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1 Introduction

The term degeneracy has two different and distinct meanings (Mason et al., 2015). Degener-

acy in everyday language denotes deviance and decay, while degeneracy in scientific language is

defined as the ability of elements that are structurally different to perform the same function

(Tononi et al., 1999; Edelman and Gally, 2001). Neuronal degeneracy at the molecular scale is

then defined as the ability for a same identified neuron to maintain the same electrophysiological

features from different combinations of these components (e.g. ion channels). Abundance of

experimental evidences, using RNA sequencing and other molecular measurements, reveal such

properties (Goaillard and Marder, 2021). In a physiological context, degeneracy is known to en-

dow the system with robustness: the impairment of one element can be compensated by another.

This allows the system to have multiple pathways to achieve the same outcome. However, in a

pathological context, degeneracy could prove to be a difficulty in the treatment of some neurolog-

ical disorders, since targeting a specific element that contributes to the pathological behavior of

the system could be compensated by other elements (Kamaleddin, 2021). For all these reasons,

identifying all the underlying elements in a degenerate system appears today both crucial and

challenging (Price and Friston, 2002; Kamaleddin, 2021).

Many valuable works deal with the concept of degeneracy from the computational and mod-

eling perspective (Golowasch et al., 2002; Achard and De Schutter, 2006; Migliore et al., 2018;

Alonso and Marder, 2019; Onasch and Gjorgjieva, 2020; Alonso and Marder, 2020) using conductance-

based models (CBMs). Using optimization algorithms, such works determine various distinct set

of parameters (e.g. different combinations of maximal conductances) of the CBM, for which the

model behaves similarly or identically for some inputs. In this Perspective, we discuss such a
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methodology to determine degenerate solutions. Our hypothesis is the following: different so-

lutions that behave identically or similarly do not guarantee that they are degenerate. Then, we

propose a necessary condition from the dynamical systems’ viewpoint for different solutions of a

CBM to be considered as degenerate: they should share the same complete bifurcation structure

in their physiological range of functioning. To support our claims, neurons of the C. elegans worm

are used as canonical examples. C. elegans is a well-known model organism in neuroscience with

a relatively simple nervous system (White et al., 1986) that shares many general principles with

more sophisticated ones (Chalasani et al., 2007).

2 Degenerate parametric solutions of a conductance-based model

should endow the model with the same bifurcation structure

Neuronal development rules in C. elegans (Hobert, 2018; Taylor et al., 2021) imply that a same

identified neuron always displays a qualitatively similar phenotype although quantitatively dif-

ferent from one measurement to another, partly due to multiple sources of intrinsic and extrinsic

noises (Faisal et al., 2008; Destexhe and Rudolph-Lilith, 2012; Gerstner et al., 2014). This has

a direct implication for degenerate solutions from the dynamical systems’ viewpoint: degenerate

solutions should exhibit the same bifurcation structure. Indeed, the qualitative changes that

the model’s behaviors undergo following a change in stimuli is explained by the appearance of

bifurcations of the resting and spiking states. Therefore, the bifurcation structure of a neuron,

that is, the set of bifurcations and their types that occur in the neuron, determines the neuro-

computational properties of the excitable system (Izhikevich, 2000).

The conservation of the same bifurcation structure for the same identified neuron in C. ele-

gans can be observed from the recently conducted electrophysiological survey on the non-spiking

RIM, AIY and AFD neurons (Liu et al., 2018). Non-spiking neurons have the advantage of

having bifurcation structures that are easy to analyze, directly from the steady-state current

(Naudin et al., 2022). To sum up: (i) a monotonic steady-state current confers to the neuron a

near-linear behavior (defined by smooth depolarizations or hyperpolarizations from the resting

potential), and (ii) a N-shaped steady-state current endows the neuron with a bistable behavior

(characterized by a voltage jump between the resting potential and a depolarized potential). The

near-linear neurons do not exhibit bifurcations, while the bistable ones do display two saddle-node

bifurcations, responsible for the voltage jump (Naudin et al., 2021). For the RIM, AIY and AFD

neurons, numerous whole-cell current recordings have been carried out (RIM: n = 3; AIY: n =

7; AFD: n = 3) from which the steady-state currents were obtained (Liu et al., 2018)1. For each

measurement, the steady-state current displays the same qualitative shape, allowing us to safely

conclude that these neurons always display the same qualitative behavior. As a consequence,

degenerate parametric solutions of a CBM of these neurons should endow the model with the

1Raw electrophysiological recording traces and data are available at https://doi.org/10.17632/tngf9w3pgd.1
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same bifurcation structure. Based on a recent result by Naudin et al. (2022), we point out in the

next section that different parametric solutions of the AFD neuron CBM (Naudin et al., 2020)

that behave identically do not necessarily satisfy this condition.

3 Solutions displaying identical behaviors for some inputs are

not necessarily degenerate

Reproducing the behavior of the neuron only for some inputs is not sufficient to capture the

right underlying bifurcation structure of the neuron. Figure 1.A shows the experimental volt-

age behavior of the AFD bistable neuron of C. elegans (in green), against two different sets of

parameters of the ICa,p + IKir + IK,t + IL-model (in blue). In both cases, the outcome of the

solution overlaps the experimental voltages for the inputs used in the optimization process, i.e.

inputs from −15 pA to 25 pA by 5 pA increments. When considering the resulting steady-state

current of each solution in Figure 1.B, it can be observed that the first solution reproduces the

experimental steady-state current well, while the second one deteriorates completely for stimuli

higher than 25 pA which remain physiologically plausible stimuli, i.e. stimuli that the neuron

is able to withstand (the neuron does not burst in response to these stimuli) (Liu et al., 2018).

Since the steady-state current determines the bifurcation structure of non-spiking CBMs, this

implies radically different bifurcation structures for the two solutions, displayed in Figure 1.C.

Two saddle-node bifurcations occur for the first solution, whereas the second solution displays

four saddle-node bifurcations. The existence of unexpected saddle-node bifurcations for the sec-

ond solution explains the drastic and non-physiological rise of the membrane potential trajectory

to a new stable state of aberrant higher voltage for I > 28.4 pA (Figure 1.D).

At first glance, we could have concluded that these two solutions were degenerate if we con-

sidered only their behaviors for stimuli used in the optimization process. Indeed, two different

solutions behave identically in the training set (Figure 1.A). Nevertheless, a further analysis of

their bifurcation structure shows us that these two solutions have a radically different behavior

when novel stimuli are applied (Figure 1.D). The second solution exhibits two saddle-node bifur-

cations for high stimulus values, while the first does not. Therefore, their bifurcation structure

is different (Figure 1.C). From then on, based on the previous section, their degenerate character

can no longer be held.

The electrophysiological signature of a CBM is determined by the occurrence of its bifurcations

(Izhikevich, 2007). And it is essential to keep in mind that a bifurcation occurs at a local value of

the bifurcation parameter (injection currents in our case), and this does not imply anything on the

appearance of other bifurcations for other values of this parameter. In other words, the occurrence

of a same bifurcation in a given value of the bifurcation parameter for different solutions does

not imply that these share the same bifurcations for other values. We observe that numerous

existing works omit this basic point by building solutions with identical behavior for a limited
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set of stimuli, making the erroneous implicit assumption that similarity in their behaviors for

other biologically relevant inputs naturally follows. This point cannot be overlooked in view of

the complexity of CBMs that we discuss in the next section.

4 Complexity of models and degenerate parametric space

CBMs are complex models in the sense that they exhibit strong nonlinearities with a large number

of equations and parameters. Therefore, CBMs with a high number of ion channels have a high

dimensionality in their parametric solution space. This has an important consequence for the

determination of degenerate solutions: the more complex the model is, the greater is the ability

for the optimization algorithm to find various solutions in the parametric space that behave

similarly, as complex as we want, for some inputs. As an example, Onasch and Gjorgjieva (2020)

found 750 apparent parameter solutions that have a significant degree of degeneracy, and about

400 000 solutions for Prinz et al. (2004). Nevertheless, how many solutions among them are really

degenerate, or even just viable for the system? Indeed, the complexity of CBMs has its common

downside as previously seen: it increases the probability that these solutions exhibit radically

and qualitatively different behaviors, likely aberrant, when confronted with novel stimuli not

considered during the parameter calibration stage (Naudin et al., 2022; Druckmann et al., 2011;

Gerstner and Naud, 2009). This concern is classically referred to as the generalization capability.

Figure 2 proposes a diagram of a parametric space in which degenerate and non-degenerate

solutions coexist. If we consider a restricted training set of stimuli, the optimization algorithm

will produce many parameter combinations that are falsely degenerate, behaving identically for

that set of stimuli but unable to generalize the neuron responses for other stimuli. In fact, we

propose that the set of degenerate solutions will be a subset of these solutions that share the

same bifurcation structure.

This proposition is in agreement with many computational works studying how various fea-

tures of the target data provide different constraints on model parameters. As an example, using

a machine learning tool to perform Bayesian inference on the Hodgkin–Huxley model parameters,

Gonçalves et al. (2020) show that as more features of the data to be fitted are used, the more

the posterior distribution of estimated parameters is centered on the ground truth parameters.

Furthermore, simulations of the posterior solutions match the observed data only in the features

that have been taken into account in the parameter estimation procedure. For instance, apply-

ing optimization algorithms to fit spike counts alone only identifies parameters that produce the

correct number of spikes, but for which the timing of the spikes and the time course of the sub-

threshold voltage are incorrect (Gonçalves et al., 2020). This again shows that capturing a given

phenomenology does not necessarily imply that other quantitative and qualitative characteristics

of the dynamics are captured at the same time.

Beyond the characteristics of the electrical signal, neurons and neural systems are subject

to many additional constraints to maintain good neural coding, such as the requirement to be
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Figure 1: Two apparent degenerate solutions that are not. (A) Two different set of
parameters of the ICa,p+IKir+IK,t+IL-model (represented in blue) overlap the AFD experimental
voltages (represented in green) for a series of current injection starting from−15 pA and increasing
to 25 pA by 5 pA increments. (B) Experimental steady-state current (green circles) against
estimated steady-state currents (blue crosses). The experimental steady-state current results
from voltage-clamp experiments, while the estimated steady-state currents result from the fitting
of membrane potentials evolution in (A). The red line is associated with a stimuli of 25 pA. (C)
Bifurcation diagram for each model. (D) Dark blue curves represent the evolution of voltages for
the same values of current injection than in (A) (i.e. stimuli starting from −15 pA and increasing
to 25 pA by 5 pA increments), whereas light blue ones represent the change of voltage traces for
novel stimuli (30 pA and 35 pA). Results have been reproduced from Naudin et al. (2022) with
the consent of the authors.

5



energy efficient (Hasenstaub et al., 2010). By adding such metabolic efficiency constraints to select

acceptable degenerate solutions from tens of thousands that match the experimental data of the

pyloric network model, Deistler et al. (2022) show that some conductance values need to be more

strongly constrained. This significantly reduces the number of candidate degenerate parameter

sets. Moreover, it is worth noting that the metabolic cost is only one of many properties that the

neurons or the neural systems must regulate. Additional constraints are protein levels, osmolarity,

pH, etc., and the neuron faces the challenge to coregulate all these properties simultaneously. In

this regard, Yang et al. (2022) show that tuning an ion channel to regulate one property risks

disrupting other properties. Moreover, they show that only a few combinations of ion channels

that produce the target value for one property also produce the target value for a second property,

thus further restricting the set of acceptable possible degenerate parametric solutions of a CBM.

Finally, even though some recent works use the generalization capability as an essential criteria

to select acceptable CBM solutions reproducing raw data (Druckmann et al., 2011; Markram et al.,

2015; Gouwens et al., 2018; Iavarone et al., 2019; Naudin et al., 2022; Schürmann et al., 2022),

it remains that these works seem to represent only a small part of the existing studies. This

can be surprising at least in one way, when compared with the methodology used in artificial

intelligence (A.I.). In this field, the selection and adoption of a solution is almost systematically

based on the ability of this solution to predict new data unused in the parameter estimation

procedure (Le Cun, 2019). If the notion of overfitting is omnipresent in A.I., it seems to us that

it is still too little taken into account in computational neuroscience to select viable solutions,

in particular degenerate solutions, even though the objective of both fields is often similar to

some extent: tuning the parameters of a model to reproduce a set of data or target behaviors,

in order to gain insight into their underlying mechanisms (Alexandre et al., 2020; Macpherson

et al., 2021).

5 Summary

In this Perspective, we argued that different parameter solutions of a CBM that behave identically

or similarly for a given set of stimuli are not necessarily degenerate. In other words, the fact

that solutions share the same phenomenology for a restricted set of stimuli is not sufficient to

conclude that they are degenerate, since their behavior could be qualitatively divergent for other

stimuli. To put it simply, the take-home message is that we should not conclude that solutions

are degenerate because they look degenerate. Thus, from the dynamical systems’ viewpoint, for

different solutions to be considered as degenerate, we proposed the following necessary condition:

degenerate solutions should share the same complete bifurcation structure in their physiological

range of functioning. To verify such a condition, the development of automated procedures and

tools to determine the complete bifurcation structure of CBMs could be of valuable help.

Finally, degeneracy is an unifying subject which allows the convergence and the use of knowl-

edge and expertise from different scientific fields to deepen our understanding: experimental and
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non-redundant solutions reproducing
voltage traces for a set A of stimuli 

non-redundant solutions reproducing
voltage traces for a set B of stimuli 

non-redundant solutions reproducing both
voltage traces for a set B of stimuli and the 
right bifurcation structure

Figure 2: Diagram of degenerate and non-degenerate solutions in the parameter solution space.
Each square is a local (possibly global) minimum of this space, representing one parametric
solution of a CBM that reproduces the neuron behavior. In particular, the striped squares
represent all the different solutions that reproduce the neuron behavior for a set of stimuli A,
while the yellow striped squares are solutions that capture its behavior for a set of stimuli B ⊃ A
(i.e. a larger set than A). A reduced number of solutions should be obtained for the set of stimuli
B. Indeed, some parametric solutions that allow the model to correctly reproduce the behavior
of the neuron for a restricted set of stimuli (A) are unable to capture its behavior for larger sets
of inputs (B), as in the example shown in Figure 1. In other words, the larger the stimulus set,
the smaller the number of solutions obtained. Finally, we propose that the viable and degenerate
solutions of the system are those that share the same bifurcation structure, represented by yellow
striped squares in bold.

theoretical biologists, mathematicians, computer scientists, and so on. As of today, these com-

plementary viewpoints appear to be necessary. Indeed, to quote Grothendieck (2022), “it is when

the complementary viewpoints on the same reality combine that, thanks to the multiplication of

such “eyes”, our penetrating gaze can gain a better understanding of the true nature of things.

The more complex and rich that reality we wish to understand proves to be, the greater the need

is for several “I / eyes” that can provide a more extensive and subtle appraisal thereof.”
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