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SPOTLIGHT

The brain on time: links between development and
neurodegeneration
Khadijeh Shabani and Bassem A. Hassan*

ABSTRACT

Neurodegenerative diseases are characterized by the progressive
loss of structure or function of neurons. In this Spotlight, we explore
the idea that genetic forms of neurodegenerative disorders might be
rooted in neural development. Focusing on Alzheimer’s, Parkinson’s
and Huntington’s disease, we first provide a brief overview of the
pathology for these diseases. Although neurodegenerative diseases
are generally thought of as late-onset diseases, we discuss recent
evidence promoting the notion that they might be considered
neurodevelopmental disorders. With this view in mind, we consider
the suitability of animal models for studying these diseases,
highlighting human-specific features of human brain development.
We conclude by proposing that one such feature, human-specific
regulation of neurogenic time, might be key to understanding the
etiology and pathophysiology of human neurodegenerative disease.

KEY WORDS: Brain development, Neurodegeneration, Temporal
mechanisms

Introduction
Neurodegenerative diseases (NDs) are characterized by the
progressive loss of structure or function of neurons. They are the
second-leading cause of death worldwide and have increased
considerably over the past 25 years due to ageing and growing
population numbers (Feigin et al., 2019). Here, we propose that
genetic forms of neurodegeneration might be rooted in neural
development. We explore this idea using Alzheimer’s, Parkinson’s
and Huntington’s disease, three well-known examples of NDs that
inevitably progress to severe disability and death, as examples.

Brief overview of the genetics of selected
neurodegenerative disorders
Alzheimer’s disease
Alzheimer’s disease (AD) is the leading cause of dementia,
accounting for more than 50% of cases. It is characterized by
progressive memory loss followed by impairments in executive
functions and behavioral disturbances. AD has three pathological
hallmarks: senile plaques, neurofibrillary tangles, and hippocampal
and cortical neurodegeneration (Jack et al., 2016; Long and
Holtzman, 2019). AD can be divided into two forms: early-onset
familial AD (fAD; also known as autosomal dominant AD) and
late-onset sporadic AD. Late-onset AD is the most common form
and begins to manifest after the age of 65, whereas early onset AD
symptoms manifest earlier, usually between 45 and 60 years
(Cacace et al., 2016). fAD represents, at most, 4-6% of AD cases

(Mendez, 2017). Mutations in the amyloid precursor protein (APP),
presenilin 1 (PSEN1) and presenilin 2 (PSEN2) are the key causes
of fAD, and the apolipoprotein E4 allele (APOEɛ4) is a major risk
factor for the sporadic form (Carmona et al., 2018). Thus, between
fAD causing mutations and the APOEɛ4 risk factor, heritable
genetic alterations clearly play a significant role in AD. APP is a
transmembrane protein, the extracellular domain of which is
thought to act both as a receptor of extracellular ligands, such as
the Wnt family of proteins (Liu et al., 2021), netrin 1 (Lourenço
et al., 2009), F-spondin (SPON1; Ho and Südhof, 2004), BRI2
(ITM2B) and BRI3 (Matsuda et al., 2005, 2009), and as a secreted
signal via its own processed product, sAPPα (Gralle et al., 2009)
and Aβ (Shaked et al., 2006). The APP intracellular domain is
thought to act as a transcriptional regulator due to similarities to
Notch intracellular domain via interaction with adaptor proteins,
such as Fe65 (APBB1) and X11 (MINT; APBA1) (Tamayev et al.,
2010). PSEN1 and PSEN2 are part of the enzymatic core of gamma-
secretase (γ−sec), a membrane protease required for the cleavage of
APP as well as many other transmembrane proteins, notably the
Notch receptor, which is required for numerous aspects of normal
brain development (Brunkan and Goate, 2005; Güner and
Lichtenthaler, 2020). Finally, APOE is a lipid transporter that is
involved in distribution of phospholipids and cholesterol throughout
the body. It plays an important role in lipid metabolism and
neurobiology by mediating binding of lipoproteins to specific cell-
surface receptors (Huang and Mahley, 2014; Huang et al., 2004;
Raulin et al., 2022).

Parkinson’s disease
Parkinson’s disease (PD) affects 1% of the population over 60 years
of age (Tysnes and Storstein, 2017). It is characterized by two
hallmarks: the progressive loss of dopamine (DA) neurons in the
substantia nigra pars compacta and the presence of structures called
Lewy bodies that are formed by misfolded α-synuclein (Kim et al.,
2014; Savitt et al., 2006). PD symptoms include motor symptoms
(resting tremor, bradykinesia and rigidity), cognitive decline and
behavioral/neuropsychiatry changes (Beitz, 2014; Bloem et al.,
2021). The onset of the disease is usually at an age of 65 to 70 years
and, in most of the population, 3-5% of cases with PD are
monogenic and linked to known PD genes. Mutations in synuclein
alpha (SNCA) and leucine rich repeat kinase 2 (LRRK2) cause
autosomal dominant PD, whereas mutations in parkin (PRKN),
PTEN-induced kinase 1 (PINK1) and parkinsonism associated
deglycase (PARK7) cause the autosomal recessive form of PD
(Cherian and Divya, 2020; Klein and Westenberger, 2012). It has
been found that 16-36% of the heritability of PD could be explained
by the ∼90 known genetic risk variants (Bloem et al., 2021) and
more are continuously being discovered. SNCA is a small
intracellular protein, the physiological function of which remain
controversial. It has been suggested that it is involved in maintaining
neuronal homeostasis by affecting release of neurotransmitters, such
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as DA and serotonin, thus participating in synaptic plasticity,
autophagy and vesicle transport (Sulzer and Edwards, 2019; Villar-
Piqué et al., 2016). LRRK2 is located in the cytoplasm and its
biological function remains unknown, but it is thought to be
involved in autophagy and mitochondrial regulation, microtubule
dynamics and vesicular trafficking (Cookson, 2016; Krumova et al.,
2015; Roosen and Cookson, 2016). Both PINK1 and PRKN, as well
as several other PD genes, are thought to play a role in homeostatic
mitochondrial quality control in neurons (Lizama and Chu, 2021;
Moehlman and Youle, 2020), giving rise to the mitochondrial
hypothesis of the etiology of PD.

Huntington’s disease
Huntington’s disease (HD) is the most common monogenic
neurodegenerative disease in the western world, with the
prevalence of 5-12 per 100,000 in the UK (Evans et al., 2013).
HD is characterized by progressive chorea, neuropsychiatric
symptoms and cognitive decline (Stoker et al., 2022). HD is a
polyglutamine disease caused by abnormal expansion of CAG
repeats in the huntingtin (HTT) gene, a highly conserved gene in
which the number of CAG repeats increases with phylogenetic
proximity to humans. The age of onset of HD is usually between 30
and 50 years of age and correlates strongly with CAG repeat length
(Kim et al., 2021). HTT is expressed ubiquitously throughout the
body with particularly high levels in the brain, where it is present in
both neurons and glia, and testes. HTT encodes a large cytosolic
protein with an uncertain function, although there is good evidence
for its involvement in vesicular trafficking in neurons (Saudou and
Humbert, 2016; Trushina et al., 2004). Mutations in HTT (mHTT)
are thought to lead to both the gain of toxic protein function and the
loss of normal function, the combination of which is thought to be
toxic to neurons (Bates et al., 2015; Wanker et al., 2019). Specific
neurons are affected in HD, in particular those of the cortex and
striatum (Stoker et al., 2022; Tartari et al., 2008).

Developmental origin of susceptibility to neurodegenerative
disorders
Although the diagnosis of NDs tends to occur between 40 and
60 years of age, depending on the specific disorder, it is now widely
accepted that the clinical manifestations of NDs appear decades
after neuronal circuits begin to lose connectivity and cells.
Similarly, the loss of connectivity manifests as an earlier failure
of protective tissue and cell level mechanisms after the onset of the
original imbalances at the molecular scale that occur earlier still.
Therefore, a clinical diagnosis at the age of 60 could still mean that
the initiating insult or onset may have been experienced in early
childhood or even during embryonic development. While this is
becoming increasingly acknowledged, today, there is no general
conceptual or experimental framework attempting to explicitly
understand whether and how brain development is linked to
neurodegeneration. However, recent studies have precisely
suggested such a link at the genetic and molecular levels, as we
discuss below.

Developmental origins of Alzheimer’s disease
There is emerging evidence that fAD genes and mutations are
required for normal mammalian brain development. For example,
the ventricular zone of Psen1−/− mice brains is markedly thinner by
embryonic day (E)14.5, indicating an impairment in neurogenesis
(Shen et al., 1997). Another report suggests that loss of mouse Psen1
causes the loss of Cajal-Retzius cells and cortical hyperplasia
(Hartmann et al., 1999). Premature neurogenesis has been observed

in early-onset fAD induced pluripotent stem cells (iPSCs) harboring
PSEN1 mutations compared with non-isogenic controls using
cortical differentiation in 2D and cerebral organoid generation in 3D
(Arber et al., 2021). We have also recently shown that loss of APP in
two different genetic backgrounds causes significantly accelerated
human, but not mouse, cortical neurogenesis (Shabani et al., 2021
preprint). One reason for this species-specific effect of APP might
be because mouse cortical neurogenesis is already too rapid to be
significantly shortened further by the APP dependent mechanism
we unraveled. Thus, APP may play a specific role in protracting the
progenitor state of cortical radial glial cells. Consistent with this
hypothesis, we did not observe acceleration of neurogenesis due to
loss of APP during human motor neuron generation, a process that
takes 2-3 weeks (Dady et al., 2022). However, previous studies of
mouse neurogenesis suggest that APP may also have a subtle role in
mouse cortical neurogenesis, although what that precise role may be
is unclear (Bergmans et al., 2010; Hu et al., 2013; Ma et al., 2008;
Shariati et al., 2013). The requirement for PSEN1 and PSEN2 in the
activation of the Notch receptor and processing of APP itself,
strongly implies that these proteins play roles in various brain
development steps, from neurogenesis to neuronal migration, and
axonal and dendritic arborization (Haass, 2000; Soldano and
Hassan, 2014).

Developmental origins of Parkinson’s disease
Clinically, rare cases of juvenile PD have been reported. For
example, juvenile PD has been reported in a 16 year old with
tremors and walking difficulty carrying an autosomal recessive
mutation in ATPase cation transporting 13A2 (ATP13A2) (Anwar
et al., 2019). In another case, a patient with young onset of
Parkinsonism carrying a homozygous mutation (c.G859A) in
PRKN has been reported (Magistrelli et al., 2022). The patient
developed difficulty in walking at the age of nine, due to left
leg ‘stiffness’, followed by bradykinesia and rigidity, which
progressively worsened and left the patient severely disabled.
Eleven other patients carrying mutations in PRKN with an age at
onset of between 3-8 years have been listed within the same
paper (Magistrelli et al., 2022). Furthermore, even in adult-onset
PD, there is evidence for developmental consequences of PD
mutations. For example, neuroepithelial stem cells derived from the
iPSCs of a person with PD carrying the LRRK2-G2019S mutation
recapitulate key mitochondrial defects shown only in differentiated
dopaminergic neurons, suggesting a developmental element to this
form of PD (Walter et al., 2019). The LRRK2-G2019S mutation is
an autosomal-dominant genomic mutation in the LRRK2 gene
(c.6055 G>A), results in an amino acid substitution (p.G2019S) and
it is the most prevalent genetic risk factor for PD (Funayama et al.,
2002; Paisán-Ruíz et al., 2004). Interestingly, very recent work
suggests a role for mitochondrial homeostasis in early human
neurogenesis (Iwata et al., 2020, 2023). It is thus not unreasonable to
speculate that PD mutations that impair mitochondrial function
might also affect brain development.

Developmental origins of Huntington’s disease
Juvenile HD has been reported by different studies including in
seven patients manifesting symptoms between the age of 1.5 to
7 years old (Jongen et al., 1980) and 29 cases below the age 20
(Ribaï et al., 2007). Moreover, patients at ages of 8 (Choudhary
et al., 2017), 13, 16 (Lesinskien et al., 2020) and 17 (Luciana de
Andrade et al., 2019) have been reported. Finally, in landmark
studies on HD, there are clear abnormalities in cortex development,
including mislocalization of mHTT and junctional complex
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proteins, defects in neural progenitor cell polarity and
differentiation, changes in mitosis and cell cycle progression
(Barnat et al., 2020). This may explain why a longitudinal HD
study comparing 366 individuals including control, pre-HD and
early HD patients, revealed the appearance of MRI defects well
before clinical manifestation (Tabrizi et al., 2009). Moreover,
mouse mHTT impairs cell division of neural progenitors, neuronal
migration and maturation, leading to a thinner cortex in HD mice
(Godin et al., 2010; McKinstry et al., 2014; Molina-Calavita et al.,
2014). Expression of either mHTT or hypomorphic HTT alone
during early life is enough to induce HD features in adult mice,
strongly suggesting there is a developmental component to the
disease (Arteaga-Bracho et al., 2016; Molero et al., 2016). A study
investigating the physiological function and evolution of the CAG
tract in the HTT gene suggests that small variations in HTT poly-
glutamine (polyQ) lengths significantly correlate with neurogenic
potential of the cells and changes in the gene transcription network
involved in neuronal function, where both could potentially
contribute to development of a more complex nervous system
(Iennaco et al., 2022). Studies on human neurons generated from the
iPSCs of people with HD have shown changes in gene expression
pattern, which support an altered developmental program. For
example, HTT CAG length-dependent impairment of germ layer
patterning has been reported in a human embryonic stem cell-
derived in vitro model of gastrulation with a reduction in the
extension of the ectodermal compartment (Galgoczi et al., 2021). In
addition, mHTT changes neuronal identity in cortical populations of
HD brain organoids (Conforti et al., 2018; Lim et al., 2017). Thus, a
clear link is emerging between brain development and HD.

A developmental perspective of neurodegenerative disorders
When considered together, the clinical cases and mechanistic
studies in mouse and human models suggest that it is highly
possible that NDs have a developmental component. One way
to frame this would be to suggest that ND-causing mutations lead
to the development of what might be referred to as an ‘at-risk normal
brain’ that functions normally after birth but is susceptible to the
lifelong stresses both intrinsic (somatic mutations, excitotoxicity,
vascular and inflammatory reactions, etc.) and extrinsic
(environmental toxins, lifestyle, injury, etc.). This hypothesis
considers the possibility of developmental trajectories for NDs
in which mutations in specific genes (familial cases), or a
genetic background with multigenic risk factors (sporadic cases),
selectively renders as vulnerable to lifelong stress different
subtypes of neurons and glia. Interestingly, some patients carrying
risk factor genes do not develop these diseases, pointing to the
protective/compensatory factors against the pathophysiological
mechanism present during development. The late onset of
clinical phenotypes would reflect the fact that the developmental
‘heritage’ of the postnatal brain was mild enough not to affect
brain function for most of adult life due to the redundancy and
robustness inherent to the way the brain forms and functions. In
other words, it is the clinical phenotype of NDs that is ageing
dependent, not the pathophysiological mechanism itself. From this
perspective, NDs could be seen as late onset neurodevelopmental
disorders.

Challenges in modeling neurodegenerative disorders in
animal models
The proposal that NDs might be developmental disorder
revolutionizes the tools (animal models) that are currently widely
used in the research field. Although animal models are valuable for

studying neurodevelopment and have increased our understanding
of NDs, they do not fully recapitulate the human disease. One
reason that animal models do not fully recapitulate ND is thought to
be lifespan, particularly for late onset disease – or more accurately,
late diagnosis NDs. For example, although AD is prevalent in
humans, non-human-primates develop only a partial form of
the disease and it rarely occurs in non-primate mammals (Nitsche
et al., 2021). Therefore, it has been suggested that AD-like
neurodegeneration requires a long lifespan (Sherwood et al.,
2011). In addition to lifespan, animal models may not fully
capture molecular and cellular pathophysiological mechanisms
of neurodegeneration due to the evolution of human-specific
genetic loci, such as human accelerated regions of the genome
(HARs) (Doan et al., 2016). Furthermore, most animal models
used in research are inbred populations that do not reflect the
genetic diversity of human populations. Finally, the genomic and
evolutionary differences between human and other mammals makes
modeling human ND challenging. It is, therefore, reasonable to
suggest that human-specific aspects of brain development play a
role in human ND, which will not be possible to model in traditional
animal models.

Human enriched features of brain development
Human-specific features of brain structure, surface, cellular
diversity and duration of neurogenesis are under increasingly
broad study (Azevedo et al., 2009; Florio and Huttner, 2014;
Herculano-Houzel, 2009; Herculano-Houzel et al., 2007). Recent
studies have revealed the possibility of human-specific progenitor
subtypes (Kalebic et al., 2019), as well as human-specific genes
associated with brain development (Florio et al., 2017; Heide et al.,
2020; Suzuki et al., 2018) and HARs, which might contribute to
unique features and evolution of the human brain.

Another human-specific feature of brain development is the
duration of neurogenesis. Humans have a prolonged duration of
neurogenesis during brain development compared with other
mammals and this lengthening of the neurogenic period appears
to play a key role in determining the number of neurons and glia, and
thus the expansion of the neocortex (Stepien et al., 2020, 2021).
Interestingly, comparing the gyrencephaly index (GI), physiological
and life history data for 102 mammalian species has shown that
the length of the neurogenic phase alone, rather than any novel
neurogenic progenitor lineage, is sufficient to explain differences in
the number of neurons and neocortical size between species within
the same principal group (Lewitus et al., 2014). For example, the
differentiation of neuroepithelial cells to apical radial glia (aRG) is
protracted in human-derived organoids when compared with
organoids derived from gorilla cells (Benito-Kwiecinski et al.,
2021). Similarly, the transition from a proliferating to neurogenic
state of aRG is slower in human cerebral organoids than in
chimpanzee organoids, possibly because human apical progenitors
have a longer S-phase that, in turn, correlates with a higher
proliferative potential (Arai et al., 2011; Kornack and Rakic, 1995).
We have recently shown that human APP slows the onset of the
neurogenic phase during human cortical neurogenesis (Shabani
et al., 2021 preprint), potentially providing a direct genetic link
between human-specific temporal features of cortical development
and neurodegeneration. It is important to note that current organoid
models do not recapitulate the full maturation and ageing of the
human brain. As such, they are excellent models for revealing
and analyzing developmental deficits potentially associated with
NDs, but do not account for maturation- and ageing-dependent
phenotypes.
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Considerations on the link between developmental timing
and neurodegeneration
Perhaps one of the most puzzling aspects of brain disorders in
general, and NDs in particular, is the high degree of specificity of
the initial brain regions and type of neurons affected in each ND.
This is surprising because both the genetic mutations and the
environmental factors do not appear to have specificity. Most, if not
all, genetic forms of ND arise from mutations in genes that are
ubiquitously expressed and involved in basic cell biological
functions. Why mutations in APP, PINK1 or HTT should
preferentially affect cortical, dopaminergic or striatal neurons,
respectively, is not entirely obvious.
Current ideas for explaining selective vulnerability of different

neuronal and glial subtypes and different brain areas to NDs
consider spatial and functional characteristics, such as size,
firing rate and neurotransmitter subtypes, as potential sources of
such vulnerability. In addition, we suggest that it may be worth
exploring the notion that different temporal developmental
trajectories of different neuronal subtypes make them selectively
susceptible to different types of insults. It should be noted that
different functional subtypes of neurons develop at different times
and, at least in models such as Drosophila and the mouse
neocortex, there is a causal link between timing of neuronal birth
and functional identity. Thus, these two aspects of neuronal
characteristics are not fully independent. Furthermore, it is well
established that the peak of neurogenesis is different in different
regions of brain. Whereas generation of DA neurons (targeted in
PD) occurs between gestational week (GW)6 and GW11 (La
Manno et al., 2016), cortical neurogenesis (targeted in AD)
happens between GW6 and GW28, with a peak at GW18
(Polioudakis et al., 2019). Perhaps different ND genes have
different temporal profiles of expression or activity, or crucial
periods during which their functions are non-redundant, such that
mutations in these genes lead to differential effects on neurons
depending on when these neurons are generated or maturing,
forming circuits or undergoing a crucial period of plasticity. These
temporal profiles of brain development differ across brain areas
and cell types and – we suggest – may play a role in differential
vulnerabilities in NDs. The same would be true for perinatal
infections, stress, poor nutrition, trauma, pesticides and metal
exposure that may contribute to different diseases depending on
the time of exposure. Of note, and as discussed above, these
temporal differences in brain development have an evolutionary
origin (Florio et al., 2018; Suzuki et al., 2018) and thus may
simultaneously help explain differential phenotypes of different
NDs and the particular vulnerability of the human brain to these
diseases. To illustrate this idea, the brain regions that display the
earliest signs of AD are the same regions that have longest
maturation during childhood and adolescence (Moceri et al.,
2000). For example, the association areas of the human neocortex
are regions with most significant differences in gene expression
between human and non-human primates (Cáceres et al., 2003,
2007). These regions underwent significant expansion during
evolution and interestingly they are most early and consistently
affected in AD (Arendt et al., 2017; Braak and Braak, 1991).
Expansion of these regions requires a developmental deceleration
and a prolonged period of high neuronal plasticity into adulthood
which may make them more vulnerable to the factors that lead
to the development of AD (Arendt, 2001; Somel et al., 2009).
Future studies carefully analyzing whether ND mutations affect
the brain’s developmental timing are essential. In addition,
manipulating the timing of birth and maturation of various

neuronal populations under conditions of ND susceptibility are
needed to confirm or reject this hypothesis.

Conclusions and future perspectives
In this Spotlight, we advance the notion that understanding the
temporal mechanisms of brain development, especially from an
evolutionary perspective, may be a – if not the – key to understand
the etiology and pathophysiology of human ND and therefore to
develop better models and eventually efficient therapies. To begin
to test this idea, significant and concerted effort needs to be put into
comparative analysis of the developmental effects of ND-causing
genes, genomes and environmental factors in human versus non-
human models of brain development.
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Huntington’ disease: a case of paternal transmission with an uncommon CAG
expansion. Clin. Med. Rev. Case Rep. 6, 253. doi:10.23937/2378-3656/1410253

Ma, Q.-H., Futagawa, T., Yang,W.-L., Jiang, X.-D., Zeng, L., Takeda, Y., Xu, R.-X.,
Bagnard, D., Schachner, M., Furley, A. J. et al. (2008). A TAG1-APP signalling
pathway through Fe65 negatively modulates neurogenesis. Nat. Cell Biol. 10,
283-294. doi:10.1038/ncb1690

Magistrelli, L., Contaldi, E., Milner, A. V., Gallo, S., Sacchetti, M., Fornaro, R.,
Cantello, R. and Comi, C. (2022). A very early onset of juvenile parkinsonism.
J. Neurol. 269, 6661-6663. doi:10.1007/s00415-022-11278-6

Matsuda, S., Giliberto, L., Matsuda, Y., Davies, P., Mcgowan, E., Pickford, F.,
Ghiso, J., Frangione, B. and D’adamio, L. (2005). The familial dementia BRI2
gene binds the alzheimer gene amyloid-β precursor protein and inhibits amyloid-β
production. J. Biol. Chem. 280, 28912-28916. doi:10.1074/jbc.C500217200

Matsuda, S., Matsuda, Y. and D’adamio, L. (2009). BRI3 inhibits amyloid
precursor protein processing in a mechanistically distinct manner from its
homologue Dementia gene BRI2. J. Biol. Chem. 284, 15815-15825. doi:10.
1074/jbc.M109.006403

Mckinstry, S. U., Karadeniz, Y. B., Worthington, A. K., Hayrapetyan, V. Y.,
Ilcim Ozlu, M., Serafin-Molina, K., Christopher Risher, W., Ustunkaya, T.,
Dragatsis, I., Zeitlin, S. et al. (2014). Huntingtin is required for normal excitatory
synapse development in cortical and striatal circuits. J. Neurosci. 34, 9455-9472.
doi:10.1523/JNEUROSCI.4699-13.2014

Mendez, M. F. (2017). Early-onset Alzheimer disease. Neurol. Clin. 35, 263-281.
doi:10.1016/j.ncl.2017.01.005

Moceri, V. M., Kukull, W. A., Emanuel, I., Van Belle, G. and Larson, B. (2000).
early-life risk factors and the development of Alzheimer’s disease. Neurology 54,
415-420. doi:10.1212/WNL.54.2.415

Moehlman, A. T. and Youle, R. J. (2020). Mitochondrial quality control and
restraining innate immunity. Annu. Rev. Cell Dev. Biol. 36, 265-289. doi:10.1146/
annurev-cellbio-021820-101354

Molero, A. E., Arteaga-Bracho, E. E., Chen, C. H., Gulinello, M.,
Winchester, M. L., Pichamoorthy, N., Gokhan, S., Khodakhah, K. and
Mehler, M. F. (2016). Selective expression of mutant huntingtin during
development recapitulates characteristic features of Huntington’s disease. Proc.
Natl. Acad. Sci. USA 113, 5736-5741. doi:10.1073/pnas.1603871113

Molina-Calavita, M., Barnat, M., Elias, S., Aparicio, E., Piel, M. and Humbert, S.
(2014). Mutant huntingtin affects cortical progenitor cell division and
development of the mouse neocortex. J. Neurosci. 34, 10034-10040. doi:10.
1523/JNEUROSCI.0715-14.2014

Nitsche, A., Arnold, C., Ueberham, U., Reiche, K., Fallmann, J.,
Hackermüller, J., Horn, F., Stadler, P. F. and Arendt, T. (2021). Alzheimer-
related genes show accelerated evolution.Mol. Psychiatry 26, 5790-5796. doi:10.
1038/s41380-020-0680-1
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