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et Nanosystèmes Interfaciaux (PHENIX)), 4 Place Jussieu, 75005 Paris, France
(Dated: December 13, 2022)

We study the dynamics of a tracer in a dense mixture of particles connected to different ther-
mostats. Starting from the overdamped Langevin equations that describe the evolution of the
system, we derive the expression of the self-diffusion coefficient of a tagged particle in the suspen-
sion, in the limit of soft interactions between the particles. Our derivation, which relies on the
linearization of the Dean-Kawasaki equations obeyed by the density fields and on a path-integral
representation of the dynamics of the tracer, extends previous derivations that held for tracers in
contact with a single bath. Our analytical result is confronted to results from Brownian dynamics
simulations. The agreement with numerical simulations is very good even for high densities. We
show how the diffusivity of tracers can be affected by the activity of a dense environment of soft
particles that may represent polymer coils – a result that could be of relevance in the interpretation
of measurements of diffusivity in biological media. Finally, our analytical result is general and can
be applied to the diffusion of tracers coupled to different types of fluctuating environments, provided
that their evolution equations are linear and that the coupling between the tracer and the bath is
weak.

I. INTRODUCTION

Describing suspensions of interacting active particles
(agents which are able to take up energy from their en-
vironment and to convert it into directed motion) has
been a central challenge of statistical physics during the
past decades, and has resulted in the design of different
successful theoretical frameworks [1–4]. More recently,
going beyond the situation where all the particles in the
suspension are identical, the question of mixtures of par-
ticles with different levels of activity has drawn a lot of
attention. Indeed, in various situations of physical or
biological interest, one encounters situations where par-
ticles that are active, in the sense that they are very far
from equilibrium, interact with ‘passive’ particles, which
are only submitted to the equilibrium thermal fluctua-
tions of their environment. This is for example the case
in the intracellular medium, where many different agents
(organelles, proteins, enzymes...) have different levels of
activity, and such heterogeneities are known to have a
significant impact on the structure and dynamics of the
cytoplasm [5, 6].

From a theoretical perspective, a natural way to model
these mixtures is to assume that the different groups of
particles are in contact with different thermostats – the
simpler situation is that of a binary mixture of ‘hot’ and
‘cold’ particles. This concept has progressively attracted
more and more attention in nonequilibrium statistical
physics, and was explored numerically in colloidal sus-
pensions [7, 8], polymeric systems [9–12], and in the con-
text of the thermal Casimir effect [13]. From an analyti-
cal perspective, phase separation in mixtures of ‘hot’ and
‘cold’ particles was studied in the low-density limit, in
which the system reduces to a two-body problem [14, 15].
The three-body problem for particles in contact with dif-
ferent thermostats was solved recently for specific pair-

wise interactions [16].

Although a lot of knowledge has been gathered about
collective properties in mixtures of particles in contact
with multiple thermostats, little is known about the
properties of tagged particles in such suspensions, in spite
of their importance. For instance, the self-diffusion coeffi-
cient of a tracer is a key observable to describe the trans-
port properties inside these complex systems, and may
be of interest to interpret observations from experimen-
tal cell biology [5, 6]. So far, the long-time self-diffusion
coefficient in mixtures of particles with different temper-
atures has only been investigated in the low-density limit,
and in the case of short-range repulsive interactions be-
tween the particles [17].

Here, we consider the general situation of a tracer
whose diffusion is affected by its coupling to multiple fluc-
tuating fields, in contact with different thermostats. In
this setting, we derive the effective diffusion coefficient
of the tracer in the small coupling limit, using a path-
integral representation that was previously designed to
study the dynamics of a tracer in contact with a single
bath [18]. In particular, we apply this formalism to the
situation of a dense suspension of particles interacting
via soft potentials, that we choose to be Gaussian soft-
core potentials, which are relevant to describe the inter-
actions between polymer coils [19–22]. We argue that
this potential is also well adapted to model the diffusion
of large tracers (organelles, macromolecules...) in the in-
tracellular medium. Technically, the equations obeyed by
the density fields are obtained using Ito calculation and
adapting the usual Dean-Kasawaki derivation [23, 24],
and are then linearized and solved for – a technique that
was used in different contexts over the past years (mi-
crorheology of colloidal suspensions [25–27], active mat-
ter [28–33], binary mixtures [34], electrolytes [35–40]).

Comparing with results from numerical simulations of
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FIG. 1. Top: System under study and considered in the main
text: a tracer, whose position at time t is denoted by r0(t) is
coupled to a binary mixture constituted of particles of type A
and B. Bottom: General situation considered in Appendix A:
a tracer (at position r0(t)) is coupled to two fluctuating fields
φA(r, t) and φB(r, t). The parameters hA and hB quantify
the intensities of the couplings.

the microscopic dynamics of the system, we check the
validity of the approximations on which our analytical
result relies. In the range of parameters investigated
here, analytical results are always very close to numerical
results, with a discrepancy that never exceeds 5%. We
also show that the dynamics of tracers is significantly en-
hanced when they are placed in a ‘hot’ bath. This effect,
which relies on local energy transfer from the hotter to
the colder particles, was evidenced numerically [7, 8], and
was described analytically in the low-density limit and for
hard, repulsive, short-ranged potentials [17]. The present
work therefore provides an analytical basis for this effect
in the opposite limit of very soft particles, and for poten-
tially very high densities – two important aspects for the
applicability of such theories in biological context. Fi-
nally, we emphasize that this formalism is very general,
and can be used to describe diffusion in different kinds of
fluctuating environments, such as membranes, colloidal
suspensions, or more generally Gaussian fields with var-
ious prescriptions for the relevant order parameters that
can either be non-conserved or conserved (‘model A’ and
‘model B’ dynamics, respectively [41, 42]).

II. MODEL

We consider a tracer, whose position is denoted by
r0(t), and which interacts with a bath of N particles,
whose positions are denoted by r1(t), . . . , rN (t) (Fig. 1).
The bath particles can be of different types. We assume
that there are N different types, and that Nα denotes
the number of particles of type α, in such a way that

N =
∑N
α=1Nα. We assume that each particle in the

system obeys an overdamped Langevin dynamics, and
that the evolution of the system is given by the N + 1
coupled equations:

dra
dt

= −κα
N∑
b=0

∇Vαβ(ra − rb) +
√

2Dαζa(t), (1)

where Vαβ denotes the pair interaction potential between
two particles a of type α and b of type β (we will use the
notation Vα0 to denote the interaction between the tracer
and a particle of type α), and to simplify the notation we
use the convention ∇Vαβ(0) = 0. The bare diffusion co-
efficient of a particle of type α is related to the mobility
κα through the Einstein relation Dα = kBTακα. Note
that the mobility of the particles is assumed to be inde-
pendent of the temperature, in such a way that the bare
diffusion coefficient of each species is proportional to the
temperature of the corresponding thermostat. The noise
terms ζa(t) have the following properties:

〈ζa,i(t)〉 = 0, (2)

〈ζa,i(t)ζb,j(t′)〉 = δabδijδ(t− t′). (3)

In order to coarse-grain the dynamics, we define the
density of bath particles of type α as

ρα(x, t) =
∑

particles a
of type α

δ(ra(t)− x). (4)

Using Ito calculation [43], and relying on the usual deriva-
tion proposed by Dean for a single-component fluid [24]
and later extended for binary mixtures [34, 37], we obtain
the coupled equations for the fields ρα

∂tρα =
√

2Dα∇ · [ηα
√
ρα] +Dα∇2ρα

+ κα∇ ·

ρα N∑
β=1

∇(Vαβ ∗ ρβ) + ρα∇(Vα0 ∗ δr0
)

 , (5)

with

〈ηα,i(x, t)ηβ,j(x′, t′)〉 = δαβδijδ(x− x′)δ(t− t′). (6)

The symbol ∗ represents spatial convolution:

(f ∗ g)(x) =

∫
dy f(y)g(x− y), (7)
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and we use the shorthand notation δr0
(x) = δ(x − r0).

The evolution of the tracer position is given by the equa-
tion of motion:

d

dt
r0(t) = −κ0

N∑
α=1

∇(Vα0∗ρα)(r0(t), t)+
√

2D0ξ(t) (8)

with the noise 〈ξi(t)ξj(t′)〉 = δijδ(t− t′), and where κ0 is
the bare mobility of the tracer. The goal of the calcula-
tion is to determine the mean-square displacement of the
tracer and its self-diffusion coefficient in the long-time
limit, defined as

Deff = lim
t→∞

〈[r0(t)− r0(0)]2〉
2dt

, (9)

where d is the spatial dimension (see Section A 3 in Ap-
pendix A for a detailed discussion on the conditions re-
quired for normal diffusion to be observed in this model).
From now on, we consider the case of a binary mixture
(N = 2). Eq. (5) is written for α = A,B and is lin-
earized, defining φi as ρi = ρ̄i +

√
ρ̄iφi. This technique

was introduced to study tracer diffusion in colloidal sus-
pensions [25], and allows one to retrieve results from the
‘random phase approximation’ [19–21] when applied to
compute static quantities, such as pair correlation func-
tions.

We define the total density ρ = ρ̄A + ρ̄B and the frac-
tion X such that ρ̄A = Xρ and ρ̄B = (1 − X)ρ. At
leading order in φi, we find

∂tφA =
√

2DA∇ · ηA +DA∇2φA

+ κA

[
∇2(XvAA ∗ φA) +∇2(

√
X(1−X)vAB ∗ φB)

+

√
ρ̄A
ρ
∇2(vA0 ∗ δr0

)

]
(10)

(and similarly for φB) where we defined vαβ = ρVαβ . We
adopt the following conventions for Fourier transforma-
tion:

f̃(k) =

∫
dx e−ik·xf(x), (11)

f(x) =

∫
dk

(2π)d
eik·xf̃(k). (12)

In Fourier space, the coupled equations for φ̃A(k, t) and

φ̃B(k, t) then read

∂t

(
φ̃A(k, t)

φ̃B(k, t)

)
= −m

(
φ̃A(k, t)

φ̃B(k, t)

)

− k2

 √
X
ρ̄ e−ik·r0(t)κAṽA0√

1−X
ρ̄ e−ik·r0(t)κB ṽB0

+

(√
2DAik · η̃A√
2DB ik · η̃B

)
,

(13)

with

m = k2

(
kBTAκA + κAXṽAA κA

√
X(1−X)ṽAB

κB
√
X(1−X)ṽAB kBTBκB + κB(1−X)ṽBB

)
.

(14)
After linearisation, the equation for the position of the
tracer reads

d

dt
r0(t) = −κ0

√
X

ρ̄
∇(vA0 ∗ φA)(r0(t), t)

− κ0

√
1−X
ρ̄
∇(vB0 ∗ φB)(r0(t), t) +

√
2D0ξ(t) (15)

To summarize, we show through Eq. (15) how the dy-
namics of the tracer is linearly coupled to the density
fields associated to each type of particle that constitute
the bath of particles. These density fields obey a linear
set of equations, which is written explicitly in Fourier
space [Eqs. (13)].

III. EFFECTIVE DIFFUSION COEFFICIENT

Although we managed to find a simple equation of mo-
tion for the tracer, which couples its position and the
density fields associated with bath particles, computing
its mean-square displacement is still a complicated task.
Indeed, the position r0(t) of the tracer, which obeys Eq.
(15) actually affects the evolution of the density fields,
whose dynamics depend explicitly on r0 through Eqs.
(13). Treating this non-trivial coupling between the dy-
namics of the tracer and that of the field can be achieved
in the small-coupling limit. We rely on the calculation
that was done by Dean and Démery in the situation
where a tracer is coupled to a single field [18], and extend
it to the present situation, where the tracer is coupled to
a binary mixture. The derivation of the effective diffu-
sion coefficient of the tracer in arbitrary dimension and
in the limit of weak coupling is given in Appendix A. In
three dimensions, the result reads
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Deff

D0
= 1−

∑
α,β,γ

κ0κβ

∫ ∞
0

dk
k6

6π2

√
XαXγ

ρ
ṽα0ṽγ0

∑
ν=±1

2c
(ν)
αβ

(D0k2 + µν)2

[
δγβ +

Tβ
T0

(D0k
2 − µν)

∑
ε=±1

c
(ε)
γβ

µν + µε

]
, (16)

where we used the fluctuation-dissipation relation: D0 =
kBT0κ0 and the fact that the integrand only depends on
the modulus of k to perform angular integrals. In this
expression, Xα = X if α = A and Xα = 1−X if α = B.
The eigenvalues µ± are explicitly related to the physical
parameters through the relation

µ± =
k2

2
{κA(kBTA +XṽAA)

+κB(kBTB + (1−X)ṽBB)} ± s

2
, (17)

with

s ≡k2
{

[κA(kBTA +XṽAA)− κB(kBTB + (1−X)ṽBB)]
2

+4κAκBX(1−X)ṽ2
AB

}1/2
. (18)

The coefficients c
(±1)
αβ are the elements of the matrices

c(±) =
1

2s

(
±mAA ∓mBB + s ±2mAB

±2mBA ∓mAA ±mBB + s

)
,

(19)
where the matrix m was defined in Eq. (14).

Eq. (16) is the central result of the present work. Sev-
eral comments follow: (i) This expression is explicit in
terms of all the parameters of the problem (interaction
potentials between the different species, mobility coeffi-
cients, temperatures of the thermostats...) and can then
be evaluated easily by performing the integral numeri-
cally; (ii) It was derived using a very general scheme, in
such a way that its general expression (see Appendix A
and in particular Eqs. (A33) and (A34)) is applicable to
other situations and may describe the diffusion of a tracer
coupled to different fields, provided that the Hamiltonian
of the system is quadratic in the fields φα and that the
tracer-field couplings are linear; (iii) The convergence of
the integrands in Eq. (16) (and therefore the existence of
normal diffusion) actually depends on the small-k behav-
ior of the rescaled potentials ṽαβ(k). This is discussed in
Section A 3.

We emphasize that the A − B mixture is stable as
long as both eigenvalues µ± [Eq. (17)] stay positive, to
ensure that the solutions of Eq. (13) do not diverge. µ+

is always positive, and the condition µ− ≥ 0 reads

(kBTA +XṽAA)(kBTB + (1−X)ṽBB) ≥ X(1−X)ṽ2
AB .
(20)

In the specific case where TA = TB = T , the stability
condition simplifies to

(1 +XũAA)(1 + (1−X)ũBB) ≥ X(1−X)ũ2
AB , (21)

where we define ũαβ = ṽαβ/(kBT ). In all the situations
considered below, we choose parameters where the mix-
ture remains stable.

IV. SOME LIMIT CASES

We now consider a few asymptotic limits of the general
expression of the effective diffusion coefficient in three di-
mensions [Eq. (16)]. We assume here that the interaction
potentials are such that all the k-integrals written in this
Section converge, which implies that the diffusion of the
tracer is normal. An example of such a potential will be
given and studied in details in the next Section.

A. Low-density limit

We first consider the low-density limit (ρ → 0) of Eq.
(16), in which the result takes a simple form. In this limit,

it is straightforward to show that c
(1)
αβ = δα,1δβ,1 +O(ρ2)

and c
(−1)
αβ = δα,2δβ,2+O(ρ2). Moreover, one gets from the

definition of µ± the following expansions: µ+ = DAk
2 +

O(ρ2) and µ− = DBk
2 + O(ρ2). From Eq. (16), this

yields the following expression for the effective diffusion
coefficient:

Deff

D0
= 1− ρ

∑
α,β

D
(0)

αβ +O(ρ2), (22)

with

D
(0)

αβ = δαβ

∫ ∞
0

dk
k2Xβκ0Ṽβ,T (k)2(D0 −Dβ + 2kBT0κβ)

6π2kBT0(Dβ +D0)2
.

(23)
Interestingly, we observe that the correction to the dif-
fusion coefficient does not involve the cross-terms DAB

and DBA, which only appear at order ρ2.

B. A tracer in contact with a single hotter bath

We then consider the particular situation where the
tracer is a particle much larger than the bath particles,
which are of a single type A, and which are connected to
a hotter thermostat than the tracer (TA � T0). For sim-
plicity, we can assume that the mobility of the particles
are given by the Stokes-Einstein relation for a spherical
particle κα = 1/(6πησα), where σα is the radius of the
particle. Considering this particular case in Eq. (16) and
taking the limit TA � T0 yields

Deff

D0
= 1 +

ρ

6π2

σA
σ0

∫ ∞
0

dk k2 Ṽ0A(k)2

(kBT0)(kBTA)
. (24)

The interaction potential V0A(r) is typically a function of
the variable r/(σ0 + σA), in such a way that its Fourier
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transform can be assumed to have the following form:
Ṽ0A(k) = (σ0 + σA)3ε0Af(k(σ0 + σA)), where ε0A is the
typical interaction energy between the tracer and the
bath particles, and f is dimensionless. This yields

Deff

D0
= 1 +

ρ

6π2

σA(σ0 + σA)3

σ0
A, (25)

where A is a dimensionless constant. It is interesting to
deduce from this expression the typical root mean-square
displacement of the tracer, rescaled by its bare value. In
the limit σ0 � σA, one gets

√
Deff −

√
D0√

D0

∼ σ0. (26)

This scaling, which was observed experimentally for large
tracers dispersed inside the cytoplasm of living cells [6],
was also derived in the limit of a low density of crowders
with purely repulsive interactions [17]. Interestingly, it
then appears that this scaling is robust against changes
of the microscopic details of the model.

In the particular situation where all the particles have
the same size and interact via the same potential V , and
for an arbitrary temperature difference between the ther-
mostat of the tracer and that of the bath, we get the
following expression

Deff

D0
= 1− ρ

6π2

×
∫ ∞

0

dk k2 ρṼ (k)2[(2θ − 1)ρṼ (k)2 + (3θ − 1)kBTA]

θ[ρṼ (k) + (θ + 1)kBTA][ρṼ (k) + kBTA]
,

(27)

where we introduced the ratio between the tracer and
bath temperatures θ = T0/TA. In the case where θ = 1,
we retrieve previous results that were obtained in the
equilibrium case where all the particles are connected to
the same thermostat [25]. We then consider the limit
where the bath is much ‘hotter’ than the tracer θ � 1:

Deff

D0
=
θ�1

1 +
ρ

6π2θ

∫ ∞
0

dk k2Ṽ (k)2 +O(1). (28)

In this situation, as expected intuitively, we find that
Deff > D0: in other words, the hot bath enhances the
diffusion of the tracer with respect to its bare value. In
the opposite limit of θ � 1, we get

Deff

D0
=
θ�1

1− ρ

2π2θ2

∫ ∞
0

dk k2Ṽ (k)2 +O
(

1

θ3

)
, (29)

where, on the contrary, the diffusion of the tracer is hin-
dered by the colder bath.

V. COMPARISON WITH NUMERICAL
SIMULATIONS

In order to go beyond the asymptotic analysis of limit
cases, we now confront our analytical result to numerical

simulations. We consider a binary mixture of Gaussian
particles, which interact via the following potential

Vαβ(r) = εαβe−r
2/σ2

αβ , (30)

and its Fourier transform:

Ṽαβ(k) = π3/2σ3
αβεαβ e−k

2σ2
αβ/4. (31)

This potential was introduced in the 1970s as a toy
model to study phase transitions in suspensions of re-
pelling particles [19], and its validity to describe polymer
coils was discussed more recently [44]. The properties
of the Gaussian-core fluid have been thoroughly studied
through numerical simulations and approximate analyti-
cal approaches [19–22], which makes it a good candidate
to probe our analytical theory. Note that the parameters
εαβ would generally be functions of the temperature, es-
pecially when these potentials are used to model polymer
coils, but we assume here for simplicity that they do not
depend on temperature. Finally, we emphasize that the
k-dependence of this potential ensures the convergence
of all the integration over Fourier modes, and therefore
the existence of a normal diffusion regime.

In all the simulations presented below, we consider
three-dimensional systems, we set σAA = σBB = σAB =
1, i.e. we assume that all particles have the same size,
and that they have the same mobility κA = κB = κ.
This sets the unit length in our simulations. The evolu-
tion of the system is simulated using Brownian dynamics,
which is a direct resolution of the coupled overdamped
Langevin equations [Eq. (1)] using the Euler scheme (see
Appendix B for details on the numerical simulations).

A. Tracer in a single component fluid

In order to probe the range of parameters where
our approximations (linearization of the Dean-Kawasaki
equation for the bath densities and limit of weak cou-
pling between the tracer and the bath) are valid, we first
consider the situation of a single component fluid, where
all the particles and the tracer are of type A. We plot on
Fig. 2 the diffusion coefficient of a tracer as a function of
the density ρ. In this single component fluid, the effective
diffusion coefficient of a tracer is a decreasing function of
the density. For a fixed value of the density, the effec-
tive diffusion coefficient decreases when the intensity of
the repulsion εAA increases: this is explained by the fact
that crowding effects, which tend to hinder self-diffusion,
are less pronounced when particles are softer. The rela-
tive decrease of the diffusion coefficient remains moderate
in every case: for the highest value of ε at the highest
density, the effective diffusion coefficient is decreased by
at most 17%.

The comparison between numerical simulations and
the results from our analytical expression confirms its
range of validity: we expect the expression of the dif-
fusion coefficient given in Eq. (16) to remain valid as
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FIG. 2. Diffusion coefficient of a tracer as a function of the
overall density ρ in a suspension of identical particles inter-
acting via a Gaussian core potential [Eq. (30)], for different
values of the interaction parameter ε in kBT units. The re-
sults from numerical simulations (symbols) are compared to
the analytical expression obtained from our approach [Eq.
(16)]. Error bars are within symbol size.

long as the interaction potentials are soft enough, i.e.
if they remain finite and if their value at zero separa-
tion remains small or comparable to kBT . Indeed, for
ε = 0.5kBT , analytical results are in quantitative agree-
ment with simulations even at high densities. When ε
increases, analytical results slightly overestimate the dif-
fusion coefficient with a relative difference to simulation
results smaller than 3% in the worst case. Note that,
to the best of our knowledge, the validity of the weak
coupling approximation has not been investigated in this
way before. Therefore, this first comparison guides the
rest of our numerical simulations, and indicates the range
of parameters where our analysis is valid.

At high densities, we observe that the effective dif-
fusion coefficient becomes an increasing function of the
density. Since the particle are soft, the potential takes
a finite value for r = 0, and at high density, particle
overlapping shall result in nontrivial sources of entropic
increase, which may exceed the associated energetic cost.
Although this effect is well-known in suspensions of soft
spheres [45–48], its relevance in the present context is
not clear, and we will leave this regime aside from our
analysis.

B. Tracer in a binary mixture with one thermostat

We now consider the situation of binary mixtures,
made of two types of particles A and B. We vary the
fraction of A particles, denoted by X, and we com-
pute the effective diffusion coefficient of the A particles,
which play the role of tracers, divided by their bare value
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only A

FIG. 3. Diffusion coefficient of particles of type A as a func-
tion of the overall density ρ for different compositions of the
A − B binary mixture (X is the fraction of A particles). All
the particles have the same size (σαβ = 1 for all α, β = A,B)
and are connected to the same thermostat, but the interac-
tion parameter εαβ differs depending on the considered pair:
εBB = εAB = kBT , and εAA = 0.5kBT .

D0 = DA. We assume that all the particles have the same
size, but that their interaction potentials differ through
the parameter εαβ : we choose εBB = εAB = kBT , and
εAA = 0.5kBT . In other words, the interactions between
A particles are softer than between the B−B and A−B
pairs. We plot on Fig. 3 the rescaled effective diffusion
coefficient of A particles as a function of the overall den-
sity, both obtained from our analytical expression [Eq.
(16)] and from numerical simulations. We observe that,
for a given value of the overall density ρ, the effective
diffusion coefficient of soft particles decreases when the
fraction of A particles decreases, i.e. when the propor-
tion of harder particles increases. This is consistent with
the idea that particles tend to diffuse faster in a softer
environment. The comparison between analytical and
numerical results confirm that our approach provides a
very good estimate of the effective diffusion coefficient
of tracer in binary mixtures in the regime of weak inter-
actions (εαβ smaller or comparable to kBT ). Indeed, it
should be noted that the difference between analytical
and numerical results never exceeds 1.5%. Note that
the overall variation of the rescaled diffusion coefficient
is of the order of 5%.

C. Case with two different thermostats

We finally consider the case of an A−B binary mixture
made of 5% of A particles, which play the role of tracers.
All the particles interact via the same potential (σαβ = 1
and εαβ = kBT for all pairs (α, β)), but the two species
are connected to different thermostats. We will assume
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FIG. 4. Diffusion coefficient of particles of type A in a binary
A − B mixture as a function of the overall density and for
different values of the ratio between the temperatures of the
thermostats to which each group of particle is connected. All
the particles interact via the same potential (σαβ = 1 and
εαβ = kBT for all pairs (α, β)).

that TA ≤ TB , and will vary TA while maintaining TB
fixed. The effective diffusion coefficient of A particles as
a function of the overall density for different values of
the temperature ratio TA/TB is shown on Fig. 4. When
TA = TB , we retrieve the results obtained for the sin-
gle component fluid (Fig. 2). When the ratio between
TA and TB decreases, i.e. when the B particles become
much ‘hotter’ than the A particles, the effective diffusion
coefficient of the tracers with respect to their base values
increases, up to a point where the enhancement induced
by the ‘hot’ bath compensates the decrease of the diffu-
sion coefficient that results from the crowding effects (see
for instance the case TA/TB = 0.333, where the rescaled
effective diffusion coefficient remains very close to 1 for
all values of the density). Finally, when the two tempera-
tures are separated by an order of magnitude (see the case
TA/TB = 0.1), the crowding effects are over-compensated
and the diffusion of the tracers is significantly enhanced
with respect to the equilibrium reference situation: the
diffusion coefficient of the tracer is enhanced by 30% to
40% compared to its bare value. Our analytical predic-
tions are in good agreement with numerical simulations:
the difference between both is smaller than 5% in every
case. Finally, it should be noted that the diffusion coeffi-
cient of B particles that are in large excess is almost not
affected by the presence of ’colder’ A particles.

VI. CONCLUSION AND PERSPECTIVES

We studied the dynamics of a tracer in contact with
multiple fluctuating fields, which are not connected to the
same thermostats. We derive a general analytical expres-

sion for the effective diffusion coefficient, which holds pro-
vided that the dynamics of the fluctuating media (which
can represent colloidal suspensions, membranes, complex
fluids...) is linear, and that the coupling between the
tracer and its environment is weak. We apply our formal-
ism to the case of a tracer in contact with a dense binary
mixture of particles which interact via soft Gaussian-core
potentials, which represent polymer coils. Each type of
particle is connected to a different thermostat, in such a
way that one is ‘hot’ and the other one is ‘cold’. Our an-
alytical expression for the diffusion coefficient of a tracer
in contact with such a mixture are confronted to Brow-
nian dynamics simulations and are found in very good
agreement. We show how the diffusivity of the tracer
is affected by the heterogeneity of the mixture, and by
the relative temperature of the two thermostats, there-
fore extending to higher densities and to different kind of
interactions potentials results that were recently derived
in the low-density limit and for purely repulsive hardcore
interactions between particles. The present work can be
extended in multiple directions. In particular, the gen-
erality of the present formalism can be applied to study
the diffusion of tracers in contact with other type of mix-
tures, such as electrolytes or charged media. Another
natural extension would to consider the situation where
the tracer is ‘active’, for instance driven by colored noise
or modeled by a run-and-tumble process.

Appendix A: Derivation of the diffusion coefficient

Starting from Eqs. (13) and (15), the goal of this ap-
pendix is to derive the analytical expression for the ef-
fective diffusion coefficient of the tracer which is given in
the main text in Eq. (16).

1. Generalized Langevin equation

Operator formalism.— Following [18], it is convenient
to rewrite the evolution equation of the position of tracer
r0(t) [Eq. (15)] and of the density fields φα [Eq. (13)]
under the form:

d

dt
r0(t) = −κ0

δH
δr0(t)

+
√
κ0η(t), (A1)

∂tφα(x, t) = −καRα
δH

δφα(x, t)
+
√
καξα(x, t), (A2)

where we introduce the following Hamiltonian, which de-
pends on all the fields φ1, . . . , φN and on the position of
the tracer:

H =
1

2

∑
α,β

∫
dx φα(x)∆αβφβ(x)−

∑
α

hαKαφα[r0(t)],

(A3)



8

and where the noise terms obey

〈ηi(t)ηj(s)〉 = 2kBT0δijδ(t− s), (A4)

〈ξα(x, t)ξβ(x′, s)〉 = 2kBTαδαβRα(x− x′)δ(t− s).
(A5)

The quantities Kα, Rα and ∆αβ are linear operators,
and we used the following shorthand notations for given
operators A, B and field ψ:

Aψ(x) =

∫
dx′ A(x− x′)ψ(x′), (A6)

ABψ(x) =

∫
dx′

∫
dx′′ A(x− x′)B(x′ − x′′)ψ(x′′).

(A7)

In Fourier space, Eqs. (13) and (15) are retrieved from
the general equations (A1) and (A2) with the following
relations between the operators Kα, Rα and ∆αβ and the
pair interaction potentials ṽαβ :

R̃α(k) = R̃β(k) = k2 (A8)
∆̃AA = kBTA +XṽAA
∆̃BB = kBTB + (1−X)ṽBB
1
2 (∆̃AB + ∆̃BA) =

√
X(1−X)ṽAB

(A9)

hAK̃A =
√

X
ρ̄ ṽA0

hBK̃B =
√

1−X
ρ̄ ṽB0

(A10)

Dynamics of the fields φα.— The next step of the cal-
culation consists in deriving a generalized Langevin equa-
tion obeyed by the position of the tracer. To this end,
we first solve for the dynamics of the fields φα(x, t). We
start from Eq. (A2), which reads in the case of a binary
mixture,

∂tφA(x, t) =− κARA
[
∆AAφA +

1

2
(∆AB + ∆BA)φB

]
+ hAκARAKA[x− r0(t)] +

√
κAξA(x, t),

(A11)

and the equivalent for φB . The equations for φA and φB
read, in Fourier space:

d

dt

(
φ̃A(k, t)

φ̃B(k, t)

)
= −m

(
φ̃A
φ̃B

)
+

(
hAκAe−ik·r0(t)R̃AK̃A +

√
κAξ̃A

hBκBe−ik·r0(t)R̃BK̃B +
√
κB ξ̃B

)
, (A12)

where the dependences over k are not written explicitly
for clarity, and where we define the matrix m as

m =

(
κAR̃A∆̃AA

1
2κAR̃A(∆̃AB + ∆̃BA)

1
2κBR̃B(∆̃AB + ∆̃BA) κBR̃B∆̃BB

)
.

(A13)
Eq. (A12) is a simple set of couple linear first order dif-
ferential equation, whose resolution requires the matrix

exponential M̃ ≡ exp[−(t−s)m], which is written under
the form

Mαβ = c
(+)
αβ e−(t−s)µ+ + c

(−)
αβ e−(t−s)µ− , (A14)

where we defined the matrices,

c(±) =
1

2s

(
±mAA ∓mBB + s ±2mAB

±2mBA ∓mAA ±mBB + s

)
,

(A15)
the eigenvalues

µ± =
mAA +mBB

2
± 1

2

√
(mAA −mBB)2 + 4mABmBA,

(A16)
and the quantity

s =
√

(mAA −mBB)2 + 4mABmBA. (A17)

After Fourier inversion, one finds the solution of Eq.
(A11) in real space under the form

φα(x, t) =

∫ t

−∞
ds
∑
β

{hβκβMαβ(t− s)RβKβ [x− r0(s)]

+
√
κβMαβ(t− s)ξβ(x, s)

}
(A18)

where Mαβ are the elements of the inverse Fourier

transform of M̃.

Dynamics of the tracer.— Starting from Eq. (A1), the
dynamics of the tracer is given by

d

dt
r0(t) = κ0

∑
α

hα∇Kαφα[r0(t)] +
√
κ0η(t) (A19)

Using the expression for the field derived previously [Eq.
(A18)], the equation for the dynamics of the tracer can
be rewritten as

d

dt
r0(t) =

√
κ0η(t)+

∫ t

−∞
ds F [r0(t)−r0(s), t−s]+Ξ[x, t],

(A20)
with

F (x, u) = κ0

∑
α,β

hαhβκβ∇KαMαβ(u)RβKβ(x),

(A21)
and

Ξ[x, t] = κ0

∑
α,β

hα
√
κβ∇Kα

∫ t

−∞
dsMαβ(t− s)ξβ(x, s)

(A22)

2. Path-integral representation

Starting from Eq. (A20), we now aim at calculating the
mean-square displacement of the tracer at a given time
tf , defined as 〈[r0(tf ) − r0(0)]2〉, and the self-diffusion
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coefficient, defined in Eq. (9). To this end, we follow the
lines of Ref. [18], in which a perturbative path-integral
study was outlined. Introducing a variable p conjugated
to the position of the tracer, the partition function asso-
ciated to Eq. (A20) can be written under the form

Z =

∫
DxDp e−S[x,p] (A23)

where the action S[x,p] = S0[x,p] + Sint[x,p] has the
following contributions:

S0[x,p] = −i

∫
dt pi(t)ẋi(t) +D0

∫
dt pi(t)pi(t),

(A24)

Sint[x,p] = i

∫
dtds pi(t)Fi[x(t)− x(s), t− s]θ(t− s)

+

∫
dtds pi(t)Gij [x(t)− x(s), t− s]pj(t)θ(t− s).

(A25)

We used the Einstein summation convention and where
θ denotes the Heaviside function. The matrix elements
Gij are defined as

Gij(x− x′, t− t′) ≡ 〈Ξi(x, t)Ξj(x′, t′)〉, (A26)

and read, in Fourier space:

G̃ij(k, t) =2κ2
0kikj

∑
α,β,γ

hαhγκβK̃αK̃γkBTβR̃β

×
∑

ν,ε=±1

c
(ν)
αβ c

(ε)
γβ

e−µν |t|

µν + µε
(A27)

where the sums over α, β and γ run over all the con-
stituents of the mixture, and where we use the expression
of the matrix exponential Mαβ given in Eq. (A14). Ex-
panding in the limit where the tracer-bath interactions
are small (i.e. when the interaction action Sint is small
compared to S0) and at first nontrivial order, one gets the

following expression for the mean-square displacement of
the tracer:

〈[r0(tf )−r0(0)]2〉 ' 〈[r0(tf )−r0(0)]2〉0−IF−IG, (A28)

where the average 〈. . . 〉0 is taken over the bare action S0,
and where we defined

IF =
〈

ir0(tf )2

∫
dt

∫
ds θ(t− s)pi(t)

× Fk,i[r0(t)− r0(s), t− s]
〉

0
(A29)

'
tf→∞

4D0

∫
ddk

(2π)d
k2κ0

∑
α,β

hαhβκβK̃α(k)K̃β(k)R̃β(k)

×
∑
ν=±1

c
(ν)
αβ

(D0k2 + µν)2
tf , (A30)

and

IG =
〈
r0(tf )2

∫
dt

∫
ds θ(t− s)pi(t)pj(s)

Gk,ij [r0(t)− r0(s), t− s]
〉

0
(A31)

'
tf→∞

4

∫
ddk

(2π)d
k2κ2

0

∑
α,β,γ

hαhγκβK̃α(k)K̃γ(k)R̃β(k)kBTβ

∑
ν,ε=±1

c
(ν)
α,βc

(ε)
γ,β

µν + µε
· D0k

2 − µν
(D0k2 + µν)2

tf . (A32)

Then, using the definition of Deff =
limt→∞〈r0(tf )2〉/(2dtf ) and integrating over all Fourier
modes, we write the effective diffusion coefficient under
the form

Deff = D0 −
∑
α,β

Dαβ (A33)

with

Dαβ =
κ0κβ
d

∫
ddk

(2π)d
k2[hαK̃α(k)]R̃β(k)

∑
γ

[hγK̃γ(k)]
∑
ν=±1

2c
(ν)
αβ

(D0k2 + µν)2

[
D0δγβ + kBTβκ0(D0k

2 − µν)
∑
ε=±1

c
(ε)
γβ

µν + µε

]
(A34)

Finally, using the mapping between the operators Kα,
Rα and ∆αβ and the interaction potential between the
particles in the suspension [Eq. (A10)], one gets the ex-
pression for the diffusion coefficient of the tracer given in
the main text [Eq. (16)].

3. Convergence of the integral over Fourier modes

We finally discuss the convergence of the integral in Eq.
(A34), along the lines of Ref. [18]. Indeed, depending

on the k-dependence of the operators K̃α, R̃α and ∆̃αβ ,
the integral over k = |k|, may diverge, in which case it
would need to be regularized by lower or upper cutoffs.
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FIG. 5. Mean-squared displacements of particles of type A
in a binary A − B mixture, divided by time, as a function
of time in reduced units (t? = σ2

BB/(kBTBκB) is the time
needed for a particle B to diffuse over a length equal to its
size). The results obtained for several values of the overall
density, and for TA/TB = 0.1 are displayed. Note that the
total duration of one trajectory is here 4000t? and that the
results are averaged over 6 independent trajectories.

The large-k behavior is bounded by the typical molecular
size, whereas the small-k dependence is bounded by the
typical system size. Depending on the small-k behavior
of the integrand, the integral may have a non-trivial de-
pendence over system size, which indicates the possibility
of anomalous diffusion.

Assuming that all the operators R̃α on the one hand,
and all the operators ∆̃αβ on the other hand have identi-
cal small-k behaviors, it is straightforward to show that
the reasoning presented in Ref. [18] still holds, and that
there exists a critical dimension below which the integrals
do not converge, therefore leading to anomalous diffusion.

In the present paper, we will only consider situations
where diffusion is normal. In particular, in Section V,
this will be ensured by our choices of the soft interac-
tion potentials Vαβ(r) defined in Eq. (30), whose Fourier
transform goes to a finite constant when k → 0.

Appendix B: Details on numerical simulations

To perform Brownian dynamics simulations we have
used the LAMMPS computational package [49]. We used
the command ‘fix Brownian’ that allows one to integrate
overdamped Langevin equations for the positions of par-
ticles thanks to an Euler scheme. The interaction po-
tentials are Gaussian [Eq. (30)] and size parameters are
always the same: σAA = σBB = σAB = 1. To compute
interaction forces, a cutoff distance equal to 2.5σAA is
used. The input mobility of particles is always the same,
as it depends only on the particle size. To study the dif-
fusion of cold A tracers, we fix the temperature of the
group of A particles to a value smaller than that of B
ones. The diffusion coefficient at infinite dilution of A
particles is thus smaller than that of B particles.

In every case, a total number of N = 4000 particles are
placed in a cubic simulation box with periodic boundary
conditions. The length of the box Lbox is varied to change
the total density ρ of the system, with ρ = N/L3

box. The
time step is ∆t = 0.002t?, with t? = σ2

BB/(kBTBκB) the
time needed for a particle B to diffuse over a length equal
to its size. In each case, one long trajectory of 20 × 106

time steps is first run to equilibrate the system. Then,
mean squared displacements of tracers are averaged over
particles and time, and also over several independent tra-
jectories. To study the diffusion in a single component
fluid, 3 independent trajectories of 10 × 106 time steps
each were done. In the case of a binary mixture with one
thermostat, 3 independent trajectories of 20 × 106 time
steps each were done. To compute the tracer diffusion
coefficient in mixtures with two different thermostats, re-
sults were averaged over 6 to 9 independent trajectories
of 20 × 106 time steps each, depending on the tempera-
ture of the tracers. Cold particles are indeed intrinsically
slower than hot ones, and long trajectories must be run
to ensure that they travel across the whole simulation
box. The uncertainty of the computed self-diffusion co-
efficients was evaluated from the standard deviation of
values obtained from different trajectories. The uncer-
tainty on Deff

D0
was in each case smaller than 0.005. Note

that the size of the symbols used in the figures is larger
than these error bars. The mean-squared displacements
were found to be linear at all time for every system in-
vestigated here. An example of the results obtained for
the binary A−B mixture with particles connected to two
different thermostats is displayed on Fig. 5.
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[18] V. Démery and D. S. Dean, Phys. Rev. E 84, 011148

(2011).
[19] A. A. Louis, P. G. Bolhuis, and J. P. Hansen, Phys. Rev.

E 62, 7961 (2000).
[20] A. Lang, C. N. Likos, M. Watzlawek, and H. Löwen,
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[22] H. H. Wensink, H. Löwen, M. Rex, C. N. Likos, and

S. van Teeffelen, Computer Physics Communications
179, 77 (2008).

[23] K. Kawasaki, Physica A: Statistical Mechanics and its
Applications 208, 35 (1994).

[24] D. S. Dean, J. Phys. A: Math. Gen. 29, L613 (1996).
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[37] V. Démery and D. S. Dean, J. Stat. Mech. , 023106
(2015).

[38] H. Frusawa, Entropy 22, 34 (2020).
[39] H. Frusawa, Soft Matter 18, 4280 (2022).
[40] Y. Avni, R. M. Adar, D. Andelman, and H. Orland,

Physical Review Letters 128, 98002 (2022).
[41] P. M. Chaikin and T. C. Lubensky, Principles of con-

densed matter physics (Cambridge University Press).
[42] P. C. Hohenberg and B. I. Halperin, Reviews of Modern

Physics 49, 435 (1977).
[43] C. W. Gardiner, Handbook of Stochastic Methods

(Springer, 1985).
[44] A. A. Louis, P. G. Bolhuis, J. P. Hansen, and E. J.

Meijer, Physical Review Letters 85, 2522 (2000).
[45] D. Coslovich and A. Ikeda, Soft Matter 9, 6786 (2013).
[46] W. P. Krekelberg, T. Kumar, J. Mittal, J. R. Errington,

and T. M. Truskett, Phys. Rev. E 79, 031203 (2009).
[47] P. Mausbach and H. O. May, Fluid Phase Equilibria 249,

17 (2006).
[48] H. Jacquin and L. Berthier, Soft Matter 6, 2970 (2010).
[49] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolin-

tineanu, W. M. Brown, P. S. Crozier, P. J. in ’t Veld,
A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan,
M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimp-
ton, Comp. Phys. Comm. 271, 108171 (2022).

http://dx.doi.org/10.1103/PhysRevLett.116.058301
http://dx.doi.org/10.1103/PhysRevLett.116.058301
http://dx.doi.org/10.1103/PhysRevFluids.2.043103
http://dx.doi.org/10.1103/PhysRevFluids.2.043103
http://dx.doi.org/10.3390/e20070520
http://dx.doi.org/10.1103/PhysRevLett.118.098002
http://dx.doi.org/10.1103/PhysRevLett.118.098002
http://dx.doi.org/ 10.1103/PhysRevResearch.2.043249
http://dx.doi.org/ 10.1103/PhysRevResearch.2.043249
http://dx.doi.org/10.1038/s41467-019-13696-z
http://dx.doi.org/10.1038/s41467-019-13696-z
http://dx.doi.org/10.1209/0295-5075/112/20001
http://dx.doi.org/10.1209/0295-5075/112/20001
http://dx.doi.org/10.1103/PhysRevE.92.032118
http://dx.doi.org/10.1103/PhysRevE.92.032118
http://dx.doi.org/10.1103/physrevresearch.2.023200
http://dx.doi.org/10.1103/physrevresearch.2.023200
http://dx.doi.org/10.1103/PhysRevE.101.032131
http://dx.doi.org/10.1103/PhysRevE.101.032131
http://arxiv.org/abs/2103.06659
http://arxiv.org/abs/2103.06659
http://dx.doi.org/10.1103/PhysRevE.84.011148
http://dx.doi.org/10.1103/PhysRevE.84.011148
http://dx.doi.org/10.1103/PhysRevE.62.7961
http://dx.doi.org/10.1103/PhysRevE.62.7961
http://dx.doi.org/10.1088/0953-8984/12/24/302
http://dx.doi.org/10.1103/PhysRevE.63.031206
http://dx.doi.org/10.1016/j.cpc.2008.01.009
http://dx.doi.org/10.1016/j.cpc.2008.01.009
http://dx.doi.org/10.1016/0378-4371(94)90533-9
http://dx.doi.org/10.1016/0378-4371(94)90533-9
http://dx.doi.org/10.1088/0305-4470/29/24/001
http://dx.doi.org/10.1088/1367-2630/16/5/053032
http://dx.doi.org/10.1088/1367-2630/16/5/053032
http://dx.doi.org/10.1088/1742-5468/ab02e9
http://dx.doi.org/10.1088/1742-5468/ab02e9
http://dx.doi.org/10.1103/PhysRevE.91.062301
http://arxiv.org/abs/2110.00279
http://dx.doi.org/10.1103/PhysRevE.103.012605
http://dx.doi.org/10.1103/PhysRevX.9.041026
http://dx.doi.org/10.1088/1367-2630/ab6353
http://dx.doi.org/10.1088/1367-2630/ab6353
http://dx.doi.org/10.1063/5.0097863
http://dx.doi.org/ 10.1209/0295-5075/121/60005
http://dx.doi.org/ 10.1209/0295-5075/121/60005
http://dx.doi.org/10.1103/PhysRevLett.118.118002
http://dx.doi.org/10.1103/PhysRevLett.126.158002
http://dx.doi.org/10.1103/PhysRevLett.126.158002
http://dx.doi.org/10.1088/1367-2630/ac0f1a
http://dx.doi.org/10.1088/1367-2630/ac0f1a
http://dx.doi.org/10.1088/1742-5468/2016/02/023106
http://dx.doi.org/10.1088/1742-5468/2016/02/023106
http://dx.doi.org/10.3390/e22010034
http://dx.doi.org/10.1039/d1sm01811f
http://dx.doi.org/10.1103/PhysRevLett.128.098002
http://dx.doi.org/10.1103/RevModPhys.49.435
http://dx.doi.org/10.1103/RevModPhys.49.435
http://dx.doi.org/10.1103/PhysRevLett.85.2522
http://dx.doi.org/10.1039/c3sm50368b
http://dx.doi.org/ 10.1103/PhysRevE.79.031203
http://dx.doi.org/10.1016/j.fluid.2006.07.021
http://dx.doi.org/10.1016/j.fluid.2006.07.021
http://dx.doi.org/10.1039/b926412d
http://dx.doi.org/10.1016/j.cpc.2021.108171

	Diffusion of a tracer in a dense mixture of soft particles connected to different thermostats
	Abstract
	Introduction
	Model
	Effective diffusion coefficient
	Some limit cases
	Low-density limit
	A tracer in contact with a single hotter bath

	Comparison with numerical simulations
	Tracer in a single component fluid
	Tracer in a binary mixture with one thermostat
	Case with two different thermostats

	Conclusion and perspectives
	Derivation of the diffusion coefficient
	Generalized Langevin equation
	Path-integral representation
	Convergence of the integral over Fourier modes

	Details on numerical simulations
	References


