
HAL Id: hal-04117304
https://hal.sorbonne-universite.fr/hal-04117304v1

Submitted on 5 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Modular matrix multiplication on GPU for polynomial
system solving

Jérémy Berthomieu, Stef Graillat, Dimitri Lesnoff, Theo Mary

To cite this version:
Jérémy Berthomieu, Stef Graillat, Dimitri Lesnoff, Theo Mary. Modular matrix multiplication on
GPU for polynomial system solving. ACM Communications in Computer Algebra, In press, 57 (2),
pp.35-38. �10.1145/3614408.3614411�. �hal-04117304�

https://hal.sorbonne-universite.fr/hal-04117304v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ACM Communications in Computer Algebra, TBA TBA

Modular matrix multiplication on GPU
for polynomial system solving

Jérémy Berthomieu, Stef Graillat, Dimitri Lesnoff, Theo Mary
Sorbonne Université, CNRS, LIP6, Paris, France

jeremy.berthomieu@lip6.fr, stef.graillat@lip6.fr
dimitri.lesnoff@lip6.fr, theo.mary@lip6.fr

June 5, 2023

Abstract
The bottleneck of the sparse-FGLM algorithm for Gröbner bases change of order is an

iterative matrix – tall and skinny matrix product over a finite prime field. Our contribution is
twofold. First, we port existing CPU-only algorithms for matrix products over prime fields to
GPU architectures, and carry out a performance analysis of our implementation that shows
that we can nearly achieve the maximum theoretical throughput of the hardware. Second,
existing CPU-only algorithms could not handle primes with more than 26 bits, other than the
GMP-based implementation in FLINT; we overcome this limitation by proposing an efficient
multiword matrix product algorithm that can deal with primes with at most 35 bits; we
benchmarked it on GPU.

1 Introduction
Motivation. Many problems from scientific domains, such as biology, chemistry, quantum me-
chanics, robotics, and computing sciences, including coding theory, computer vision and cryptog-
raphy, to cite a few, can be modeled with polynomial systems. Yet, polynomial system solving is
NP-hard, even when the ground field is finite.

To circumvent reliability issues from numerical algorithms, such as the number of computed
solutions or the quality of the approximations of the solutions, we focus on solving exactly the 0-
dimensional polynomial input system. This comes down to providing a complete description of the
solution set through a lexicographic Gröbner basis. This Gröbner basis is computed in two steps:
first, a Gröbner basis for a total degree order is computed using Faugère’s F4 [Fau99] algorithm,
then, it is converted into a lexicographic one using the seminal FGLM algorithm or its faster
variant, in generic cases, sparse-FGLM [FM17]. We refer to [BES21] for a complete description
and implementation of this framework in the open-source C library msolve. Assuming the system
has k solutions, sparse-FGLM relies on the Wiedemann algorithm, or on its faster version block-
Wiedemann [Hyu+20]. Its bottleneck is the computation of 2k

n
matrices v0, v1 = Mv0, . . . , v 2k

n
−1 =

Mv 2k
n
−2, where M is a k × k matrix given by the first Gröbner basis and v0 is k × n and random.

Typically, n is a small power of 2 such as, usually, 32. The matrix M has a special structure, each

1

jeremy.berthomieu@lip6.fr
stef.graillat@lip6.fr
dimitri.lesnoff@lip6.fr
theo.mary@lip6.fr


Title of your paper TBA

column is either made of only zeroes and one 1 (like a column of the identity matrix) or is dense.
Furthermore, the asymptotics of m, the number of dense columns, has been thoroughly studied in
the generic case in [FM17]. These products yield a complexity O(mk2).

When these systems are over Q, the growth of the coefficients is controlled through a multi-
modular approach. As a consequence, this abstract only deals with systems over a finite field
Fp ' Z/pZ of size and characteristic a prime number p.

The goal of this work is to develop matrix multiplication algorithms over finite fields for GPU ar-
chitectures. Indeed, GPUs are, by design, well-suited to process large blocks of data in parallel and
thus perform linear algebra routines, more so than CPUs. However, current GPUs natively han-
dle double-precision floating-point number arithmetic but only simulate long integer ones through
short integer arithmetic, which comes with an overhead. For instance, Nvidia CUDA and Ten-
sor cores, do not natively support 64-bit integer types while they do for 64-bit floating-point types.
Hence, we need to do exact arithmetic over finite fields with floating-point types. This approach
has been explored in CPU-only libraries: FFLAS [gro19], NTL [Sho21], FLINT [HJP13], Math-
emagix [HLQ17].
Contributions. Our contribution is twofold. First, we have developed a GPU implementation of
matrix multiplication over finite fields with techniques borrowed from the aforementioned CPU-only
libraries. However, the multi-modular approach requires to have large primes of size at least 30
bits, yet these existing algorithms cannot handle primes with more than 26 bits and performance
drops significantly when approaching this limit. Therefore, our second contribution is to propose a
multiword algorithm to remove this limitation and alleviate the performance drop. In the future,
we aim to integrate these advances in the msolve [BES21] library.

2 Algorithms
2.1 Floating-point dot product and reduction
Computing exactly with finite fields elements using floating-point types requires defining a modulo
operator similar to integer types. In this work, we use the finite field reduction algorithm described
in [HLQ17, Sec. 3.3, Function 16]. This algorithm leverages the fused multiply-add (FMA) instruc-
tion to reduce modulo p an integer that can be stored exactly in a double precision floating-point.

These reductions are still costly. In the FFLAS [DGP08] library, the authors lower the number
of reductions in the dot product by reducing after partial dot products of size λ =

⌊
2`

(p−1)2

⌋
where

` is the mantissa bitsize of our floating-point type (53 for double-precision arithmetic).

2.2 Block-product algorithm
Algorithm 1 relies on the aforementioned dot product to multiply A ∈ Fm×k

p and B ∈ Fk×n
p using

only floating-point operations. This product is equal to the sum of the submatrices products AjBj,
where Aj ∈ Fm×λ

p and Bj ∈ Fλ×n
p . The product AjBj is stored in a buffer T (line 4) of size mn and

then each of its coefficients is reduced with the FMA modular reduction (line 6). Finally, the buffer
is added in the resulting matrix C (line 8).

Additional reductions when adding the buffer are necessary only if (p−1)
⌈

k
λ

⌉
is larger than 2`.

Approximately, we obtain this upper bound: (p− 1)3k ≤ 22`. Extra reductions become mandatory
no matter the value of k when p is at least 35 bits.

2



Author’s Name

The separation of modular reductions and floating-point operations enables the use of an efficient
routine for the floating-point matrix multiplication, namely the cuBLAS dgemm [NVI]. This makes
Algorithm 1 particularly attractive for GPU architectures. The floating-point matrix multiplication
requires 2mkn floating-point operations and there are only mn

⌈
k
λ

⌉
reductions. We can thus hope

that the performance of the algorithm is mainly determined by the performance of the BLAS, which
is in turn usually very close to the maximum theoretical performance of the hardware.

Algorithm 1: λ-block matrix product over
Fp

Input : A ∈ Fm×k
p , B ∈ Fk×n

p stored in double
precision;
such that ai, j , bi, j < 226;
p, the characteristic of Fp;
λ, modular reduction delay.

Output: C = AB ∈ Fm×n
p stored in double precision.

1 def FFMatMulSW:
2 C = 0 ∈ Fm×n

p

3 for j = 1 to d k/λ e do
4 T = Aj ∗Bj // Submatrices of sizes
5 // m× λ and λ× n
6 T = T mod p // Modular reduction with
7 // FMA
8 C = C + T // Reductions here only if
9 // d k/λ e p ≥ 253

10 end
11 return C mod p

Algorithm 2: Multiword ma-
trix multiplication

Input : A ∈ Fm×k
p , B ∈ Fk×n

p stored
in double precision;
p characteristic of Fp.

Output: C = AB ∈ Fm×n
p stored in

double precision.
1 def FFMatMulMW:
2 λ = 252−t

3 (Ah, Al) = MW-Decomposition(A)
4 (Bh, Bl) = MW-Decomposition(B)
5 M1 = FFMatMulSW(Ah, Bh, p, λ)
6 M2 = FFMatMulSW(Ah, Bl, p, λ)
7 M3 = FFMatMulSW(Al, Bh, p, λ)
8 M4 = FFMatMulSW(Al, Bl, p, λ)
9 M3 = M3 +M2

10 M3 = (2t/2 ·M3) mod p
11 M1 = (2t ·M1) mod p
12 return M1 +M3 +M4 mod p

2.3 Multiword algorithm
Algorithm 1 is limited to primes p not exceeding 26 bits because we need twice as many bits to store
the products of coefficients of A and B in the double precision buffer T (line 4). Yet, we require a
matrix product that can handle 30-bit prime fields to solve polynomial systems. We have developed
a multiword approach described in Algorithm 2 that raises the limit to 35 bits, and potentially
more at the expense of some additional modular reductions (line 8 in algorithm 1).

Algorithm 2 uses more than one double precision machine word to represent exactly the results
of the product AB. First, it splits each matrix A and B into two matrices Ah, Al and Bh, Bl,
respectively, containing each the quotient (high part) and the remainder (low part) of the division
of the initial matrix by 2t/2 where t is the bitsize of the prime p (lines 3–4). The product AB is
then expressed as C = (2t/2Ah+Al) · (2t/2Bh+Bl) = 2tAhBl +2t/2(AhBl +AlBh)+AlBl (lines 5–8).

Compared with the single word Algorithm 1, Algorithm 2 thus requires three extra subproducts.
However, the λ block size is larger for each of these products, which thus requires fewer reductions.

3 GPU benchmarks
We now present benchmarks of Algorithms 1 (block product) and 2 (multiword) for computing a
matrix product AB on a single Nvidia Ampere GPU (model A40). We use matrices of dimensions
m = 15000, k = 45000 and n = 32, which are typical dimensions for the sparse-FGLM algorithm
using block-Wiedemann.

3



Title of your paper TBA

12 15 18 21 24 27 30 33
Bitsize of p

0

100

200

300

400

500

600

Pe
rfo

rm
an

ce
in

GF
lo

ps

Block Product
DGEMM
Peak Perf.
Multiword

Figure 1: Performance of block and multiword
matrix product on an A40 GPU (m = 15000,
k = 45000, n = 32).

We measure the performance Π of each al-
gorithm in GFLOPS (Giga floating-point oper-
ation per second) using the formula Π = 2mkn

109τ
,

where τ is the runtime of the algorithm, and
where 2mkn represents the number of flops re-
quired to multiply m× k and k×n matrices by
a floating-point product. Note that we use this
formula regardless of the actual number of flops
performed by each algorithm.

Figure 1 plots the result of our performance
benchmark. The performance of Algorithm 1
is constant for p with between 12 and 18 bits
since the limiting factor is the dgemm perfor-
mance (red-dotted line), which is near the peak
performance of the hardware (584 GFLOPS).
The block size λ reduces as the prime size increases, which explains why the performance of Algo-
rithm 1 drops for primes p with between 23 and 26 bits. In contrast, the λ used by the multiword
algorithm is larger and as a result, its performance is almost constant, with only a slight reduction
starting from 30-bit primes. The multiword algorithm is currently more than four times slower
than the single-word algorithm; this difference is under investigation and we expect to be able to
improve its performance in future implementations.

References
[BES21] J. Berthomieu, Ch. Eder, and M. Safey El Din. “Msolve: A Library for Solving Polynomial Systems”.

In: Proceedings of ISSAC’21. ACM, 2021, pp. 51–58. doi: 10/gk8549.
[DGP08] J.-G. Dumas, P. Giorgi, and C. Pernet. “Dense Linear Algebra over Word-Size Prime Fields: the FFLAS

and FFPACK Packages”. In: ACM T. Math. Software 35.3 (2008), pp. 1–42. doi: 10/dj6zp4.
[Fau99] J.-Ch. Faugère. “A New Efficient Algorithm for Computing Gröbner bases (F4)”. In: J. Pure Appl.

Algebra 139.1 (1999), pp. 61–88. doi: 10/bpq5dx.
[FM17] J.-Ch. Faugère and Ch. Mou. “Sparse FGLM algorithms”. In: J. Symb. Comput. 80.3 (2017), pp. 538–

569. doi: 10/gfz47c.
[gro19] The FFLAS-FFPACK group. FFLAS-FFPACK: Finite Field Linear Algebra Subroutines / Package.

v2.4.1. http://github.com/linbox-team/fflas-ffpack. 2019.
[HJP13] W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number Theory. Version 2.4.0,

http://flintlib.org. 2013.
[HLQ17] J. van der Hoeven, G. Lecerf, and G. Quintin. “Modular SIMD arithmetic in Mathemagix”. In: ACM

T. Math. Software 43.1 (2017), pp. 1–37. doi: 10/f82vvw.
[Hyu+20] S. G. Hyun et al. “Block-Krylov techniques in the context of sparse-FGLM algorithms”. In: J. Symbolic

Comput. 98 (2020), pp. 163–191. doi: 10/gkx9.
[NVI] NVIDIA. cuBLAS documentation. https://docs.nvidia.com/cuda/cublas/#.
[Sho21] V. Shoup. NTL: a library for doing numbery theory. 2021. url: http://www.shoup.net.

The authors are supported by the joint ANR-FWF ANR-19-CE48-0015 ECARP project, the ANR grants ANR-
18-CE33-0011 Sesame, ANR-19-CE40-0018 De Rerum Natura and ANR-20-CE48-0014 NuSCAP projects and
grant FA8665-20-1-7029 of the EOARD-AFOSR. We thank the referees for their valuable comments on the paper.

4

https://doi.org/10/gk8549
https://doi.org/10/dj6zp4
https://doi.org/10/bpq5dx
https://doi.org/10/gfz47c
http://github.com/linbox-team/fflas-ffpack
http://flintlib.org
https://doi.org/10/f82vvw
https://doi.org/10/gkx9
https://docs.nvidia.com/cuda/cublas/#
http://www.shoup.net

	Introduction
	Algorithms
	Floating-point dot product and reduction
	Block-product algorithm
	Multiword algorithm

	GPU benchmarks

