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The basis-set correction method based on density-functional theory consists in correcting the energy calculated by a
wave-function method with a given basis set by a density functional. This basis-set correction density functional in-
corporates the short-range electron correlation effects missing in the basis set. This results in accelerated basis conver-
gences of ground-state energies to the complete-basis-set limit. In this work, we extend the basis-set correction method
to a linear-response formalism for calculating excited-state energies. We give the general linear-response equations, as
well as the more specific equations for configuration-interaction wave functions. As a proof of concept, we apply this
approach to the calculations of excited-state energies in a one-dimensional two-electron model system with harmonic
potential and a Dirac-delta electron-electron interaction. The results obtained with full-configuration-interaction wave
functions expanded in a basis of Hermite functions and a local-density-approximation basis-set correction functional
show that the present approach does not help in accelerating the basis convergence of excitation energies. However, we
show that it significantly accelerates basis convergences of excited-state total energies.

I. INTRODUCTION

One of the main limitations of standard electronic-structure
wave-function computational methods is their slow conver-
gence of ground- and excited-state energies and other prop-
erties with respect to the one-electron basis set (see, e.g.,
Refs. 1–4). This slow convergence can be traced back
to the non-smoothness of the exact eigenfunctions of the
Schrödinger Hamiltonian with repulsive Coulomb electron-
electron interaction5, namely the electron-electron cusp con-
dition6,7.

There are two main approaches for dealing with this slow
basis convergence problem. The first approach consists in ex-
trapolating the results to the complete-basis-set (CBS) limit
by using increasingly large basis sets1,2. This approach is
very common for estimating the CBS limit of the ground-state
energy but has also been used for estimating the CBS limit
of excited-state energies and properties (see, e.g., Refs. 8–
11). The second approach consists in using explicitly cor-
related R12 or F12 methods which incorporate in the wave
function a correlation factor reproducing the electron-electron
cusp (see, e.g., Refs. 12–15). The vast majority of R12/F12
methods have been applied to ground-state energy calcula-
tions but linear-response extensions have also been proposed
for excitation energies and dynamic response properties16–20.

Recently, some of the present authors introduced an alterna-
tive basis-set correction method based on density-functional
theory (DFT)21. It consists in correcting the energy calcu-
lated by a wave-function method (such as configuration inter-
action or coupled-cluster) with a given basis set by an adapted
basis-set correction density functional incorporating the short-
range electron correlation effects missing in the basis set, re-
sulting in an accelerated convergence to the CBS limit. This
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basis-set correction method was further developed and val-
idated on atomization energies22–24 and dissociation energy
curves25. The method was also extended to calculations of
ionization potentials within the GW approach26 and to calcu-
lations of dipole moments27,28. It was also proposed to ex-
tend the method to calculations of excitation energies using
a straightforward state-specific approach in which the same
basis-set correction functional is evaluated from the density of
each state29. Even though the last approach was shown to be
able to accelerate the basis convergence of electronic excita-
tion energies of molecular systems, it is based on the a-priori
questionable assumption that one can use the same basis-set
correction functional for all states.

In the present work, we extend the basis-set correction
method to a linear-response formalism, providing a more rig-
orous framework for calculating excitation energies. More-
over, it allows for calculations of response properties such as
dynamic polarizabilities. As a first proof of concept, we apply
this approach to calculations of excitation energies in a one-
dimensional (1D) model system consisting of two electrons in
a harmonic potential with a Dirac-delta two-electron interac-
tion30,31. We previously used a similar 1D model system in
Ref. 32 to study with some mathematical rigor the basis-set
correction method. The relevance of this 1D model for quan-
tum chemistry lies in the fact that the Dirac-delta two-electron
interaction induces a slow basis convergence quite similar to
the one observed with the standard two-electron Coulomb in-
teraction in three-dimensional (3D) systems.

The paper is organized as follows. In Sec. II, we formulate
the general linear-response theory for the DFT-based basis-
set correction scheme, and we give explicit expressions for
configuration-interaction wave functions. In Sec. III, we ap-
ply the linear-response DFT-based basis-set correction theory
to the 1D model system and we discuss the results. Finally,
Sec. IV contains our conclusions. Hartree atomic units are
used throughout this work.
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II. LINEAR-RESPONSE DFT-BASED BASIS-SET
CORRECTION

In this section, we derive the general linear-response equa-
tions for the DFT-based basis-set correction approach. We
consider a finite one-electron basis set B ⊂ H1(R3 × {↑, ↓},C)
where H1 is the first-order Sobolev space. The corresponding
one-electron Hilbert space spanned by this basis set is denoted
by hB = span(B) and the corresponding N-electron Hilbert
space is given by the N-fold antisymmetric tensor product of
hB, i.e. HB =

∧N hB.

A. General ground-state optimization

We consider a general parametrized wave function |Ψ(p)〉 ∈
HB with M complex-valued parameters p = (p1, p2, ..., pM) ∈
CM . For example, these parameters could be configuration-
interaction coefficients or orbital-rotation parameters. For
convenience, we work with the intermediately normalized
wave function (see, e.g., Ref. 33)

|Ψ̄(p)〉 =
|Ψ(p)〉
〈Ψ0|Ψ(p)〉

, (1)

where |Ψ0〉 = |Ψ(p0)〉 is the current wave function obtained for
the current parameters p = p0. The current wave function is
taken as normalized to unity, i.e. 〈Ψ0|Ψ0〉 = 1. The advantage
of this intermediate normalization is that the first- and second-
order derivatives of |Ψ̄(p)〉 with respect to p at p = p0,

|Ψ̄I〉 =
∂|Ψ̄(p)〉
∂pI

∣∣∣∣∣∣
p=p0

and |Ψ̄I,J〉 =
∂2|Ψ̄(p)〉
∂pI∂pJ

∣∣∣∣∣∣
p=p0

, (2)

are orthogonal to |Ψ0〉, i.e. 〈Ψ̄I |Ψ0〉 = 0 and 〈Ψ̄I,J |Ψ0〉 = 0.
This simplifies the derivation of the equations.

In the DFT-based basis-set correction approach21, we intro-
duce the following ground-state energy expression for a N-
electron system with Hamiltonian Ĥ

EB(p) =
〈Ψ̄(p)|Ĥ|Ψ̄(p)〉
〈Ψ̄(p)|Ψ̄(p)〉

+ ĒB[ρΨ̄(p)], (3)

where ĒB[ρ] is the basis-set correction density functional
evaluated at the density of Ψ̄(p)

ρΨ̄(p)(r) =
〈Ψ̄(p)|ρ̂(r)|Ψ̄(p)〉
〈Ψ̄(p)|Ψ̄(p)〉

, (4)

where ρ̂(r) is the density operator at point r. The self-
consistent basis-set corrected ground-state energy is then27

EB0 = min
p∈CM

EB(p). (5)

The role of the density functional ĒB[ρ] is to accelerate the
basis convergence without altering the CBS limit. The latter
point is guaranteed by imposing that ĒB[ρ] vanishes in the
CBS limit, i.e. limB→CBS ĒB[ρ] = 0.

In practice, the minimization can be done by iteratively
solving an effective Schrödinger equation27, or, more gener-
ally, using for example the Newton method in which the cur-
rent parameters are iteratively updated using the parameters
changes ∆p = p − p0 found by solving the linear equations
(see, e.g., Ref. 34)(

A B
B∗ A∗

) (
∆p
∆p∗

)
= −

(
g
g∗

)
, (6)

where * designates the complex conjugate and g is the energy
gradient vector

gI =
∂EB(p)
∂p∗I

∣∣∣∣∣∣
p=p0

= 〈Ψ̄I |ĤBeff|Ψ0〉, (7)

with the effective Hamiltonian

ĤBeff = Ĥ + ˆ̄VB[ρΨ0 ], (8)

involving the basis-set correction potential operator

ˆ̄VB[ρ] =

∫
R3

v̄B[ρ](r)ρ̂(r)dr, (9)

with v̄B[ρ](r) = δĒB[ρ]/δρ(r). In Eq. (6), A and B are the
energy Hessian matrices

AI,J =
∂2EB(p)
∂p∗I∂pJ

∣∣∣∣∣∣
p=p0

= 〈Ψ̄I |ĤBeff − E
B
0 |Ψ̄J〉 + KI,J , (10)

where EB0 = 〈Ψ0|ĤBeff
|Ψ0〉 is the energy of the effective Hamil-

tonian for the current wave function Ψ0, and

BI,J =
∂2EB(p)
∂p∗I∂p∗J

∣∣∣∣∣∣
p=p0

= 〈Ψ̄I,J |ĤBeff|Ψ0〉 + LI,J , (11)

involving the basis-set correction kernel contributions

KI,J =

∫
R3×R3

f̄B[ρΨ0 ](r, r′)〈Ψ̄I |ρ̂(r)|Ψ0〉〈Ψ0|ρ̂(r′)|Ψ̄J〉drdr′,(12)

and

LI,J =

∫
R3×R3

f̄B[ρΨ0 ](r, r′)〈Ψ̄I |ρ̂(r)|Ψ0〉〈Ψ̄J |ρ̂(r′)|Ψ0〉drdr′,(13)

with f̄B[ρ](r, r′) = δ2ĒB[ρ]/δρ(r)δρ(r′).
At the end of the optimization, provided that we have

reached the global energy minimum, the current parameters
p0 are the optimal ground-state parameters. To make clear the
link with our previous work27, we note that the present energy
minimization is equivalent to solving the following effective
Schrödinger equation projected in the basis of the first-order
wave-function derivatives {|Ψ̄I〉}I=1,...,M

〈Ψ̄I |ĤBeff − E
B
0 |Ψ0〉 = 0. (14)

Since 〈Ψ̄I |Ψ0〉 = 0, Eq. (14) is indeed equivalent to having a
zero energy gradient, i.e. gI = 〈Ψ̄I |ĤBeff

|Ψ0〉 = 0.
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B. General linear-response equations

Starting from the optimal ground state, we now add a time-
dependent perturbation operator V̂(t) to the Hamiltonian,

Ĥ(t) = Ĥ + V̂(t), (15)

where V̂(t) is chosen as a periodic monochromatic electric-
dipole interaction of frequency ω

V̂(t) = −d̂ · ε+e−iωt − d̂ · ε−e+iωt, (16)

where d̂ = −
∫
R3 r ρ̂(r)dr is the dipole-moment operator, and

ε+ and ε− are the electric-field strengths for the positive and
negative frequency terms (taken as different for intermediate
derivations but ultimately we must have ε+ = ε−).

The wave function |Ψ̄(p(t))〉 will now depend on time
through the parameters p(t) = p0 + ∆p(t) where p0 are the
optimal ground-state parameters and ∆p(t) are the time vari-
ations of the parameters which can be written as

∆p(t) = p+e−iωt + p−e+iωt, (17)

where p+ ∈ CM and p− ∈ CM are the Fourier components.
The ground-state energy expression in Eq. (3) is replaced by
the quasi-energy expression35–40

QB(ε+, ε−; p+,p−) =

1
T

∫ T

0

{
〈Ψ̄(p(t))|Ĥ(t) − i ∂

∂t |Ψ̄(p(t))〉

〈Ψ̄(p(t))|Ψ̄(p(t))〉
+ ĒB[ρΨ̄(p(t))]

}
dt,(18)

where T = 2π/ω is the period. Note that, in the definition
of the quasi-energy in Eq. (18), the same basis-set correction
density functional ĒB[ρ] used for the ground-state calcula-
tion is employed, which is known as the adiabatic approxi-
mation. This approximation is almost always used in time-
dependent DFT calculations of excitation energies (see, e.g,
Refs.41,42). Due to this approximation, the basis-set correc-
tion contribution to the quasi-energy is a local functional of
time. Overcoming this approximation would require the com-
plicated task of developing a quasi-energy basis-set correction
contribution having the form a non-local functional of time,
i.e. depending on all the time history. We do not attempt to do
that in the present work. The optimal quasi-energy QB0 (ε+, ε−)
is a stationary value of QB(ε+, ε−; p+,p−) with respect to vari-
ations of the parameters p+ and p−, which we write as

QB0 (ε+, ε−) ∈ stat
(p+,p−)∈C2M

QB(ε+, ε−; p+,p−), (19)

where “stat” refers to the set of stationary values. In the
zero electric-field limit (ε+ = ε− = 0), vanishing parameters
p+ = p− = 0 are optimal and the corresponding optimal quasi-
energy reduces to the ground-state energy, i.e. QB0 (0, 0) = EB0 .

The optimal quasi-energy allows one to define the dynamic
dipole polarizability tensor as

αBi, j(ω) = −
∂2QB0 (ε+, ε−)
∂ε−i ∂ε

+
j

∣∣∣∣∣∣∣
ε±=0

, (20)

where i and j refer to 3D Cartesian components. Calculating
this second-order derivative using the chain rule via the opti-
mal parameters p+ and p− (which implicitly depend on ε+ and
ε−) leads to (see, e.g., Refs. 39 and 40)

αBi, j(ω) =

(
Vi
V∗i

)† (
Λ(ω) Ξ
Ξ∗ Λ(−ω)∗

)−1 (
V j
V∗j

)
, (21)

where Λ(ω) and Ξ are the quasi-energy Hessian matrices

ΛI,J(ω) =
∂2QB(ε+, ε−; p+,p−)

∂p+∗
I ∂p+

J

∣∣∣∣∣∣p±=0
ε±=0

= AI,J − ωS I,J , (22)

and

ΞI,J =
∂2QB(ε+, ε−; p+,p−)

∂p+∗
I ∂p−∗J

∣∣∣∣∣∣p±=0
ε±=0

= BI,J , (23)

where AI,J and BI,J are given in Eqs. (10) and (11), and S I,J is
the overlap matrix of the first-order wave-function derivatives

S I,J = 〈Ψ̄I |Ψ̄J〉. (24)

Equation (21) also involves the perturbed energy gradient vec-
tor

V j,I =
∂2QB(ε+, ε−; p+,p−)

∂ε+
j ∂p+∗

I

∣∣∣∣∣∣∣p±=0
ε±=0

= −〈Ψ̄I |d̂ j|Ψ0〉, (25)

corresponding to transition dipole-moment matrix elements.
Finally, the poles in ω of the dynamic dipole polarizability

αBi, j(ω) provide M positive excitation energies {ωBn } (and M
opposite deexcitation energies), which can be found from the
following generalized eigenvalue equation (see, e.g., Ref. 34)(

A B
B∗ A∗

) (
Xn
Yn

)
= ωBn

(
S 0
0 −S

) (
Xn
Yn

)
, (26)

where (Xn,Yn) are eigenvectors. The obtained excitation en-
ergies {ωBn } include the basis-set correction through the po-
tential v̄B[ρ](r) in Eq. (9) and kernel f̄B[ρ](r, r′) in Eqs. (12)
and (13), and may be expected to converge faster to their
CBS limit, provided good enough approximations are used
for the basis-set correction functional used for v̄B[ρ](r) and
f̄B[ρ](r, r′). Obviously, the corresponding basis-set corrected
total energy of the nth excited state is given by

EBn = EB0 + ωBn , (27)

and could also be expected to converge faster to its CBS limit,
if the basis-set correction functional is good enough.

C. Linear-response equations for configuration-interaction
wave functions

We now give the more specific form of the linear-response
equations for configuration-interaction (CI) wave functions.
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Given a set of M orthonormal configurations {|ΦI〉}, the CI
wave function is parametrized as

|Ψ(p)〉 =

M∑
I=1

pI |ΦI〉. (28)

The ground-state parameters are assumed to be real valued
and are denoted by p0

I = cI , so that the ground-state wave
function is |Ψ0〉 =

∑M
I=1 cI |ΦI〉. From Eq. (2), the first-order

and second-order derivatives of the intermediately normalized
wave function are found to be

|Ψ̄I〉 = |ΦI〉 − cI |Ψ0〉, (29)

and

|Ψ̄I,J〉 = 2cIcJ |Ψ0〉 − cJ |ΦI〉 − cI |ΦJ〉. (30)

In a spin-restricted formalism with a set of real-valued or-
thonormal orbitals {ϕi} ⊂ hB, the linear-response matrices in
Eq. (26) now become

AI,J = 〈ΦI |ĤBeff − E
B
0 |ΦJ〉 + KI,J , (31)

BI,J = KI,J , (32)

S I,J = δI,J − cIcJ , (33)

where the kernel contribution takes the form

KI,J =
∑
i, j,k,l

∆γI
i, j ∆γJ

k,l f̄Bi, j,k,l, (34)

with i, j, k, l referring to spatial orbitals. In Eq. (34), we have
introduced

∆γI
i, j = γI

i, j − cIγi, j, (35)

where γi, j and γI
i, j are the ground-state and transition density

matrices, respectively,

γi, j = 〈Ψ0|Êi, j|Ψ0〉 =

M∑
I=1

M∑
J=1

cIcJ〈ΦI |Êi, j|ΦJ〉, (36)

γI
i, j = 〈ΦI |Êi, j|Ψ0〉 =

M∑
J=1

cJ〈ΦI |Êi, j|ΦJ〉, (37)

where Êi, j = â†i↑â j↑ + â†i↓â j↓ is the spin-summed one-electron
density-matrix operator in second quantization. Finally, in
Eq. (34), f̄Bi, j,k,l are the matrix elements of the basis-set cor-
rection kernel f̄B[ρΨ0 ](r, r′) over the spatial orbitals

f̄Bi, j,k,l =

∫
R3×R3

f̄B[ρΨ0 ](r, r′) ϕi(r)ϕ j(r)ϕk(r′)ϕl(r′)drdr′.(38)

TABLE I: Exact total energies of the first 5 eigenstates of
even-parity and singlet symmetries for the 1D two-electron
Hooke-type atom with ω0 = 1, and corresponding excitation

energies. All energies are in hartree.

State (n,m) Total energy En,m Excitation energy En,m − E0,0

(0, 0) 1.306746
(0, 2) 3.187051 1.880305
(2, 0) 3.306746 2.000000
(0, 4) 5.144734 3.837988
(2, 2) 5.187051 3.880305

III. ONE-DIMENSIONAL MODEL SYSTEM

A. Description of the model and exact solutions

We consider the 1D two-electron Hooke-type atom stud-
ied in Refs. 30–32. We work first in the infinite-dimensional
spin-free one-electron Hilbert space h = L2(R,C) and the
associated non-antisymmetrized tensor-product two-electron
Hilbert spaceH = h ⊗ h . The Hamiltonian is

Ĥ = −
1
2
∂2

∂x2
1

−
1
2
∂2

∂x2
2

+
1
2
ω2

0x2
1 +

1
2
ω2

0x2
2 + δ(x1 − x2), (39)

involving a harmonic external potential of curvature ω2
0

(which will be chosen to 1 throughout this study) and a Dirac-
delta two-electron interaction. The latter two-electron interac-
tion generates in 1D the same s-wave electron-electron cusp
as the Coulomb interaction does in 3D, and it is thus an ap-
propriate model to study the basis convergence32. This 1D
two-electron Hooke-type atom can be considered as the 1D
analog of the well-known 3D two-electron Hooke atom (see,
e.g., Refs. 43 and 44).

Expressed with the center-of-mass (cm) coordinate X =

(x1 + x2)/2 and the relative (rel) coordinate x12 = x1 − x2,
the Hamiltonian is separable32 and its eigenvalues are

En,m = Ecm
n + Erel

m for n ∈ N and m ∈ N, (40)

where Ecm
n = ω0(n + 1/2) is the center-of-mass contribution

and Erel
m is the relative contribution,

Erel
m =

ω0(νm + 1/2), for m even,

ω0(m + 1/2), for m odd,
(41)

with the real numbers νm being the solutions of the equa-
tion30,45

2
√

2ω0

Γ
(
−
νm
2 + 1

2

)
Γ
(
−
νm
2

) = −1, (42)

where Γ is the gamma function. The associated eigenfunctions
are

Ψn,m(X, x12) = ψcm
n (X)ψrel

m (x12), (43)
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FIG. 1: Ground-state energy of the 1D two-electron
Hooke-type atom with ω0 = 1 calculated by the standard FCI

method, the non-self-consistent FCI+LDA and
self-consistent SC-FCI+LDA basis-set corrected methods as

a function of the basis size nmax.

where the center-of-mass eigenfunctions are ψcm
n (X) =

f 2ω0
n (X) and the relative eigenfunctions are

ψrel
m (x12) =

cmDνm (
√
ω0|x12|), for m even,

f ω0/2
m (x12), for m odd,

(44)

where Dνm is the parabolic cylinder function46 and cm is a nor-
malization constant. Here, f ω0

n designates the Hermite func-
tions (i.e., quantum harmonic-oscillator eigenfunctions) for
the frequency ω0

f ω0
n (x) = Nω0

n Hn(
√
ω0x) e−ω0 x2/2, (45)

where Hn are the Hermite polynomials, Nω0
n =

(2nn!)−1/2(ω0/π)1/4 is the normalization factor. As announced,
for even m, the relative eigenfunctions has the familiar s-wave
cusp condition: ψrel

m (x12) = ψrel
m (0)[1 + (1/2)|x12| + O(x2

12)]
(see Ref. 32).

We will only consider eigenstates of even-parity symmetry
[i.e., invariant under the transformation (x1, x2)→ (−x1,−x2)]
and singlet symmetry (i.e., invariant under the exchange x1 ↔

x2), corresponding to the eigenstates with both even quantum
numbers n and m. The exact total energies of the first 5 of
these eigenstates, as well as the corresponding excitation en-
ergies, are given in Table I for ω0 = 1.

B. Full-configuration-interaction calculation in a basis set

We consider finite basis sets of Hermite (or Hermite-Gauss)
functions

B = { f ω0
n }n=1,...,nmax , (46)

with a fixed parameter ω0 = 1 and a variable maximal quan-
tum number nmax determining the basis size. The one-electron
and two-electron Hilbert spaces corresponding to this basis set
are hB = span(B) andHB = hB ⊗ hB.

For several values of nmax, we first perform a Hartree-Fock
(HF) calculation to obtain the set of orthonormal HF orbitals
{ϕi}, and we then perform a full-configuration-interaction
(FCI) calculation for the states of even-parity symmetry.
The parameterized FCI wave function is thus |ΨFCI(p)〉 =∑M

I=1 pI |ΦI〉 where |ΦI〉 = |ϕI1〉 ⊗ |ϕI2〉, and the orbitals ϕI1

and ϕI2 are restricted to be of the same parity symmetry.
In Fig. 1 we report the FCI ground-state energy E0,FCI =

〈Ψ0,FCI|Ĥ|Ψ0,FCI〉, where Ψ0,FCI is the FCI ground-state wave
function, as a function of the basis size nmax. As expected, the
FCI ground-state energy slowly converges toward the exact
ground-state energy as nmax increases. The convergence rate
is compatible with the theoretical convergence rate of 1/n1/2

max
determined in Ref. 32.

We construct a local-density approximation (LDA) for the
basis-set correction functional ĒB[ρ]

ĒBLDA[ρ] =

∫
R

ρ(r)ε̄B(ρ(r)) dr, (47)

where the energy per particle ε̄B(ρ) is defined in exactly the
same way as in Ref. 32, i.e. as the complementary multideter-
minant correlation energy per particle of a two-electron finite
uniform electron gas with electron-electron interaction pro-
jected in the basis set B. For convenience, we fit the numeri-
cally calculated energy per particle ε̄B(ρ) to a rational fraction

ε̄B(ρ) ≈
∑4

i=0 aBi ρ
i

1 +
∑4

j=1 bBj ρ
j
, (48)

where the values of the coefficients aBi and bBj for each basis
size nmax are given in the Supplementary Information.

We perform a ground-state FCI calculation including self-
consistently the basis-set correction LDA functional accord-
ing to Eq. (5). The required LDA basis-set correction potential
is obtained by straightforward differentiation of Eq. (47)

v̄BLDA[ρ](r) = ε̄B(ρ(r)) + ρ(r)
dε̄B(ρ)

dρ

∣∣∣∣∣∣
ρ=ρ(r)

. (49)

The resulting energy, labelled as SC-FCI+LDA, is reported
as a function of the basis size nmax in Fig. 1. We see that
the basis-set correction LDA functional is very effective in re-
ducing the basis-set incompleteness error, resulting in a fast
convergence of the SC-FCI+LDA ground-state energy toward
the exact ground-state energy. For comparison, we also show
in Fig. 1 the non-self-consistent approximation21,32, labelled
as FCI+LDA,

E0,FCI+LDA = E0,FCI + ĒBLDA[ρΨ0,FCI ]. (50)

On the scale of the plot, it is superimposed with the SC-
FCI+LDA energy, showing that the non-self-consistent ap-
proximation is an excellent approximation for calculating the
ground-state energy of the present system. The same trends
have been observed in atomic and molecular systems27.

We then perform linear-response calculations on-top of
the ground-state SC-FCI+LDA calculations according to
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FIG. 2: Excitation energies of the states (0, 2), (2, 0), (0, 4), and (2, 2) of the 1D two-electron Hooke-type atom with ω0 = 1
calculated by the standard FCI method and the LR-FCI+LDA basis-set corrected method as a function of the basis size nmax.

For comparison, excitation energies obtained with a zero basis-set correction kernel [LR-FCI+LDA (K=0)] and with a
non-self-consistent state-specific approach (FCI+LDA) are also shown.

Eq. (26). The required LDA basis-set correction kernel is ob-
tained by differentiation of Eq. (49)

f̄BLDA[ρ](r, r′) =2 dε̄B(ρ)
dρ

∣∣∣∣∣∣
ρ=ρ(r)

+ ρ(r)
d2ε̄B(ρ)

dρ2

∣∣∣∣∣∣
ρ=ρ(r)

 δ(r − r′). (51)

The resulting linear-response basis-set corrected excitation
energies, labelled as LR-FCI+LDA, are reported in Fig. 2 as
a function of the basis set nmax for the four excited states con-
sidered in Table I, and compared to the excitation energies ob-
tained by standard FCI. The first thing to note is that the FCI
excitation energies have a much faster basis convergence than
the FCI ground-state energy. This is somehow expected since
the same electron-electron cusp condition applies for both the
ground state and the considered excited states, and therefore
the short-range correlation effects normally responsible for the
slow basis convergence should partially cancel out in the ex-
citation energies. Accelerating the basis convergence of ex-
citation energies is thus a more subtle task than accelerating
the basis convergence of ground-state energies. In fact, LR-
FCI-LDA does not provide any improvement over standard
FCI but instead mostly deteriorates the basis convergence of
excitation energies. We may attribute these disappointing re-
sults to the limited accuracy of the LDA basis-set correction

potential and kernel.
In Fig. 2, we also show excitation energies obtained with a

basis-set correction kernel set to zero, such that

AI,J ' 〈ΦI |ĤBeff − E
B
0 |ΦJ〉, (52)

and

BI,J ' 0. (53)

This approximation is labelled as LR-FCI+LDA (K=0) in the
figures of the present paper. It is somewhat consoling to see
that the LDA kernel does nevertheless improve the excita-
tion energies, albeit sometimes by a small amount. Finally,
Fig. 2 also reports the excitation energies obtained by the non-
self-consistent state-specific approach of Ref. 29, labelled as
FCI+LDA. In this approach, the excited-state energy of the
nth excited state is estimated as

En,FCI+LDA = En,FCI + ĒBLDA[ρΨn,FCI ], (54)

where En,FCI = 〈Ψn,FCI|Ĥ|Ψn,FCI〉 is the FCI total energy of
the nth excited state with wave function Ψn,FCI. The excitation
energy is then given by En,FCI+LDA − E0,FCI+LDA. Globally,
the state-specific FCI+LDA approach gives excitation ener-
gies quite similar to the LR-FCI+LDA method, except for the
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FIG. 3: Excited-state total energies of the states (0, 2), (2, 0), (0, 4), and (2, 2) of the 1D two-electron Hooke-type atom with
ω0 = 1 calculated by the standard FCI method and the LR-FCI+LDA basis-set corrected method as a function of the basis size
nmax. For comparison, excited-state total energies obtained with a zero basis-set correction kernel [LR-FCI+LDA (K=0)] and

with a non-self-consistent state-specific approach (FCI+LDA) are also shown.

state (0, 4) where FCI+LDA gives clearly excitation energies
that more rapidly converge with the basis size. Since the state-
specific FCI+LDA approach only involves the energy density
functional ĒBLDA[ρ] and not its derivatives, it may indicate that
LDA is more accurate for the energy than for the potential and
kernel.

We discuss now the total excited-state energies which are
reported in Fig. 3 as a function of the basis set nmax for the
four excited states considered. Here, we observe that the FCI
excited-state energies exhibit a similar convergence with re-
spect to nmax as the FCI ground-state energy. This is expected
since, as mentioned before, the same electron-electron cusp
condition applies for both the ground state and the considered
excited states. In comparison to the case of the excitation en-
ergies, there is no partial cancellation of short-range electron
correlation effects, and it is thus an easier task to accelerate
the basis convergence of total excited-state energies. Glob-
ally, the LR-FCI+LDA excited-state energies [Eq. (27)] tend
to have less basis-set incompleteness error than the standard
FCI excited-state energies, and converge faster with nmax to
the exact energies. However, the performance of the basis
correction is not uniform over all the states considered. For
the state (0, 2), the basis-set correction is very effective in re-
ducing the error and accelerating the basis convergence. For
the states (2, 0) and (2, 2), the basis-set correction again ef-

fectively reduces the error but does not seem to significantly
change the convergence rate for large nmax. For the state (0, 4),
the basis-set correction only reduces the error for small nmax
but does not improve the standard FCI energy for nmax & 30.

Comparison with the total excited-state energies obtained
with a zero basis-set correction kernel [LR-FCI+LDA (K=0)]
shows again that the LDA kernel improves the basis conver-
gence, even though the effect is small for some of the states.
The state-specific FCI+LDA approach gives total excited-
state energies very similar to the LR-FCI+LDA ones, except
again for the state (0, 4) where FCI+LDA gives total excited-
state energies that rapidly converge with basis size.

As a final comment, we note that the FCI total energies are
of course systematically higher than the exact total energies
for the ground and excited states, which makes possible a par-
tial compensation of errors in the FCI excitation energies. By
contrast, the basis-set corrected total energies converge to the
exact total energies from below for the ground state and from
above for the excited states, and thus the basis-set corrected
excitation energies do not enjoy any compensation of errors.
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IV. CONCLUSIONS

In this work, we have extended the DFT-based basis-set cor-
rection method to the linear-response formalism, allowing one
to calculate excited-state energies. We have given the gen-
eral linear-response equations, as well as the more specific
equations for configuration-interaction wave functions. As a
proof of concept, we have applied this approach to the cal-
culations of excited-state energies in 1D two-electron model
system with harmonic potential and a Dirac-delta electron-
electron interaction. The results obtained with FCI wave func-
tions expanded in a basis of Hermite functions and a LDA
basis-set correction functional within the adiabatic approxi-
mation show that the present linear-response basis-set correc-
tion method unfortunately does not help in accelerating the
basis convergence of excitation energies. However, it does
significantly accelerate the basis convergence of excited-state
total energies.

These mixed results should now be checked on real 3D
molecular systems. Possibly, for these systems, an important
ingredient to add to the basis-set correction functional will be
the on-top pair density. The fact that the simple non-self-
consistent state-specific basis-set correction approach was
found in Ref. 29 to help accelerating the convergence of ex-
citation energies in molecular systems gives us hope that the
present linear-response basis-set correction method could be
useful as well for these systems.
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