: somatomotor network, DAN: dorsal attention network, Sal: salience network, ECN: executive control network, DMN: 
default mode network, Temp: temporoparietal network.

14 M. OVANDO-TELLEZ ET AL.



positive and negative predictive networks. When com-
paring the positive model networks, we found 18 links 
connecting 17 different nodes that were common in 
predicting better performance in close and distant trials. 
Most of these links connected DMN and the somato-
motor network, and also DMN and post central regions 
of DAN. A connection between precuneus/posterior 
cingulate region of the DMN and medial frontal regions 
of the salience network also contributed to the shared 
model network. The highest degree nodes were localized 
in the right hemisphere in regions that belong to soma-
tomotor networks (somatomotor, k = 8) and DMN (pre-
cuneus posterior cingulate cortex, k = 2; medial PFC k =  
2), and in the left hemisphere in regions of the DMN 
(precuneus posterior cingulate cortex, k = 7) and DAN 
(postcentral, k = 5) (Figure 7a).

Similarly, we identified 6 common edges connecting 
10 different nodes in the negative predictive networks. 
These links connect brain regions within left intrapar-
ietal sulcus and within right left intraparietal sulcus of 
the ECN, between DMN and temporoparietal networks, 
between limbic and temporoparietal networks and 
between precuneus posterior cingulate cortex and ven-
tral PFC within DMN. Most of these nodes were loca-
lized in the left hemisphere with a highest degree node 
found in the temporoparietal region of the temporopar-
ietal networks (k = 3) (Figure 7a). The information of 
the main node’s location, the functional network they 
belong to, and MNI coordinates is provided in 
Supplementary Tables S2 and S3.

Finally, we identified the brain connectivity patterns 
that were only observed in the predictive model of better 
performance in the distant trials, considered as the more 
creative ones. We identified 147 distant-only links con-
necting 90 different nodes in the positive predictive 
network. Most of the links connect brain regions 
between DAN and ECN, DAN and DMN, and between 
ECN and somatomotor networks. Connections within 
DMN were found between ventral PFC and parahippo-
campal cortex, and within ECN between temporal and 
cingulate posterior regions. The mid-cingulate region of 
the ECN connected to the medial frontal region of the 
salience network. A lateral PFC region partly overlap-
ping the IFG of the ECN connected to the precuneus 
posterior cingulate cortex of the DMN. The highest 
degree nodes were mainly localized in the left hemi-
sphere being part of the DAN (superior parietal lobe, 
k = 21; temporal occipital k = 12; post central k = 11), 
DMN (precuneus posterior cingulate cortex, k = 13), 
visual (extrastriate, k = 10), and temporoparietal (k = 7) 
networks. In the right hemisphere highest degree nodes 
were found in regions of the somatomotor networks 
(somatomotor, k = 19, k = 8), ECN (mid-cingulate, k =  

8; inferior parietal, k = 7), limbic (orbital frontal cortex, 
k = 8), and DMN (medial PFC, k = 8) networks 
(Figure 7b).

Similarly, we observed 4 edges connecting 7 different 
nodes in the negative predictive network of the perfor-
mance in the distant trials that were not observed on the 
predictive network of the close trial performance. These 
links connect brain regions between left and right intra-
parietal sulcus of the ECN, between inferior parietal 
lobule of the DMN and temporoparietal networks, 
between orbital frontal cortex of the limbic network and 
dorsal PFC of the DMN, and between lateral PFC of the 
ECN and temporoparietal networks. Most of these nodes 
were localized in the left hemisphere with a highest 
degree node found in the temporoparietal region of the 
temporoparietal networks (k = 2) (Figure 7b). The infor-
mation of the main node’s location, the functional net-
work they belong to, and MNI coordinates is provided in 
Supplementary Tables S2 and S3.

Brain correlates of the ability of performing CAT 
trials

We characterized the positive and negative model net-
works whose functional connectivity is correlated to 
a higher ability of solving CAT based on the logistic 
regression analyses. For the prediction of CAT_ability, 
the analyses revealed that 156 links positively correlated 
with a higher ability in CAT solving, connecting 79 differ-
ent nodes. The model network predicting better perfor-
mance in CAT trials had a whole brain distribution with 
most of the links connecting brain regions between DMN 
and DAN, DMN and salience, and between DMN and 
somatomotor network. The highest degree nodes in the left 
hemisphere were part of the DMN (precuneus posterior 
cingulate cortex, k = 35) and DAN (post central, k = 22; 
superior parietal, k = 14). In the right hemisphere, highest 
degree nodes were found in regions of the somatomotor (k  
= 28) and DMN (medial PFC, k = 10; precuneus posterior 
cingulate cortex, k = 8) networks (Figure 8a).

The negative model network predicting lower ability to 
perform CAT trials was composed of 24 links connecting 
25 different nodes with a whole-brain distribution. At the 
functional networks level, most of the links connect to 
brain regions that belong to DMN and temporoparietal 
network (Figure 8a). The highest degree nodes were loca-
lized in the left hemisphere being part of the temporopar-
ietal networks (temporoparietal, k = 11), DMN (precuneus 
posterior cingulate, k = 4; temporal, k = 2; ventral PFC, k =  
2) and ECN (intraparietal sulcus, k = 2), and in the right 
hemisphere in regions of the DMN (dorsal PFC, k = 5) and 
ECN (intraparietal sulcus, k = 2) networks (Figure 8a). The 
information of the main node’s location, the functional 
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network they belong to, and MNI coordinates is provided 
in Supplementary Table S4.

Brain correlates of the effect of associative 
remoteness on CAT trial performance

Finally, we characterized the positive and negative model 
networks whose functional connectivity was correlated to 
CAT_sensitivity. The positive model network predicting 
lower ability to perform more distant CAT trials was 
composed of 22 links connecting 39 different nodes with 
a whole-brain distribution. At the functional networks 
level, most of the links connect to brain regions that belong 
to salience and DAN networks. The highest degree nodes 
were localized in the left hemisphere being part of the 
salience network (inferior parietal, k = 6), DMN (ventral 
PFC, k = 3; temporal, k = 3) and ECN (lateral ventral PFC, 
k = 4; inferior parietal, k = 3) networks, and in the right 
hemisphere in regions of the DAN (superior parietal, k =  
3) and salience network (insula, k = 3) (Figure 8b).

Note that a higher CAT_sensitivity value indicates 
a greater difference in performance between close and 
distant trials, i.e., more sensitivity to remoteness. Thus, 
the negative network may be relevant to examine since it 
indicates better performance in CAT trials with higher 
associative remoteness. The predictive analyses revealed 
that 46 links negatively correlated with CAT_sensitivity 
connecting 48 different nodes. The model network had 
a whole brain distribution with most of the links con-
necting brain regions between DMN and ECN, DMN 
and salience, and within ECN. The highest degree node 
was found in the left hemisphere being part of the DAN 
(superior parietal, k = 9). All other highest degree nodes 
were found in the right hemisphere being part of the 
somatomotor network (k = 8), ECN (inferior parietal, k  
= 7), DMN (inferior parietal, k = 5) and visual (extra-
striate cortex, k = 3) networks (Figure 8b). The informa-
tion of the main node’s location, the functional network 
they belong to, and MNI coordinates is provided in 
Supplementary Table S5.

Figure 8. Positive and negative predictive networks of the individual’s ability of CAT solving. the positive (left) and the negative (right) 
predictive model networks are superimposed on a volume rendering of the brain with a lateral and medial views for (a) CAT_ability 
and (b) CAT_sensitivity values. For descriptive display purposes, the size of the nodes is proportional to their degree, and we indicate 
the highest degree nodes with arrows. The color of the nodes and arrows represent the functional network they belong to and are 
color coded as indicated at the bottom of the figure (brown frame). For the (a) CAT_ability and (b) CAT_sensitivity values, the matrix 
represents the number of links within the model network occurring within and between the eight intrinsic brain networks. In red 
colors are presented the number of links that belong to the positive network and in blue are the links of the negative network. SM: 
somatomotor network, DAN: dorsal attention network, Sal: salience network, ECN: executive control network, DMN: default mode 
network, Temp: temporoparietal network.
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Internal validation: prediction of the CAT 
performance from resting-state functional 
connectivity

As an internal validation, we explored whether the pre-
dictive models of CAT performance - CAT_all, 
CAT_close, CAT_distant, CAT_ability and 
CAT_sensitivity – trained in the task-related fMRI data 
can be generalized to independent resting state connec-
tivity data. We observed significant predictions of the 
CAT performance when applying the predictive model 
to the resting state data. The Spearman correlations 
between the predicted values and the observed values 
showed significant predictions for CAT_all, r = .267, p  
= .010; CAT_close, r = .314, p = .002; CAT_distant, r  
= .267, p = .006; CAT_ability, r = .312, p = .003; and 
CAT_sensitivity, r = .541, p < .001, variables. These sig-
nificant predictions suggest that predictive models 
based on task-based fMRI patterns of connectivity 
essentially generalize to functional connectivity during 
resting-state data, and that the abilities of combining 
remote associates as measured in CAT are reflected in 
intrinsic connectivity.

Discussion

This study investigated the whole-brain neural func-
tional connectivity pattern related to performance in 
combining remote associations, a process critical for 
creative thinking. We found that global performance 
in the CAT task (CAT_all and CAT_ability) and the 
impact of associative remoteness on solving CAT trials 
(CAT_distant, CAT_close, and CAT_sensitivity) can be 
reliably predicted from task-based functional connectiv-
ity patterns measured during word relatedness judg-
ments. While characterizing the respective predictive 
network models of close and distant trials allowed us 
to describe brain functional connectivity patterns 
related to CAT performance in trials with low and 
higher strength of association, CAT_sensitivity allowed 
us to identify brain regions related to the effect of 
associative remoteness on CAT trial performance. 
Importantly, these predictions were generalizable to 
resting-state functional connectivity data.

At the behavioral level, close CAT trials resulted in 
higher accuracy and shorter RTs compared to distant 
CAT trials. This result replicates the results of 
Bendetowicz, Urbanski, Aichelburg, Levy, and Volle 
(2017) when exploring creativity with the CAT in 
a group of healthy participants. Although RTs are 
usually associated with task difficulty, here we demon-
strate using individual logistic regressions that success 
in solving CAT trials can be predicted from the 

associative remoteness of the trials regardless of indivi-
dual’s RTs. These findings are consistent with the asso-
ciative theory of creativity (Mednick, 1962), stating that 
the more remote the elements to be combined, the more 
creative the process. It is assumed that solving close and 
distant trials depend on associative processes involving 
the activation of semantic memory (Beaty, Silvia, 
Nusbaum, Jauk, & Benedek, 2014; Beaty, Zeitlen, 
Baker, & Kenett, 2021; Benedek, Könen, & Neubauer,  
2012; Gray et al., 2019; He et al., 2021; Marron et al.,  
2018; Marron, Berant, Axelrod, & Faust, 2020), and that 
solving distant trials additionally requires more con-
trolled processes (Bendetowicz et al., 2018; Benedek & 
Fink, 2019; Gupta, Jang, Mednick, & Huber, 2012; 
Smith, Huber, & Vul, 2013; Taft & Rossiter, 1966). 
Our behavioral findings provide further empirical sup-
port to this notion. These behavioral results were further 
supported by the brain analyses discussed below.

We did not observe correlations between CAT per-
formance when trials were solved via insight 
(CAT_eureka) and the associative remoteness of the 
CAT trials (CAT_close and CAT_distant). Previously, 
Becker, Wiedemann, and Kühn (2020) developed 
a modified version of the compound remote associates 
(CRA) and found that higher trial difficulty (i.e., lower 
similarity between cues and solution) decreased the 
probability of solving trials via insight. However, Bieth 
et al. (2021) examined the EEG activity while partici-
pants performed CAT trials and did not find correla-
tions between the associative remoteness of the trials 
and CAT_eureka. Based on Bieth et al. (2021), we did 
not expect correlations between CAT_eureka and the 
associative remoteness of our trials. Compared to 
Becker, Wiedemann, and Kühn (2020), the current 
study provides different instructions to the participants 
when asking to report if the trials were solved via Eureka 
which may prevent the relationship between associative 
remoteness of the trials and insight problem solving. 
These inconclusive findings indicate that further 
research should be done to explore these relationships.

In our neural CPM analyses, we explored the func-
tional connectivity patterns positively predicting CAT 
solving (CAT_ability). We found the involvement of the 
DMN, somatomotor and DAN, followed by salience 
and ECN networks in predicting CAT solution rate. 
The highest number of functional connectivity links 
were found between DMN and somatomotor, DMN 
and DAN, and DMN and salience networks. These 
functional connectivity patterns were very similar to 
the patterns predictive of CAT performance 
(CAT_all), and also to the predictive network models 
of both CAT close and distant trials. Previous results 
showed that RAT performance correlated with higher 
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efficiency in DMN (Wu & Chen, 2021a). A few studies 
have recently linked the DMN to free association abil-
ities (Bendetowicz et al., 2018; Marron et al., 2018; 
Marron, Berant, Axelrod, & Faust, 2020). Altogether, 
these findings suggest the role of associative processes 
required for generating different associates to each cue 
word. Interestingly, CAT performance was predicted by 
a lower connectivity within DMN and a higher connec-
tivity between DMN and other networks, including the 
DAN and the sensorimotor networks.

The relevance of the sensorimotor network in the 
positive model network related to better CAT perfor-
mance echoes a recent general view on the role of motor 
simulations in creative thinking (Matheson & Kenett,  
2020) and showing the recruitment of the sensorimotor 
regions in functional MRI during divergent thinking. In 
their review, Matheson and Kenett (2020) argue that 
generating alternative uses for objects utilizes mental 
simulations of the affordances of the objects. Our results 
may thus indicate that actively trying to identify associ-
ates that link different cue words involves mental simu-
lations and activation of the affordances of the cue 
words (see also Benedek, Jurisch, Koschutnig, Fink, & 
Beaty, 2020) that involve interactions between DMN 
and sensorimotor networks.

In the positive model networks related to better CAT 
performance in the whole task, CAT ability and in close 
and distant trials, we observed the contribution of nodes 
overlapping the bilateral precuneus, posterior cingulate 
cortex and right medial PFC of the DMN 
(Supplementary Table S2). This finding is in line with 
previous studies showing that higher functional connec-
tivity of the posterior cingulate cortex, in interaction 
with other networks contribute to the prediction of 
higher divergent thinking abilities (Beaty et al., 2018). 
In addition, the right medial PFC has been identified as 
a critical brain region for the CAT in a voxel-based 
lesion study in patients and was shown to support 
spontaneous associative thinking in a word association 
task (Bendetowicz et al., 2018). In line with this study, 
our current findings may indicate that the shared model 
network reflects, at least in part, spontaneous associative 
thinking processes. Supporting this idea, the right med-
ial PFC also contributed to the prediction of lower 
sensitivity of CAT performance to associative remote-
ness. This brain region shows brain links uniquely 
within the DMN, a network that has been associated 
with increased associative abilities (Benedek, Jurisch, 
Koschutnig, Fink, & Beaty, 2020; Marron et al., 2018; 
Marron, Berant, Axelrod, & Faust, 2020).

The predictive model networks of the impact of the 
associative remoteness when solving CAT trials 
(CAT_sensitivity) showed a different pattern compared 

to the positive networks predicting CAT performance 
(CAT_all and CAT_ability). We characterized the nega-
tive predictive network of CAT_sensitivity which we 
assume reflect a better ability of solving more remote 
trials. To examine this assumption, we compared these 
patterns to the ones that were only observed in the pre-
dictive networks of the distant CAT trials (distant - 
specific links; Similar and different brain connectivity 
patterns predicting close and distant conditions section). 
The prediction of the CAT_sensitivity involved brain 
links that mostly connected brain regions between 
DMN and ECN, DMN and salience, and within ECN. 
The links between ECN and DMN and within ECN, were 
part of the negative predictive network of CAT_sensitivity 
(Figure 8) and only observed in the CAT_distant positive 
model network (Figure 6). These findings indicate that, as 
expected, trials with higher associative remoteness related 
to a higher involvement of the ECN and support the role 
of controlled processes in interaction with associative 
processes for solving remote CAT trials (Bendetowicz 
et al., 2018; Bendetowicz, Urbanski, Aichelburg, Levy, & 
Volle, 2017). The interaction between DMN and ECN is 
also consistent with a previous study showing that the 
coupling of these functional networks benefits the inte-
gration of information in a similar task than CAT (Evans, 
Krieger-Redwood, Alam, Smallwood, & Jefferies, 2020). 
Overall, the involvement of ECN in interaction with the 
DMN may support executive control processes acting 
over the semantic memory structure for combining and 
integrating words with higher associative remoteness and 
thus, to meet demands of the task (Jefferies & Lambon 
Ralph, 2006; Noonan, Jefferies, Visser, & Lambon Ralph,  
2013).

Additionally, most of the distant-specific brain links 
involved connections between DAN and ECN, between 
DAN and DMN, and between ECN and somatomotor 
networks. Although the identification of distant-specific 
brain links had descriptive purposes, it may reflect addi-
tional prominent involvement of DAN, ECN, DMN, 
and somatomotor networks when more distant trials 
are solved. The global integration of DAN, ECN, 
DMN, in addition to the salience network, has been 
shown to be related to higher retrieval flexibility related 
to creativity, which has an important role when solving 
more remote trials in CAT (Bendetowicz et al., 2018). 
The dynamic between DMN and DAN has been pre-
viously shown to be correlated with verbal creativity, 
and may indicate the role of the adjustment of attention 
when solving RAT-like trials (Vartanian, 2009; Sun 
et al., 2018).

Based on previous findings (Bendetowicz et al.,  
2018), we expected to find the contribution of prefrontal 
brain regions of the ECN to the prediction of the 
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combination of words with higher associative remote-
ness. We observed a prefrontal ECN contribution to the 
predictive model network of distant-specific 
(Supplementary Table S3, line 61). The left prefrontal 
part of the ECN has been shown a critical brain region 
for solving CAT distant trials (Bendetowicz et al., 2018; 
Bendetowicz, Urbanski, Aichelburg, Levy, & Volle,  
2017). The role of the left IFG in CAT is consistent 
with existing data, as its activation in fMRI has been 
associated with verbal restructuring during and before 
solution in RAT trials (Becker, Kühn, & Sommer, 2020). 
This key region of the ECN is also involved in controlled 
retrieval of weakly associated word pairs (Vatansever, 
Smallwood, & Jefferies, 2021) and in retrieving nondo-
minant aspects of knowledge (Whitney, Kirk, 
O’sullivan, Lambon Ralph, & Jefferies, 2011). 
Regarding the rostrolateral PFC, in healthy participants, 
the gray matter volume of this region correlated with 
performance in distant CAT trials (Bendetowicz, 
Urbanski, Aichelburg, Levy, & Volle, 2017), and in 
patients, damage to this region and to its connections 
was shown to impair CAT performance (Bendetowicz 
et al., 2018).

We identified a higher contribution of prefrontal 
brain regions of the ECN in the positive model network 
of higher CAT_sensitivity, via connections to other 
regions within the ECN (to intraparietal sulcus and 
inferior parietal regions) and to the salience network 
(to inferior parietal regions and insula). Brain links 
between the ECN and DMN, and between DAN and 
salience networks were also predictive of higher 
CAT_sensitivity, indicating that people with higher con-
nectivity in this positive network had more sensitivity to 
the associative remoteness of the CAT trials and were 
less able to solve distant trials. Although we controlled 
for RTs in the CAT_sensitivity analyses, we cannot dis-
card that the involvement of prefrontal brain regions of 
the ECN may be related to higher difficulty of the dis-
tant trials at the semantic level, as these regions, and in 
particular the IFG has been also related to semantic 
control in previous studies (Lambon -Ralph, Jefferies, 
Patterson, & Rogers, 2017). This finding may also reflect 
how heightened inhibition/attention over more sponta-
neous activations related to DMN connectivity 
(Benedek, Jurisch, Koschutnig, Fink, & Beaty, 2020; 
Marron et al., 2018; Marron, Berant, Axelrod, & Faust,  
2020) leads to lower performance in CAT distant trials. 
This finding may be interpreted as that a loosened top- 
down regulatory control could favor solving trials with 
higher associative remoteness, as proposed by the hypo-
frontality hypothesis (Chrysikou, Weber, & Thompson- 
Schill, 2014), or that people are likely to involve more 
cognitive control in more distant trials where no 

spontaneous idea comes to mind, so that controlled 
retrieval is more strongly needed to compensate for 
poor associative abilities.

We observed the contribution of connections with 
the superior parietal lobule of the DAN, mid cingulate 
and inferior parietal lobule of the ECN and DMN in the 
prediction of solving more distant trials. In particular, 
most of the links between DMN and ECN, and within 
ECN in the negative predictive network of 
CAT_sensitivity, were localized in the inferior parietal 
region, a brain region that has been previously asso-
ciated with semantic integration (Thompson et al.,  
2007). The inferior parietal region has been also related 
to the generation of novel compared to recalled ideas 
during divergent thinking tasks (Benedek et al., 2014,  
2018). In addition, previous findings have shown the 
role of this region in episodic memory and future think-
ing related to creative thinking, suggesting that RAT- 
like tasks involve episodic memory processes possibly to 
find the link between the unrelated cue words (Benedek, 
Jurisch, Koschutnig, Fink, & Beaty, 2020). Overall, brain 
regions that contributed to the negative CAT_sensitivity 
predictive network have been related to creativity in 
different domains (Boccia et al., 2015; Gonen-Yaacovi 
et al., 2013) and may reflect the semantic processing 
related to associative thinking involved in creativity.

Altogether, the results of the present study allowed 
us to examine the whole-brain functional connectivity 
patterns related to associative remoteness in solving 
RAT-like trials. A previous study using functional 
MRI explored brain activity in close versus remote 
trials in a RAT-like task (Wu, Chan, & Chen, 2021). 
As a difference to our CAT, in this study remoteness 
was measured based on the frequency of occurrence of 
the target words or responses, rather than associative 
distance between cue and target words. The authors 
have shown that close and remote trials involved the 
posterior cingulate cortex, while remote trials 
recruited rostromedial PFC, precuneus, and middle 
temporal gyrus. In our study, these three brain regions 
contributed to the performance in close and distant 
trials, but with also an additional contribution of 
nodes in these regions in distant trials. This finding 
suggests that the involvement of these regions may 
increase with remoteness of CAT but may not be 
unique to remote trials.

Although we did not observe the involvement of 
prefrontal brain regions of the ECN in the prediction 
of solving CAT close trials, we identified temporal 
regions that partly overlap with the middle temporal 
gyrus in the common positive network of close and 
distant trials. These links were also observed in the 
prediction of better ability in more remote trials as 
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captured by the CAT_sensitivity. The middle temporal 
gyrus has been identified as a key brain region of the 
semantic control, in addition to the IFG in the context 
of the controlled semantic cognition framework 
(Noonan, Jefferies, Visser, & Lambon Ralph, 2013; 
Whitney, Kirk, O’sullivan, Lambon Ralph, & Jefferies,  
2011). In addition, functional connectivity linking the 
temporal lobe and in particular, the temporal pole to the 
rest of the brain were predictors of solving CAT trials 
with higher associative remoteness (CAT_sensitivity). 
Since we also found the contribution of nodes that over-
lap the left angular gyrus of the DMN for the prediction 
of solving CAT close and distant, a key region of the 
semantic representation in semantic cognition (Lambon 
-Ralph, Jefferies, Patterson, & Rogers, 2017), we suggest 
that semantic retrieval and controlled processes related 
to semantic cognition may be common for trials with 
lower and higher associative remoteness. Overall, while 
some form of semantic control might be involved in 
close and distant trials, additional cognitive control 
subserved by connections within brain regions of the 
ECN may be recruited when the remoteness between 
remote associates to be combined increases.

Taken together, our results also parallel findings 
from previous CPM studies on divergent thinking, sug-
gesting a similar optimal functional connectivity pattern 
driving the performance in combining remote associa-
tions and divergent thinking. Beaty, Benedek, Kaufman, 
and Silvia (2015) examined the functional connectivity 
pattern between the DMN, ECN, and salience networks 
across different time windows of a divergent thinking 
task. The authors show how in early stages of the diver-
gent thinking tasks, the DMN is coupled with the sal-
ience network, potentially related to heightened 
associative, stimulus driven, processes related to genera-
tion of responses. At later stages, the DMN is coupled 
with the ECN, potentially related to heightened top- 
down cognitive control processes related to evaluation 
of responses (Beaty, Benedek, Kaufman, & Silvia, 2015). 
Thus, our results showing the interaction between 
DMN, ECN, and salience network for the distant CAT 
trials and the negative predictive network of 
CAT_sensitivity potentially shared cognitive demands 
between combining semantically distant concepts and 
divergent thinking performance (Volle, 2018). Our find-
ings correspond CPM findings linking the DMN, ECN, 
and salience network in relation to divergent thinking 
(Beaty et al., 2018; Frith et al., 2021).

As such, our findings potentially highlight 
a general whole-brain functional connectivity pattern 
linking different aspects of creative thinking – 
namely both divergent and convergent thinking. 
Smith, Huber, and Vul (2013) conducted an analysis 

of the RAT based on participants verbal reports of 
their guesses while trying to solve RAT trials. The 
authors demonstrate a two-stage processes during 
the RAT: An initial divergent search process, where 
participants focus on one cue word and generate 
alternative associates to it, and then a convergent 
process, where such associative alternatives are 
examined if they correspond to the additional cue 
words. Our CPM results thus can be viewed to 
strengthen this two-process model assuming diver-
gent and convergent processes in generating associa-
tive combinations, and support the notion that 
linking concepts also plays a central role in divergent 
thinking performance.

Some limitations of this study should be mentioned. 
First, the sample is relatively small, especially for con-
ducting the CPM approach. However, the results are 
robust to statistical procedures based on permutation 
testing and cross-validation using restring-state data. 
Second, besides the correlation-based predictions at 
the brain level, we did not observe significant correla-
tions between the CAT scores and the RJT ratings beha-
viorally which may suggest that CAT performance 
involves more cognitive processes than those captured 
when judging the relatedness of word pairs as evaluated 
in the RJT task. Further analyses should be done to 
better understand the relationships between judging 
the semantic relatedness and CAT performance.

Finally, the instructions provided to the participants 
when describing the Eureka phenomenon may only 
capture the suddenness of the phenomenon. 
Instructions that also include emotional and uncertainty 
components of this phenomenon should be considered 
in future studies.

In conclusion, the current study is the first task-based 
whole-brain functional connectivity study aimed at elu-
cidating the neural patterns related to creativity during 
a remote association task. We found that whole-brain 
functional connectivity predicts performance in the 
combined association task, and characterize optimal 
whole-brain functional connectivity patterns that pre-
dict performance in more distant associative combina-
tion trials. While predictive patterns involving the DMN 
are likely related to associative processes required in all 
trials of the task, more controlled processes played an 
important role in trials with higher associative remote-
ness supported by brain connections within the ECN. 
The functional connectivity patterns related to higher 
creative demands of the task share similarities with 
functional connectivity patterns previously found to 
predict divergent thinking. Thus, our work potentially 
offers insights into neural mechanisms that play a role 
in both convergent and divergent thinking.
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