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We consider a one-dimensional effective quantum electrodynamics (QED) model of the relativistic hydrogen-
like atom using delta-potential interactions. We discuss the general exact theory and the Hartree-Fock approx-
imation. The present one-dimensional effective QED model shares the essential physical feature of the three-
dimensional theory: the nuclear charge polarizes the vacuum state (creation of electron-positron pairs) which
results in a QED Lamb-type shift of the bound-state energy. Yet, this 1D effective QED model eliminates some
of the most serious technical difficulties of the three-dimensional theory coming from renormalization. We
show how to calculate the vacuum-polarization density at zeroth order in the two-particle interaction and the
QED Lamb-type shift of the bound-state energy at first order in the two-particle interaction. The present work
may be considered as a step toward the development of a quantum-chemistry effective QED theory of atoms and
molecules.

I. INTRODUCTION

It is important to take into account the effects of special rel-
ativity in the quantum description of chemical systems with
heavy elements [1]. Relativistic electronic-structure computa-
tional methods based on the no-pair Dirac-Coulomb or Dirac-
Coulomb-Breit Hamiltonian have thus been developed and
are now routinely applied on molecular systems (see, e.g.,
Refs. 2–4). The next challenge for relativistic quantum chem-
istry is to go beyond the no-pair approximation [5, 6], i.e. in-
cluding the quantum-electrodynamics (QED) effect of virtual
electron-positron pairs. This is desirable not only for an in-
creased accuracy but also in order to put relativistic quantum
chemistry on deeper theoretical grounds.

Bound-state QED perturbative techniques have been devel-
oped to perform highly accurate calculations on few-electron
atomic systems (see, e.g., Refs. 7–10). For many-electron
atoms, it has been proposed to estimate QED corrections with
model one-electron operators (see, e.g., Refs. 11–16). This
approach has also been extended to many-electron molecu-
lar systems (see, e.g., Refs. 17 and 18). Another strategy
to include QED effects in electronic-structure calculations of
atoms and molecules would be to use relativistic density-
functional theory based on QED [19–25] but it has yet to be
applied beyond the no-pair approximation.

An attractive approach to perform ab initio calculations
beyond the no-pair approximation is to use a fermionic
Fock-space effective QED Hamiltonian with the Coulomb or
Coulomb-Breit two-particle interaction (see, e.g., Refs. [2,
26–33]). This effective QED theory properly includes the ef-
fects of vacuum polarization through the creation of electron-
positron pairs but does not include explicitly the photon de-
grees of freedom. It is thus a more tractable alternative to
full QED for atomic and molecular calculations. This so-
called no-photon QED has been the subject of a number of
detailed mathematical studies [34–41], which in particular
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established the soundness of this approach at the Hartree-
Fock level. Based on this effective QED theory, it has been
proposed to formulate a relativistic density-functional the-
ory [32] and a relativistic reduced density-matrix functional
theory [42]. However, as in full QED, this effective QED the-
ory still contains ultraviolet divergences that need to be dealt
with by regularization and renormalization (see, e.g., Refs. 37
and 41). Consequently, no practical implementation of this
effective QED theory has been done so far.

In this work, as a first step toward the implementation of the
above-mentioned effective QED theory for atomic and molec-
ular calculations, we apply it to a one-dimensional (1D) model
of the relativistic hydrogen-like atom using delta-potential in-
teractions. In the non-relativistic version of this model [43–
46], the use of the delta potential is motivated by the fact that
it leads to the same ground-state energy and wave function as
the ground-state energy and radial wave function of the three-
dimensional (3D) hydrogen-like atom with the Coulomb po-
tential. The relativistic version of this model has also been
studied without QED effects [47–50] and some QED aspects
were considered by Nogami and Beachey [51]. The present
1D effective QED model can also be thought of as the mas-
sive Thirring quantum-field-theory model (see, e.g., Refs. 52–
56) with an additional external potential. Note that the mas-
sive Thirring model can itself be essentially thought of as a
sort of “infinite-mass photon” limit [57–59] of the massive
Thirring-Wess model [60] (i.e., the massive Schwinger model
of QED [61] with a massive photon), the infinite-mass pho-
ton field generating the delta-potential interaction. As we will
show, the present 1D effective QED model shares the essential
physical feature of the 3D effective QED theory that we are
interested in: the nuclear charge polarizes the vacuum state
(creation of electron-positron pairs) which results in a Lamb-
type shift of the bound-state energy. Yet, this 1D effective
QED model evacuates a lot of difficulties of the 3D effective
QED theory: it removes some of the most serious ultraviolet
divergences that appear in the standard 3D case.

The paper is organized as follows. In Section II, we con-
sider the first-quantized theory of a 1D relativistic electron in
free space and in the hydrogen-like atom with a delta poten-
tial. In Section III, we formulate the second-quantized effec-
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tive QED theory for the 1D hydrogen-like atom. After writ-
ing the general Hartree-Fock equations, we study the vacuum-
polarization density and the Lamb-type shift of the bound-
state energy in a first-order perturbation theory with respect to
the Coulomb-Breit-type two-particle interaction. Section IV
contains our conclusions. Finally, some technical details are
given in Appendices A-E. Hartree atomic units (a.u.) are used
throughout this work.

II. FIRST-QUANTIZED ONE-ELECTRON THEORY

In this section, we consider a 1D relativistic electron in a
first-quantized theory. As shown in Appendix A, in 1D we
can work with two-component states in the Hilbert space h =

L2(R,C) ⊗ C2.

A. Free-electron Dirac equation

Let us start with the 1D free-electron Dirac equation (see,
e.g., Refs. 50 and 62)

D0(x)ψ(x) = εψ(x), (1)

where ψ(x) is a two-component vector with large (L) and
small (S) components

ψ(x) =

(
ψL(x)
ψS(x)

)
, (2)

ε is the associated energy, and D0 is the 1D free-electron 2×2
Dirac Hamiltonian (see Appendix A)

D0(x) = cσ1 px + σ3 mc2, (3)

where px = −id/dx is the momentum operator, c is the speed
of light, m = 1 a.u. is the electron mass (which will be kept
in the equations for clarity), and σ1 and σ3 are the 2 × 2 Pauli
matrices

σ1 =

(
0 1
1 0

)
and σ3 =

(
1 0
0 −1

)
. (4)

The domain of this Hamiltonian (i.e., the set of functions
on which it can act) is Dom(D0) = H1(R,C) ⊗ C2 where
H1(R,C) = {ψ ∈ L2(R,C) | dψ/dx ∈ L2(R,C)} is the first-
order Sobolev space.

The Hamiltonian D0 has parity symmetry, i.e. it commutes
with the relativistic 2 × 2 parity operator

P = σ3Px→−x, (5)

where Px→−x is the spatial parity operator which flips the sign
of the coordinate x. We can thus look for gerade (g) and
ungerade (u) symmetry-adapted eigenfunctions of D0 such
that Pψg(x) = ψg(x) and Pψu(x) = −ψu(x).

As well known, the Hamiltonian D0 has only a continuous
energy spectrum (−∞,−mc2] ∪ [mc2,+∞). The generalized

eigenfunctions (i.e., “continuum eigenfunctions” not belong-
ing to the Hilbert space h) associated with the positive energy
εk =

√
k2c2 + m2c4 are

ψ
g
+,k(x) = Ak

(
cos(kx)

isk sin(kx)

)
, k ∈ [0,+∞), (6a)

ψu
+,k(x) = Ak

(
sin(kx)

−isk cos(kx)

)
, k ∈ (0,+∞), (6b)

and the generalized eigenfunctions associated with the nega-
tive energy −εk are

ψ
g
−,k(x) = Ak

(
isk cos(kx)

sin(kx)

)
, k ∈ (0,+∞), (7a)

ψu
−,k(x) = Ak

(
−isk sin(kx)

cos(kx)

)
, k ∈ [0,+∞), (7b)

where sk = kc/(εk + mc2) and Ak =
√

(εk + mc2)/(2πεk) is
a normalization constant chosen to impose the generalized or-
thogonality relation∫ ∞

−∞

ψ†
±,k1

(x)ψ±,k2
(x)dx = δ(k1 − k2). (8)

Note that, in the non-relativistic limit (c → ∞), we have
sk → 0 and Ak → 1/

√
π, and the generalized eigenfunc-

tions properly reduce to the non-relativistic continuum states
(1/
√
π) cos(kx) and (1/

√
π) sin(kx) (see, e.g., Ref. 63).

B. Hydrogen-like Dirac equation

We now consider the 1D hydrogen-like Dirac equation [48]

D(x)ψ̃(x) = ε̃ψ̃(x), (9)

with the 1D hydrogen-like Dirac Hamiltonian composed of
the free-electron Dirac Hamiltonian and an electrostatic-type
nuclear-electron Dirac-delta potential term

D(x) = D0(x) − Zδ(x)I2, (10)

where Z is the nuclear charge (with 0 ≤ Z ≤ 2c so as to have
a positive bound-state energy in Eq. (13)) and I2 is the 2 × 2
identity matrix.

The delta potential in Eq. (10) is in fact ambiguous. In-
deed, due to the delta potential, any eigenfunction ψ̃ of D is
expected to have a discontinuity at x = 0, but the action of
a delta distribution on a discontinuous function is not a pri-
ori defined. Mathematically, D can be precisely defined as a
self-adjoint extension of the free-electron Dirac operator D0
restricted to an initial domain of functions vanishing at x = 0.
This leads to defining D as having the same action of D0 but
on a smaller domain of the form [64–67]

Dom(D) =
{
ψ̃ ∈ H1(R\{0},C) ⊗ C2 | ψ̃(0+) = Mψ̃(0−)

}
,(11)

where H1(R \ {0},C) ≡ H1(R−,C) ⊕ H1(R+,C) is a broken
Sobolev space (i.e., the direct sum of Sobolev spaces on adja-
cent spatial domains without regularity conditions across the
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frontiers, here allowing for a discontinuity at x = 0) and M
is a unitary 2 × 2 matrix enforcing a boundary condition at 0
[65] (note that the fact that M is unitary implies that the den-
sity ψ̃†ψ̃ of any state ψ̃ ∈ Dom(D) is continuous at x = 0).
Different choices for M are possible. As in Refs. 47–49, we
choose

M =

(
cos θ i sin θ
i sin θ cos θ

)
, (12)

with tan(θ/2) = λ = Z/(2c). This boundary condition can also
be obtained by integrating Eq. (9) around x = 0 and formally
defining

∫ 0+

0− δ(x)ψ̃(x)dx = (1/2)
[
ψ̃(0+) + ψ̃(0−)

]
[47, 48],

or, more rigorously, using Colombeau’s generalized theory of
distributions allowing one to give a meaning to the distribution
product δ(x)ψ̃(x) [49]. Let us mention that another boundary
condition that has also been used [50, 68–70] has the same
form as Eq. (12) but with θ replaced by θ′ = 2λ. The latter
boundary condition can be obtained by considering the zero-
width limit of a square-well potential [68, 70].

Note that the 3D hydrogen-like Dirac Hamiltonian with
Coulomb potential has a unique self-adjoint extension for
Z ≤

√
3c/2 and many self-adjoint extensions for Z >

√
3c/2

(see, e.g., Refs.71 and 72). The situation for the present 1D
model is thus worse in the sense that the 1D hydrogen-like
Dirac Hamiltonian with delta potential has many self-adjoint
extensions as soon as Z > 0. A strong motivation for using
the particular self-adjoint extension determined by Eq. (12) is
that it is the self-adjoint extension that seems to be numeri-
cally obtained when working in a basis of smooth functions
such as Hermite functions or plane waves. This point will be
further discussed in a forthcoming work.

The Hamiltonian D has a single bound state with positive
energy [48, 51, 69]

ε̃1 = mc2 1 − λ2

1 + λ2 , (13)

and eigenfunction

ψ̃1(x) = A
(

1
iλ sgn(x)

)
e−κ|x|, (14)

where sgn is the sign function, κ = 2mcλ/(1 + λ2), and A =√
κ/(1 + λ2). In the non-relativistic limit (c → ∞), we have

λ → 0 and κ → mZ, so we properly recover the bound-state
eigenfunction

√
mZe−κ|x| of the non-relativistic 1D hydrogen-

like atom [43, 46]. In this limit, the bound-state energy has
the expansion

ε̃1 = mc2 −
mZ2

2
+

mZ4

8c2 + O
(

1
c4

)
, (15)

where −mZ2/2 is the non-relativistic bound-state energy and
we notice that the leading relativistic correction mZ4/8c2 has
an opposite sign compared to the case of the ground-state
energy of the standard 3D Dirac hydrogen-like atom with
Coulomb potential (see, e.g., Ref. 4).

Beside the bound state, the Hamiltonian D has also a con-
tinuous energy spectrum (−∞,−mc2] ∪ [mc2,+∞). The gen-
eralized eigenfunctions associated with the positive energy

εk =
√

k2c2 + m2c4 are [51]

ψ̃
g
+,k(x) = Ak

(
cos(k|x| + δ+

k )
isk sgn(x) sin(k|x| + δ+

k )

)
, k ∈ (0,+∞), (16a)

ψ̃u
+,k(x) = Ak

(
sgn(x) sin(k|x| + δ−k )
−isk cos(k|x| + δ−k )

)
, k ∈ (0,+∞), (16b)

and the generalized eigenfunctions associated with the nega-
tive energy −εk are

ψ̃
g
−,k(x) = Ak

(
isk cos(k|x| − δ−k )

sgn(x) sin(k|x| − δ−k )

)
, k ∈ (0,+∞), (17a)

ψ̃u
−,k(x) = Ak

(
−isk sgn(x) sin(k|x| − δ+

k )
cos(k|x| − δ+

k )

)
, k ∈ (0,+∞),

(17b)

where tan δ±k = λ(εk ±mc2)/(kc). In the non-relativistic limit,
we have δ+

k → mZ/k and δ−k → 0, and we properly recover
the continuum eigenstates of non-relativistic 1D hydrogen-
like atom [73].

III. SECOND-QUANTIZED EFFECTIVE QUANTUM
ELECTRODYNAMICS

In this section, we start by considering a finite-dimensional
approximation to the Hilbert space of the first-quantized one-
electron theory, e.g. h L,Λ = h L,Λ

s ⊗ C2 where the spatial part
can be chosen as [37]

h L,Λ
s = span

(
x ∈ ΩL 7→ eikx | k ∈

2πZ
L
, |k| ≤ Λ

)
, (18)

corresponding to an electron on the interval ΩL = (−L/2, L/2)
with maximal momentum Λ. The infrared (IR) cutoff L is
convenient to discretize the generalized continuum eigenfunc-
tions and thus write sums over these eigenfunctions instead
of integrals. The ultraviolet (UV) cutoff Λ is necessary to
avoid divergences of some quantities such as total energies.
We stress that we introduce these cutoffs only for formally
writing the second-quantized theory, but we do not actually
solve the Dirac equation with these cutoffs. Ultimately, we
will take the limits L → ∞ and Λ → ∞ of non-diverging
physical quantities and we will thus use the solutions of the
Dirac equation in the infinite-dimensional Hilbert space h ob-
tained in Section II.

A. Electron-positron Hamiltonian in Fock space

On a finite-dimensional space, the solutions of the free-
electron Dirac equation in Eq. (1) form a discrete finite set
of M = MPS + MNS orbitals, which can be partitioned into a
set of MPS positive-energy states (PS) {ψp}p∈PS and a set of
MNS negative-energy states (NS) {ψp}p∈NS.

We can now introduce the relativistic fermionic Fock space
F which is just a 2M-dimensional complex Hilbert space, i.e.
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F � C2M
where � means “isomorphic to”. More opera-

tionally, it is written as a direct sum

F =

(MPS,MNS)⊕
(n,m)=(0,0)

H (n,m), (19)

where H (n,m) represents the Hilbert space of n free electrons
and m free positrons which is defined in a second-quantization
formalism as follows. We introduce electron annihilation op-
erators {b̂p}p∈PS and positron annihilation operators {d̂p}p∈NS
acting in the Fock space, and their adjoint creation operators
{b̂†p}p∈PS and {d̂†p}p∈NS, respectively, such that the anticommu-
tator of any two of these operators is zero except for

∀p, q ∈ PS, {b̂p, b̂†q} = δp,q and ∀p, q ∈ NS, {d̂p, d̂†q} = δp,q.(20)

We also introduce the free vacuum state |0〉 ∈ F such that

∀p ∈ PS, b̂p|0〉 = 0 and ∀p ∈ NS, d̂p|0〉 = 0. (21)

The space H (n,m) is spanned by the action of n electron cre-
ation operators and m positron creation operators on the vac-
uum state |0〉, in an arbitrary order,

H (n,m) = span
(
b̂†p1

b̂†p2
· · · b̂†pn

d̂†q1
d̂†q2
· · · d̂†qm

|0〉,

p1 < p2 < · · · < pn ∈ PS, q1 < q2 < · · · < qm ∈ NS
)
. (22)

In this way, the finite-dimensional Hilbert space h L,Λ of the
first-quantized one-electron theory is reinterpreted as com-
posed of an electronic component H (1,0) and positronic com-
ponent H (0,1), i.e. h L,Λ � H (1,0) ⊕ H (0,1) with the mapping
ψp → b†p|0〉 for p ∈ PS and ψp → d†p|0〉 for p ∈ NS. In this
sense, h L,Λ can be considered as a subspace of the Fock space.
Note that, even though we do not include spin degrees of
freedom in our model, we nevertheless use a fermionic Fock
space, similarly to what is done in spinless fermion models
(see, e.g., Ref. 74).

Acting in the Fock space, we define now the Dirac field
operator ψ̂(x) at a fixed point x ∈ ΩL,

ψ̂(x) =
∑
p∈PS

ψp(x) b̂p +
∑
p∈NS

ψp(x) d̂†p, (23)

where {ψp}p∈PS∪NS are the eigenfunctions of the free-electron
Dirac equation. The Dirac field operator is an operator-
valued two-component row vector, i.e ψ̂(x) ∈ L(F ,F )2×1

where L(F ,F ) is the space of linear operators from F to
F . We also define the one-particle density-matrix operator
n̂1(x, x′) ∈ L(F ,F )2×2 at points x and x′,

n̂1(x, x′) = N[ψ̂†(x′) ⊗ ψ̂(x)], (24)

and the pair density-matrix operator n̂2(x1, x2) ∈ L(F ,F )4×4

at points x1 and x2,

n̂2(x1, x2) = −N[ψ̂†(x1) ⊗ ψ̂†(x2) ⊗ ψ̂(x1) ⊗ ψ̂(x2)], (25)

where ⊗ designates here the tensor product (also called Kro-
necker product or matrix direct product, see Appendix B) and
N[...] designates normal ordering of the elementary creation
and annihilation operators b̂†p, b̂p, d̂†p, d̂p associated with the

free vacuum state |0〉. We recall that normal ordering of a
string of creation and annihilation operators means perform-
ing anticommutations of these elementary operators to put all
the annihilation operators to the right of the creation opera-
tors. Note that, in Eq. (25), the unusual order of the field
operators is due to the use of the tensor product, but the minus
sign makes the matrix elements of n̂2(x1, x2) consistent with
the definition given in Ref. 32.

The normal-ordered electron-positron Hamiltonian in Fock
space [2, 26, 32, 75] (see, also, Refs. 28) can then be written
as

Ĥ =

∫
ΩL

tr[D(x)n̂1(x, x′)]x′=xdx

+
1
2

∫
ΩL

∫
ΩL

Tr[w(x1, x2)n̂2(x1, x2)]dx1dx2, (26)

where tr and Tr designate the trace for 2×2 and 4×4 matrices,
respectively. In Eq. (26), w(x1, x2) is the 4 × 4 two-particle
interaction matrix chosen as [69]

w(x1, x2) = δ(x1 − x2) (I2 ⊗ I2 − σ1 ⊗ σ1) , (27)

where the first and second terms are the 1D analogs of the
Coulomb and Breit interactions, respectively. Note that, in
3D, the Breit interaction is composed of the magnetic Gaunt
term and the remaining retardation correction term (see, e.g.,
Ref. 32). In 1D, however, the Breit interaction exactly reduces
to the Gaunt interaction. Hence, what we call the Breit inter-
action in the present work may as well be called Gaunt interac-
tion. Due to the normal ordering, the Hamiltonian in Eq. (26)
gives zero energy to the free vacuum state, i.e. 〈0|Ĥ|0〉 = 0.
Note that, up to a constant, the Hamiltonian in Eq. (26) can
equivalently be written with commutators and anticommuta-
tors of field operators [32].

The electron-positron Hamiltonian Ĥ does not commute
separately with the electron and positron number operators,
N̂e =

∑
p∈PS b̂†pb̂p and N̂p =

∑
p∈NS d̂†pd̂p, i.e. it does not con-

serve electron or positron numbers. However, the Hamiltonian
Ĥ commutes with the opposite charge operator (or electron-
excess number operator) N̂ = N̂e−N̂p, i.e. it conserves charge.
It is therefore more relevant to decompose the Fock space into
charge sectors

F =

MPS⊕
N=−MNS

FN , (28)

where FN is the Fock space sector of opposite charge N. For
N ≥ 0, we have FN = H (N,0) ⊕ H (N+1,1) ⊕ · · · ⊕ H (MPS,MNS−N),
and, for N ≤ 0, we have FN = H (0,|N |) ⊕ H (1,|N|+1) ⊕ · · · ⊕

H (MPS−|N |,MNS). The lowest energy for N ≥ 0 negative charges
is then obtained by the following minimization

EN = min
|Ψ〉∈WN

〈Ψ|Ĥ|Ψ〉 = 〈ΨN |Ĥ|ΨN〉, (29)

where WN =
{
|Ψ〉 ∈ FN | 〈Ψ|Ψ〉 = 1

}
is the space of nor-

malized Fock states with N negative charges and |ΨN〉 is a
minimizing state. The existence of the minimum in Eq. (29)
is guaranteed by the fact that we work in a finite-dimensional
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setting, and in particular by the UV cutoff which prevents any
collapse to infinitely negative energy. Of particular interest is
the correlated vacuum energy E0 = 〈Ψ0|Ĥ|Ψ0〉, which is the
ground-state energy of the Hamiltonian Ĥ and is necessarily
negative (since E0 ≤ 〈0|Ĥ|0〉 = 0). Also of interest is the
lowest energy for one negative charge E1 = 〈Ψ1|Ĥ|Ψ1〉, corre-
sponding to a 1D hydrogen-like atom including effective QED
electron-positron effects.

Like in the 3D case with Coulomb interaction [37], we ex-
pect that the energies EN remain finite in the IR limit L → ∞
but diverge to −∞ in the UV limit Λ → ∞. However, we
speculate that the relative energies with respect to the corre-
lated vacuum energy

EN = EN − E0 (30)

remain finite as L → ∞ and Λ → ∞. The first quan-
tity of interest is thus E1, i.e. the ground-state energy of
a 1D hydrogen-like atom including effective QED electron-
positron effects with respect to the correlated vacuum energy.
In Section III E, we will show that the first-order perturbative
estimate of E1 with respect to the two-particle interaction re-
mains indeed finite as L→ ∞ and Λ→ ∞.

We note that, in the limit of a zero external nuclear poten-
tial (i.e. Z = 0), Eq. (26) reduces to the Hamiltonian of the
massive Thirring model (up to a possible different choice of
normal ordering) which can be diagonalized exactly with the
Bethe ansatz [53–55, 76]. However, for Z , 0, we have to
resort to approximations.

B. Hartree-Fock approximation

In the Hartree-Fock (HF) approximation, the lowest energy
for N ≥ 0 negative charges is approximated as

EHF
N = min

|Φ〉∈SN

〈Φ|Ĥ|Φ〉, (31)

where the search is restricted to the manifold of N-electron
single-determinant states SN ⊂ FN ,

SN =
{
|Φ〉 = eκ̂(κ)b̂†1b̂†2 · · · b̂

†

N |0〉 | κ ∈ C
M×M ,κ† = −κ

}
,(32)

where eκ̂(κ) is a unitary operator in Fock space performing
an orbital rotation (corresponding to a Bogoliubov transfor-
mation mixing electron annihilation operators b̂p and positron
creation operators d̂†p) [2, 3, 26, 32, 75, 77, 78] with the anti-
Hermitian operator κ̂(κ)

κ̂(κ) =
∑
p∈PS

∑
q∈PS

κp,qb̂†pb̂q +
∑
p∈PS

∑
q∈NS

κp,qb̂†pd̂†q

+
∑
p∈NS

∑
q∈PS

κp,qd̂pb̂q +
∑
p∈NS

∑
q∈NS

κp,qd̂pd̂†q , (33)

with the orbital rotation parameters κp,q being the elements
of the anti-Hermitian matrix κ. The operator eκ̂(κ) generates
new creation operators ˆ̃b†p = eκ̂(κ)b̂†pe−κ̂(κ) and a new polarized
(or dressed) vacuum state |0̃〉 = eκ̂(κ)|0〉, such that a single-
determinant state |Φ〉 ∈ SN can be written as

|Φ〉 = ˆ̃b†1
ˆ̃b†2 · · ·

ˆ̃b†N |0̃〉, (34)

and the corresponding new orbitals are obtained from the orig-
inal ones via the unitary matrix U = eκ

∀p ∈ PS ∪ NS, φ̃p(x) =
∑

q∈PS∪NS

ψq(x) Uq,p. (35)

Putting the Hamiltonian of Eq. (26) in normal ordering with
respect to the single-determinant state Φ (see Refs. 26 and 32)
leads to the expression of the HF energy as

EHF
N =

∫
ΩL

tr[D(x)nHF
1 (x, x′)]x′=xdx

+
1
2

∫
ΩL

∫
ΩL

Tr[w(x1, x2)nHF
2 (x1, x2)]dx1dx2, (36)

where nHF
1 (x, x′) = 〈Φ|n̂1(x, x′)|Φ〉 is the HF one-particle den-

sity matrix which can be written as

nHF
1 (x, x′) = nHF,el

1 (x, x′) + nHF,vp
1 (x, x′), (37)

including the contribution from the occupied electronic (el)
orbitals

nHF,el
1 (x, x′) =

N∑
i=1

φ̃i(x)φ̃†i (x′), (38)

and the vacuum-polarization (vp) contribution

nHF,vp
1 (x, x′) =

∑
p∈NS

φ̃p(x)φ̃†p(x′) −
∑
p∈NS

ψp(x)ψ†p(x′), (39)

and nHF
2 (x1, x2) = 〈Φ|n̂2(x1, x2)|Φ〉 is the HF pair-density ma-

trix

nHF
2 (x1, x2) = nHF

1 (x1, x1) ⊗ nHF
1 (x2, x2)

−X
(
nHF

1 (x2, x1) ⊗ nHF
1 (x1, x2)

)
, (40)

where X is the permutation matrix

X =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (41)

which exchanges the second and third lines in the matrix it
multiplies on the right.

The stationary condition corresponding to the minimiza-
tion in Eq. (31) leads the following HF equations which de-
termine the HF orbitals {φ̃p}p∈PS∪NS and HF orbital energies
{ε̃p}p∈PS∪NS

(D(x) + vH(x)) φ̃p(x) +

∫
ΩL

vx(x, x′)φ̃p(x′)dx′ = ε̃pφ̃p(x),(42)

with the local 2 × 2 Hartree potential

vH(x1) =

∫
ΩL

Tr2[w(x1, x2) (I2 ⊗ nHF
1 (x2, x2))]dx2, (43)

and the non-local 2 × 2 exchange potential

vx(x1, x2) = −Tr2[w(x1, x2) X(I2 ⊗ nHF
1 (x1, x2))], (44)
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where Tr2 designates the partial trace with respect to the sec-
ond particle (see Appendix B).

As for the exact energies, we expect the HF total energies
EHF

N to diverge to −∞ in the UV limit Λ → ∞. It is then
natural to consider the HF relative energies with respect to the
HF vacuum energy

EHF
N = EHF

N − EHF
0 , (45)

which should remain finite as L → ∞ and Λ → ∞. Un-
fortunately, even for the present relatively simple 1D model,
the HF equations cannot be solved exactly, even for N = 0.
If the vacuum-polarization density matrix nHF,vp

1 (x, x′) is ne-
glected in Eq. (37), the present HF equations reduce to stan-
dard non-QED relativistic HF equations. In particular, for
N = 1, the latter equations simply reduce to the hydrogen-
like Dirac equation [Eq. (9)].

C. First-order perturbation theory

Since the HF equations cannot be solved exactly, we con-
sider instead a perturbation theory with respect to the two-
particle interaction w(x1, x2) [Eq. (27)].

Instead of the HF one-particle density matrix in Eq. (37),
we thus consider the zeroth-order one-particle density matrix

n1(x, x′) = nel
1 (x, x′) + nvp

1 (x, x′), (46)

with the contribution from the occupied electronic orbitals

nel
1 (x, x′) =

N∑
i=1

ψ̃i(x)ψ̃†i (x′), (47)

and the vacuum-polarization contribution

nvp
1 (x, x′) =

∑
p∈NS

ψ̃p(x)ψ̃†p(x′) −
∑
p∈NS

ψp(x)ψ†p(x′), (48)

where the zeroth-order orbitals {ψ̃p}p∈PS∪NS are the 1D
hydrogen-like orbitals (determined in Section II B in the limits
L→ ∞ and Λ→ ∞). The zeroth-order energy is then

E(0)
N =

∫
ΩL

tr[D(x)n1(x, x′)]x′=xdx, (49)

and the zeroth-order relative energy with respect to the vac-
uum is

E
(0)
N = E(0)

N − E(0)
0

=

∫
ΩL

tr[D(x)nel
1 (x, x′)]x′=xdx. (50)

Let us move now to the first-order energy correction which
is

E(1)
N =

1
2

∫
ΩL

∫
ΩL

Tr[w(x1, x2)n2(x1, x2)]dx1dx2, (51)

where n2(x1, x2) is the zeroth-order pair-density matrix

n2(x1, x2) = n1(x1, x1) ⊗ n1(x2, x2)
−X

(
n1(x2, x1) ⊗ n1(x1, x2)

)
. (52)

The first-order relative correction is thus

E
(1)
N = E(1)

N − E(1)
0

=
1
2

∫
ΩL

∫
ΩL

Tr[w(x1, x2)∆n2(x1, x2)]dx1dx2, (53)

where

∆n2(x1, x2) = n2(x1, x2) − nvp
2 (x1, x2), (54)

and nvp
2 (x1, x2) is the zeroth-order vacuum-polarization pair-

density matrix

nvp
2 (x1, x2) = nvp

1 (x1, x1) ⊗ nvp
1 (x2, x2)

−X
(
nvp

1 (x2, x1) ⊗ nvp
1 (x1, x2)

)
. (55)

It can be decomposed as

E
(1)
N = E

el,(1)
N + E

vp,(1)
N , (56)

where Eel,(1)
N is the contribution coming only from the occu-

pied electronic orbitals

E
el,(1)
N =

1
2

∫
ΩL

∫
ΩL

Tr[w(x1, x2)nel
2 (x1, x2)]dx1dx2, (57)

with

nel
2 (x1, x2) = nel

1 (x1, x1) ⊗ nel
1 (x2, x2)

−X
(
nel

1 (x2, x1) ⊗ nel
1 (x1, x2)

)
, (58)

and Evp,(1)
N is the contribution involving vacuum-polarization

terms

E
vp,(1)
N =

∫
ΩL

∫
ΩL

Tr[w(x1, x2)nel/vp
2 (x1, x2)]dx1dx2, (59)

with

nel/vp
2 (x1, x2) = nel

1 (x1, x1) ⊗ nvp
1 (x2, x2)

−X
(
nel

1 (x2, x1) ⊗ nvp
1 (x1, x2)

)
. (60)

For the form of the two-particle interaction in Eq. (27), the
vacuum-polarization first-order relative energy correction has
four contributions

E
vp,(1)
N = E

vp,(1),DC
N + E

vp,(1),XC
N + E

vp,(1),DB
N + E

vp,(1),XB
N .(61)

The direct Coulomb-type (DC) and exchange Coulomb-type
(XC) contributions are

E
vp,(1),DC
N =

∫
ΩL

nel(x)nvp(x)dx, (62)

and

E
vp,(1),XC
N = −

∫
ΩL

tr[nel
1 (x)nvp

1 (x)]dx, (63)

where we have introduced the local electronic and vacuum-
polarization density matrices nel

1 (x) = nel
1 (x, x) and

nvp
1 (x) = nvp

1 (x, x), and the associated electronic and vacuum-
polarization densities nel(x) = tr[nel

1 (x)] and nvp(x) =
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tr[nvp
1 (x)]. Similarly, the direct Breit-type (DB) and exchange

Breit-type (XB) contributions are

E
vp,(1),DB
N = −

1
c2

∫
ΩL

jel(x) jvp(x)dx, (64)

and

E
vp,(1),XB
N =

1
c2

∫
ΩL

tr[jel
1 (x)jvp

1 (x)]dx, (65)

where we have introduced the local electronic and vacuum-
polarization current-density matrices jel

1 (x) = cσ1nel
1 (x) and

jvp
1 (x) = cσ1nvp

1 (x), and the associated electronic and vacuum-
polarization current densities jel(x) = tr[jel

1 (x)] and jvp(x) =

tr[jvp
1 (x)].

Note that, in standard QED, the direct contributions in
Eqs. (62) and (64) and the exchange contributions in Eq. (63)
and (65) are often called “vacuum polarization” and “self-
energy” contributions to the Lamb shift, respectively (see,
e.g., Refs. 7 and 18). Here, as in Ref. 32, we adopt the ter-
minology of Ref. 26 and use “vacuum polarization” to qualify
both the direct and exchange contributions.

D. Vacuum-polarization density

We now calculate the vacuum-polarization density nvp(x)
appearing in Eq. (62) in the limit L → ∞ and Λ → ∞.
We stress that this quantity is the opposite-charge vacuum-
polarization density. The charge vacuum-polarization density,
e.g. discussed in Ref. 79, is ρvp(x) = −nvp(x).

Using the negative-energy generalized eigenfunctions in
Eq. (7) and (17), we find the expressions of the local vacuum-
polarization density matrix

nvp
1 (x)= −

∫ ∞

0

dk
π

κ

k2 + κ2

εk + mc2

2mc2

(
−s2

k fk(x) −iskgk(x)
iskgk(x) fk(x)

)
,(66)

where fk(x) = κ cos(2kx) − (ε̃1/εk)k sin(2k|x|) and gk(x) =

(ε̃1/εk)k cos(2kx)+κ sin(2k|x|). We remind that εk and sk were
defined before Eq. (6) and after Eq. (7), respectively, and ε̃1
and κ were defined in Eq. (13) and after Eq. (14), respectively.
The vacuum-polarization density is then

nvp(x) = −

∫ ∞

0

dk
π

κ

k2 + κ2 fk(x). (67)

It is also easy to check that the vacuum-polarization current
density vanishes, i.e jvp(x) = 0.

Note that to obtain Eq. (66) or Eq. (67), we have formally
taken the limits L → ∞ and Λ → ∞ in each of the two sums
in Eq. (48), which gives two divergent integrals over k, but
taking the difference of the two integrands finally gives a con-
vergent integral over k. The same approach used for the alter-
native commutator definition of the vacuum-polarization den-
sity leads to the same result, as shown in Appendix C. Also,
the vacuum-polarization density independently calculated by
Nogami and Beachey [51] on the same non-interacting model
agrees numerically with the values obtained with Eq. (67). Fi-
nally, we give in Appendix D an alternative expression of the

vacuum-polarization density using a more rigorous approach
based on the Green function which numerically agrees per-
fectly with the expression in Eq. (67).

The vacuum-polarization density originates from the pres-
ence of free electron-positron pairs in the polarized vacuum
state due to the external potential. The vacuum-polarization
density is plotted in Fig. 1 for the physical value of the speed
of light c = 137.036 and different values of the nuclear charge
Z, and for a fixed value of the nuclear charge Z = 1 and dif-
ferent values of the speed of light c. For Z = 0, the vacuum-
polarization density is of course zero. For Z , 0, the vacuum-
polarization density is localized around the nucleus and is al-
ways negative. At least close of the nucleus, this negative
sign can be understood from Eq. (48) and the fact the exter-
nal potential −Zδ(x) tends to give negative-energy eigenfunc-
tions {ψ̃p}p∈NS with smaller probability density near the nu-
cleus in comparison with the free negative-energy eigenfunc-
tions {ψp}p∈NS (for similar discussions in the standard QED
case, see Ref. 79). As expected, the amplitude of the vacuum-
polarization density increases with Z. As c decreases, the rel-
ativistic effects increase, and the vacuum-polarization density
becomes more and more extended around the nucleus.

In Appendix D, we also derive the first-order vacuum-
polarization density with respect to Z, i.e. with respect to the
external potential, as

nvp,(1)(x) = −
Zm
π

∫ ∞

1
dt

e−2mc|x|t

t
√

t2 − 1
, (68)

which is the equivalent for the present 1D model of the
Uehling vacuum-polarization density (or potential, since for
a delta-interaction density and potential are identical) for the
3D hydrogen-like atom [80] (see also, e.g., Refs. 79 and
81). In Eq. (68), it is manifest that the spatial range of
the vacuum-polarization density is of the order of the re-
duced Compton wavelength o = 1/(mc). The Uehling-type
vacuum-polarization density nvp,(1)(x) is plotted in Fig. 2 for
c = 137.036 and Z = 120. It appears to be a good approxima-
tion to the vacuum-polarization density nvp(x).

In the 3D case, both for effective QED and standard QED,
the calculation of the vacuum-polarization density suffers
from UV divergences that require regularization, for example
with a finite UV cutoff Λ, and charge renormalization to ab-
sorb the dependence on the UV cutoff (see, e.g., Refs. 37 and
81). It is noteworthy that, in the present 1D model, we can ob-
tain a finite vacuum-polarization density in the limit Λ → ∞

without regularization and Λ-dependent charge renormaliza-
tion.

As apparent in Fig. 1, the integral over space of the
vacuum-polarization density nvp(x) is not zero. Nogami and
Beachey [51] found an analytical expression for this integral∫ +∞

−∞

nvp(x)dx = −
2
π

arctan
( Z
2c

)
, (69)

which we numerically confirmed. This means that, suffi-
ciently far from the nucleus (x � o), one observes a nucleus
charge

Zobs = Z +
2
π

arctan
( Z
2c

)
. (70)
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FIG. 2. The vacuum-polarization density nvp(x) [Eq. (67)] (all or-
ders in Z) and the Uehling-type vacuum-polarization density nvp,(1)(x)
[Eq. (68)] (first order in Z) for the speed of light c = 137.036 and nu-
clear charge Z = 120.

Surprisingly, the observed nucleus charge Zobs is larger than
the bare nuclear charge Z. Thus, in contrast with 3D effec-
tive or standard QED where the bare charge is screened by
the vacuum-polarization density (see, e.g., Ref. [37]), in the
present 1D model the bare charge is (slightly) antiscreened.

However, one should not conclude from Eq. (69) that the
vacuum state contains a fractional charge. As explained in
Refs. 34, 37, and 38, the opposite charge of the vacuum state
should be calculated as

Nvac = Nvac
e − Nvac

p , (71)

where Nvac
e and Nvac

p are the number of free electrons and free
positrons, respectively, defined as

Nvac
e =

∫ +∞

−∞

∫ +∞

−∞

tr[P0
+(x′, x)nvp

1 (x, x′)]dxdx′, (72)

and

Nvac
p = −

∫ +∞

−∞

∫ +∞

−∞

tr[P0
−(x′, x)nvp

1 (x, x′)]dxdx′, (73)

where P0
+(x′, x) and P0

−(x′, x) are the projectors on the
positive-energy and negative-energy eigenfunctions of the
free-particle Dirac Hamiltonian, respectively. In Appendix E,
we calculate Nvac

e and Nvac
p and find numerically Nvac

e =

Nvac
p (to a good precision), i.e. the vacuum state has zero

(fermionic) charge

Nvac = 0, (74)

as expected. If, instead of calculating Nvac
e and Nvac

p sepa-
rately, one naively adds the integrands in Eqs. (72) and (73),
the projector on the full one-particle Hilbert space P0(x′, x) =

P0
+(x′, x) + P0

−(x′, x) = δ(x − x′)I2 will appear, and one will
obtain the non-vanishing integral of the vacuum-polarization
density ∫ +∞

−∞

∫ +∞

−∞

tr[P0(x′, x)nvp
1 (x, x′)]dxdx′

=

∫ +∞

−∞

tr[nvp
1 (x, x)]dx =

∫ +∞

−∞

nvp(x)dx , 0. (75)

This apparent paradox comes from the fact that the vacuum-
polarization density matrix nvp

1 (x, x′) is a kernel of an oper-
ator which is not trace-class, which means that the integral
trace over x is ill-defined. It can lead to different values de-
pending on the way it is calculated. A very similar situation
appears when calculating the screening of the charge of a de-
fect (or impurity) by the polarization of the Fermi sea in a
crystal [82–84]. As understood by Nogami [85], the problem
is related to the IR limit L → ∞: for finite L the vacuum-
polarization density integrates to zero, but in the limit L→ ∞
there is a contribution to the vacuum-polarization density that
goes uniformly to zero, so that after taking the limit L → ∞
one cannot recover the total charge of the vacuum from the
vacuum-polarization density. The correct zero vacuum charge
is obtained by first calculating the vacuum charge for finite L
(which is zero) and then take the limit L → ∞. Alternatively,
after the limit L → ∞ has been taken, the information about
the zero vacuum charge can be retrieved from the vacuum-
polarization density matrix nvp

1 (x, x′) via Eqs. (71)-(73).
As noted in Ref. 37, in a finite-dimensional approximation,

the vacuum-polarization density matrix nvp
1 (x, x′) would be
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trace-class, and hence the integral of the vacuum-polarization
density in Eq. (69) would necessarily be zero. It is therefore
not clear how one could estimate the observed nuclear charge
in Eq. (70) from a finite-dimensional calculation.

E. First-order energy corrections for the hydrogen-like atom

We now evaluate the first-order energy corrections in the
case of the hydrogen-like atom, i.e. N = 1, again in the limits
L→ ∞ and Λ→ ∞.

The zeroth-order relative energy in Eq. (50) is just the
bound-state orbital energy

E
(0)
1 = ε̃1, (76)

given in Eq. (13).
The direct and exchange electronic contributions in Eq. (57)

cancel out, i.e. Eel,(1)
1 = 0, and we only have the vacuum-

polarization contribution. Using the bound-state eigenfunc-
tion in Eq. (14), we find the expression of the local electronic
density matrix

nel
1 (x) =

κ

1 + λ2

(
1 −iλ sgn(x)

iλ sgn(x) λ2

)
e−2κ|x|, (77)

where λwas defined after Eq. (12). The electronic bound-state
density is nel(x) = κe−2κ|x| and the electronic current density
vanishes, i.e. jel(x) = 0.

This leads to the expression of the first-order direct and
exchange Coulomb-type vacuum-polarization energy correc-
tions to the bound-state energy

E
vp,(1),DC
1 =−

∫ +∞

−∞

dx
∫ ∞

0

dk
π

κ2e−2κ|x|

k2 + κ2 fk(x), (78)

and

E
vp,(1),XC
1 =

1
1 + λ2

∫ +∞

−∞

dx
∫ ∞

0

dk
π

κ2e−2κ|x|

k2 + κ2

λ2 − s2
k

1 − s2
k

fk(x), (79)

and, similarly, to the first-order direct and exchange Breit-type
vacuum-polarization energy corrections

E
vp,(1),DB
1 = 0, (80)

and

E
vp,(1),XB
1 =

−1
1 + λ2

∫ +∞

−∞

dx
∫ ∞

0

dk
π

κ2e−2κ|x|

k2 + κ2

1 − λ2s2
k

1 − s2
k

fk(x). (81)

Finally, after some simplifications, the total first-order
vacuum-polarization energy correction can be put into the
compact form

E
vp,(1)
1 =−

∫ +∞

−∞

dx
∫ ∞

0

dk
π

κ2e−2κ|x|

k2 + κ2

(
1 +

ε̃1εk

m2c4

)
fk(x). (82)

In the present 1D model, the direct contributions in
Eqs. (78) and (80) and the exchange contributions in Eq. (79)
and (81) are the equivalent of the direct and exchange contri-
butions to the first-order QED ground-state energy correction

in the 3D hydrogen-like atom with Coulomb potential [86–
88], which both contribute to the Lamb shift.

The different contributions to the first-order QED vacuum-
polarization energy correction, as well as the total energy cor-
rection, are plotted in Fig. 3 as a function of Z for c = 137.036
and as a function of 1/c for Z = 1. As expected, as Z increases
or 1/c increases, the effect of relativity becomes stronger, and
the different contributions increase in absolute value. The di-
rect Coulomb-type correction is always negative and is the
dominant contribution. The exchange Coulomb-type correc-
tion is always positive and the exchange Breit-type correction
is always negative, these two contributions partially cancelling
each other. In particular, in the low-relativistic regime (Z . 40
for c = 137.036 or 1/c . 0.1 for Z = 1), the latter two con-
tributions almost perfectly cancel each other. The total QED
energy correction is always negative, leading thus to a stabi-
lization of the bound state of the 1D hydrogen-like atom. This
must be compared with standard QED in which the equiva-
lent correction, after renormalization, on the ground-state en-
ergy of the 3D hydrogen-like atom contains a largely domi-
nant positive exchange contribution (the “self-energy” contri-
bution) and a much smaller negative direct contribution (the
“vacuum-polarization” contribution), resulting in an overall
destabilization of the ground state (see, e.g., Ref. 89). How-
ever, note that, just like in the 3D case, the QED energy cor-
rection in the present 1D model has the opposite sign than
the leading relativistic energy correction in Eq. (15), and thus
tends to reduce the leading relativistic correction. Finally,
using the Uehling-type approximation in Eq. (68), it can be
inferred that the QED energy correction for the present 1D
model starts at order Z2/c whereas for the 3D case the QED
energy correction, after renormalization, starts at order Z4/c3

(see, e.g., Ref. 13).

IV. CONCLUSION

In this work, we have considered a 1D effective QED model
of the relativistic hydrogen-like atom using delta-potential in-
teractions. We have exposed the general exact theory, as
well as the Hartree-Fock approximation. We have calculated
the vacuum-polarization density at zeroth order in the two-
particle interaction and the QED correction to the bound-state
energy at first order in the two-particle interaction. The inter-
est of this 1D toy model is that it shares the essential physical
features of the 3D theory but eliminates some of the most se-
rious technical difficulties coming from renormalization.

The next step will be to solve the present 1D effective QED
model in a finite basis set with quantum-chemistry methods
such as Hartree-Fock and configuration interaction. In par-
ticular, it will be interesting to understand how to efficiently
represent the vacuum-polarization density in a finite basis set.
This understanding should be very useful to reach the ultimate
goal of having a fully-fledged quantum-chemistry implemen-
tation of 3D effective QED for atoms and molecules.
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FIG. 3. First-order QED vacuum-polarization correction to the bound-state energy of the 1D hydrogen-like atom (a) for c = 137.036 and as a
function of Z, and (b) for Z = 1 and as a function of 1/c. The direct Coulomb-type (DC) [Eq. (78)], exchange Coulomb-type (XC) [Eq. (79)],
and exchange Breit-type (XB) [Eq. (81)] contributions are shown, as well as the total correction.
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Appendix A: Reduction of the Dirac Hamiltonian from 3D to 1D

In 3D, we work in the Hilbert space L2(R3,C) ⊗ C4 and the
free-electron 4 × 4 Dirac Hamiltonian is

D0 = c (~α · ~p) + β mc2, (A1)

where ~p = −i~∇ is the momentum operator, and ~α and β are
the 4 × 4 Dirac matrices

~α =

(
02 ~σ
~σ 02

)
and β =

(
I2 02
02 −I2

)
, (A2)

where ~σ = (σ1,σ2,σ3) is the 3-dimensional vector of the
2 × 2 Pauli matrices, and 02 and I2 are the 2 × 2 zero and
identity matrices, respectively. The natural reduction of this
Hamiltonian to the x-axis is the 1D free-electron 4 × 4 Dirac
Hamiltonian

D0,x = c (α1 px) + β mc2. (A3)

Using the unitary transformation

U =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 , (A4)

the Hamiltonian D0,x can be transformed into the block-
diagonal form

D
′
0,x = UD0,xU−1 =

(
D0 02
02 D0

)
, (A5)

where D0 = c (σ1 px) + σ3 mc2 is the 1D free-electron 2 × 2
Dirac Hamiltonian introduced in Eq. (3). Correspondingly,
the eigenstates of the block-diagonal Hamiltonian D′0,x can
be chosen of the form

ψ′1 =


ψL

ψS

0
0

 and ψ′2 =


0
0
ψL

ψS

 . (A6)

Thus, one can work simply with the 2 × 2 Dirac Hamiltonian
D0. The same result can also be obtained starting from the
reduction of the Hamiltonian to the y-axis.

The eigenstates in Eq. (A6) do not have definite spin, i.e.
they are not eigenstate of the spin-projection operator Σ3 =

σ3 ⊕ σ3, where ⊕ designates the matrix direct sum. How-
ever, they have time-reversal symmetry. Indeed, the 1D Dirac
Hamiltonian D0 commutes with the 1D time-reversal opera-
tor [50], T1D = σ3K0, where K0 is the complex-conjugation
operator. This implies that ψL and ψS can be chosen as
real-valued and pure-imaginary functions, respectively, i.e.
ψL = ψL∗ and ψS = −ψS∗. Imposing these constraints, we can
show that ψ′1 and ψ′2 form a Kramers pair, i.e. they are con-
nected by the 3D time-reversal operator [2, 3], T3D = −iΣ2K0,
where Σ2 = σ2⊕σ2. Indeed, applying the operator T3D in the
new basis, we find

UT3DU−1ψ′1 =


0
0
ψL∗

−ψS∗

 =


0
0
ψL

ψS

 = ψ′2, (A7)
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and

UT3DU−1ψ′2 =


−ψL∗

ψS∗

0
0

 =


−ψL

−ψS

0
0

 = −ψ′1. (A8)

Appendix B: Tensor product and partial trace

We briefly review the tensor product (or Kronecker product)
of vectors and matrices, and the concept of the partial trace.

Let us consider two vectors ψ ∈ C2 and φ ∈ C2

ψ =

(
ψ1
ψ2

)
and φ =

(
φ1
φ2

)
. (B1)

The tensor product of ψ and φ is a vector Ξ ∈ C4

Ξ = ψ ⊗ φ =


ψ1φ1
ψ1φ2
ψ2φ1
ψ2φ2

 =


Ξ11
Ξ12
Ξ21
Ξ22

 , (B2)

where the elements Ξρσ = ψρφσ are conveniently written with
a composite index ρσ ≡ (ρ, σ) ∈ {1, 2}2. The tensor product
of ψ† and φ is a matrix M ∈ C2×2

M = ψ† ⊗ φ =

(
ψ∗1φ1 ψ∗2φ1
ψ∗1φ2 ψ∗2φ2

)
=

(
M1,1 M1,2
M2,1 M2,2

)
, (B3)

with elements Mρ,σ = ψ∗σφρ.
Let us consider now two matrices A ∈ C2×2 and B ∈ C2×2

A =

(
A1,1 A1,2
A2,1 A2,2

)
and B =

(
B1,1 B1,2
B2,1 B2,2

)
. (B4)

The tensor product of A and B is a matrix C ∈ C4×4

C = A ⊗ B =


A1,1B1,1 A1,1B1,2 A1,2B1,1 A1,2B1,2
A1,1B2,1 A1,1B2,2 A1,2B2,1 A1,2B2,2
A2,1B1,1 A2,1B1,2 A2,2B1,1 A2,2B1,2
A2,1B2,1 A2,1B2,2 A2,2B2,1 A2,2B2,2


=


C11,11 C11,12 C11,21 C11,22
C12,11 C12,12 C12,21 C12,22
C21,11 C21,12 C21,21 C21,22
C22,11 C22,12 C22,21 C22,22

 , (B5)

with elements Cρν,στ = Aρ,σBν,τ written with composite in-
dices ρν and στ.

The (total) trace of C is of course

Tr[C] =
∑
ρ,ν

Cρν,ρν =
∑
ρ,ν

Aρ,ρBν,ν = tr[A] tr[B]. (B6)

Due to the fact that C is a tensor product of two matrices,
we can also define a partial trace matrix Tr1[C] ∈ C2×2 with
respect to the first matrix A (or the first “particle”), with ele-
ments

(Tr1[C])ν,τ =
∑
ρ

Cρν,ρτ =

∑
ρ

Aρ,ρ

 Bν,τ, (B7)

i.e., Tr1[C] = tr[A] B. Similarly, we can define a partial trace
matrix Tr2[C] ∈ C2×2 with respect to the second matrix B (or
the second “particle”), with elements

(Tr2[C])ρ,σ =
∑
ν

Cρν,σν =

∑
ν

Bν,ν

 Aρ,σ, (B8)

i.e., Tr2[C] = tr[B] A.

Appendix C: Commutator definition of the vacuum-polarization
density

The vacuum-polarization density nvp(x) in Eq. (67) has
been obtained with the normal-ordered definition of the den-
sity operator [see Eq. (24)]

n̂(x) = tr
(
N[ψ̂†(x) ⊗ ψ̂(x)]

)
. (C1)

Another definition of the density operator commonly used in
the literature (see, e.g., Refs. 16, 32, 36, 37, 51, 86, and 90)
uses a commutator (c) instead of the normal ordering

n̂c(x) =
1
2

tr
([
ψ̂†(x), ψ̂(x)

]
⊗

)
. (C2)

where [ψ̂†(x), ψ̂(x)]⊗ = ψ̂†(x) ⊗ ψ̂(x) − ψ̂(x) ⊗ ψ̂†(x) is the
tensor-product commutator. With this definition, the corre-
sponding vacuum-polarization density takes the form

nc,vp(x) =
1
2

∑
p∈NS

ψ̃†p(x)ψ̃p(x) −
∑
p∈PS

ψ̃†p(x)ψ̃p(x)

 . (C3)

To calculate nc,vp
1 (x), in the limits L → ∞ and Λ → ∞, we

express the first sum over NS using the generalized negative-
energy eigenfunctions in Eq. (17), and the second sum over
PS using the bound-state eigenfunction in Eq. (14) and the
generalized positive-energy eigenfunctions in Eq. (16), which
leads to

nc,vp(x) = −
κe−2k|x|

2
+

∫ ∞

0

dk
π

κ

k2 + κ2

ε̃1

εk
k sin(2k|x|). (C4)

Using the relation

κe−2k|x|

2
=

∫ ∞

0

dk
π

κ

k2 + κ2 κ cos(2k|x|), (C5)

we see that nc,vp(x) is identical to nvp(x) in Eq. (67)

nc,vp(x) = nvp(x). (C6)

However, we note that the expression of nc,vp(x) in Eq. (C4)
is subject to numerical instabilities for large x, contrary to the
expression of nvp(x) in Eq. (67).

Appendix D: Vacuum-polarization density from the Green
function

We derive here an alternative expression for the vacuum-
polarization density nvp(x) in Eq. (67) based on the Green
function.
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The Green function (or resolvent) operator G0(ω) = (ωI2 −

D0)−1 of the 1D free-electron Dirac Hamiltonian D0 in Eq. (3)
can be easily calculated in momentum space and Fourier-
transformed back to real space (see, e.g., Refs. 48 and 65),
for ω ∈ C \ σ(D0) where σ(D0) is the spectrum of D0,

G0(x, x′;ω) = −
1
2c

(
g(ω) i sgn(x − x′)

i sgn(x − x′) −g(−ω)

)
e−κ(ω)|x−x′ |,

(D1)

where κ(ω) =
√

m2c4 − ω2/c (with Re[κ(ω)] > 0) and
g(ω) =

√
(mc2 + ω)/(mc2 − ω). The Green function of the

1D hydrogen-like Dirac Hamiltonian D in Eq. (10) satisfies
the Dyson equation, for ω ∈ C \ σ(D),

G(x, x′;ω) = G0(x, x′;ω)

+

∫ +∞

−∞

dy G0(x, y;ω)V(y)G(y, x′;ω), (D2)

where V(y) = −Zδ(y)I2, which gives

G(x, x′;ω) = G0(x, x′;ω) − ZG0(x, 0;ω)G(0, x′;ω).(D3)

In particular for x = 0, we have

G(0, x′;ω) = G0(0, x′;ω) − ZG0(0, 0;ω)G(0, x′;ω),(D4)

giving

G(0, x′;ω) = [I2 + ZG0(0, 0;ω)]−1G0(0, x′;ω). (D5)

Inserting the last expression in Eq. (D3), we obtain for the
change of the Green function ∆G(x, x′;ω) = G(x, x′;ω) −
G0(x, x′;ω)

∆G(x, x′;ω) =

−ZG0(x, 0;ω)[I2 + ZG0(0, 0;ω)]−1G0(0, x′;ω). (D6)

Finally, using the expression of G0(x, x′;ω) in Eq. (D1), with
the understanding that sgn(0) = 0, we obtain (see, e.g.,
Ref. 65)

∆G(x, x′;ω) = −
Z

4c2 e−κ(ω)(|x|+|x′ |)

×
[
z1(ω)G1(x, x′;ω) + z2(ω)G2(x, x′;ω)

]
, (D7)

with z1(ω) = (1 − λ g(ω))−1, z2(ω) = (1 + λ g(−ω))−1, λ =

Z/(2c), and G1(x, x′;ω) and G2(x, x′;ω) are the following ma-
trices

G1(x, x′;ω) =

(
g(ω)2 −i sgn(x′)g(ω)

i sgn(x)g(ω) sgn(x) sgn(x′)

)
, (D8)

and

G2(x, x′;ω) =

(
sgn(x) sgn(x′) −i sgn(x)g(−ω)
i sgn(x′)g(−ω) g(−ω)2

)
. (D9)

The vacuum-polarization density matrix (in the limits L →
∞ and Λ → ∞) is obtained by integrating ∆G(x, x′;ω) along
the imaginary axis of frequency (see, e.g., Ref. 37)

nvp
1 (x, x′) =

∫ +∞

−∞

du
2π

∆G(x, x′; iu). (D10)

In particular, the vacuum-polarization density nvp(x) is given
by

nvp(x) =

∫ +∞

−∞

du
2π

tr[∆G(x, x; iu)], (D11)

where, for x , 0,

tr[∆G(x, x; iu)] = −
Z

4c2 e−2κ(iu)|x|

×
(
z1(iu)

(
g(iu)2 + 1

)
+ z2(iu)

(
1 + g(−iu)2

))
.(D12)

The integral in Eq. (D11) can be done numerically and per-
fectly matches the results from Eq. (67).

We can also obtain the first-order vacuum-polarization den-
sity nvp,(1)(x) with respect to Z, i.e. with respect to the external
potential. It corresponds to setting z1(ω) = 1 and z2(ω) = 1,
leading to

tr[∆G(1)(x, x; iu)] = −
Z

4c2 e−2κ(iu)|x|
(
2 + g(iu)2 + g(−iu)2

)
,

(D13)

and

nvp,(1)(x) =

∫ +∞

−∞

du
2π

tr[∆G(1)(x, x; iu)]

= −
Zm2c2

π

∫ ∞

0
du

e−2
√

m2c4+u2 |x|/c

m2c4 + u2 . (D14)

Using the change of variables t =
√

1 + (u/mc2)2, it can be
expressed as

nvp,(1)(x) = −
Zm
π

∫ ∞

1
dt

e−2mc|x|t

t
√

t2 − 1
. (D15)

It is the equivalent for the present 1D model of the
Uehling vacuum-polarization density (or potential) for the 3D
hydrogen-like atom [80] (see also, e.g., Refs. 79 and 81).

Appendix E: Charge of the vacuum from the Green function

We calculate here the charge of the vacuum from Eqs. (71)-
(73) using the Green function.

We use the non-symmetry-adapted version of the general-
ized eigenfunctions of the free-particle Dirac Hamiltonian in
Eqs. (6) and (7),

ψ+,k(x) = Bk

(
1
sk

)
eikx and ψ−,k(x) = Bk

(
−sk
1

)
eikx, (E1)

for k ∈ R, and Bk =
√

(εk + mc2)/(4πεk). The projectors
on the positive-energy and negative-energy eigenfunctions are
then

P0
+(x′, x) =

∫ +∞

−∞

dk ψ+,k(x′)ψ†
+,k(x)

=

∫ +∞

−∞

dk B2
k

(
1 sk
sk s2

k

)
eik(x′−x), (E2)
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and

P0
−(x′, x) =

∫ +∞

−∞

dk ψ−,k(x′)ψ†
−,k(x)

=

∫ +∞

−∞

dk B2
k

(
s2

k −sk
−sk 1

)
eik(x′−x). (E3)

Inserting Eqs. (E2) and (D10) in Eq. (72), and performing the
inverse Fourier transformations over x and x′, leads to the ex-
pression of the number of free electrons in the vacuum state

Nvac
e = −Z

∫ +∞

−∞

du
2π

∫ +∞

−∞

dk
B2

k

(u2 + ε2
k)2

× [z1(iu)vk(iu) + z2(iu)wk(iu)] , (E4)

where vk(ω) = [sk(mc2 + ω) − ck]2 and wk(ω) = [(mc2 − ω) +

skck]2. Similarly, inserting Eqs. (E3) and (D10) in Eq. (73)
leads to the expression of the number of free positrons in the
vacuum state

Nvac
p = Z

∫ +∞

−∞

du
2π

∫ +∞

−∞

dk
B2

k

(u2 + ε2
k)2

× [z1(iu)wk(−iu) + z2(iu)vk(−iu)] . (E5)

Performing the integrals in Eqs. (E4) and (E5) numerically, we
have checked that Nvac

e = Nvac
p within the numerical precision.

[1] P. Pyykkö, Annu. Rev. Phys. Chem. 63, 45 (2012).
[2] T. Saue and L. Visscher, in Theoretical Chemistry and Physics

of Heavy and Superheavy Elements, edited by S. Wilson and
U. Kaldor (Kluwer, Dordrecht, 2003), pp. 211–267.

[3] K. G. Dyall and K. Fægri, Jr., Introduction to Relativistic Quan-
tum Chemistry (Oxford University Press, 2007).

[4] M. Reiher and A. Wolf, Relativistic Quantum Chemistry:
The Fundamental Theory of Molecular Science (WILEY-VCH,
Weinheim, 2009).

[5] J. Sucher, Phys. Rev. A 22, 348 (1980).
[6] M. H. Mittleman, Phys. Rev. A 24, 1167 (1981).
[7] P. J. Mohr, G. Plunien and G. Stoff, Phys. Rep. 293, 227 (1998).
[8] V. M. Shabaev, Phys. Rep. 356, 119 (2002).
[9] I. Lindgren, S. Salomonson and B. Asén, Phys. Rep. 389, 162

(2004).
[10] P. Indelicato and P. J. Mohr, in Handbook of Relativistic Quan-

tum Chemistry, edited by W. Liu (Springer, Berlin, Heidelberg,
2016), pp. 1–110.
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[64] P. Šeba, Lett. Math. Phys. 18, 77 (1989).
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