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Abstract: 22 
 23 
How host-associated microbial communities evolve as their hosts diversify remains 24 
equivocal: How conserved is their composition? What was the composition of ancestral 25 
microbiota? Do microbial taxa covary in abundance over millions of years? Multivariate 26 
phylogenetic models of trait evolution are key to answering similar questions for 27 
complex host phenotypes, yet they are not directly applicable to relative abundances, 28 
which usually characterize microbiota. Here, we extend these models in this context, 29 
thereby providing a powerful approach for estimating phylosymbiosis (the extent to 30 
which closely related host species harbor similar microbiota), ancestral microbiota 31 
composition, and integration (evolutionary covariations in bacterial abundances). We 32 
apply our model to the gut microbiota of mammals and birds. We find significant 33 
phylosymbiosis that is not entirely explained by diet and geographic location, indicating 34 
that other evolutionary-conserved traits shape microbiota composition. We identify 35 
main shifts in microbiota composition during the evolution of the two groups and infer 36 
an ancestral mammalian microbiota consistent with an insectivorous diet. We also find 37 
remarkably consistent evolutionary covariations among bacterial orders in mammals 38 
and birds. Surprisingly, despite the substantial variability of present-day gut microbiota, 39 
some aspects of their composition are conserved over millions of years of host 40 
evolutionary history.  41 
 42 
 43 
Keywords:  44 
 45 
gut microbiome, interactome, phylosymbiosis, holobiont evolution, phylogenetic signal, 46 
comparative methods.   47 
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Introduction: 48 
 49 

Host-associated microbial communities, referred to as the microbiota, often play 50 
central roles in the biology of the hosts and their interactions with the environment. As 51 
host clades diversify, the microbiota can furthermore play a key role in the adaptation 52 
of their hosts to different ecological conditions. This raises important questions on the 53 
evolution of the microbiota as hosts diversify. First, how much is microbiota 54 
composition conserved over host evolutionary timescales? While the microbiota can 55 
be quite labile within and between host species (Ley et al. 2008; David et al. 2014; 56 
Hacquard et al. 2015; Hird et al. 2015; Amato et al. 2019), more closely related host 57 
species often tend to have more similar microbiota, a pattern referred to as 58 
phylosymbiosis (Brooks et al. 2016; Lim and Bordenstein 2020). In animals, levels of 59 
phylosymbiosis appear to be heterogeneous across tissues (e.g. gut or skin 60 
microbiota) and lineages (Mazel et al. 2018; Lim and Bordenstein 2020; Song et al. 61 
2020; Perez-Lamarque, Krehenwinkel, et al. 2022).  62 

 63 
The presence of a phylogenetic signal in microbiota composition across hosts 64 

could potentially be used to reconstruct ancestral microbiota composition. Ancestral 65 
reconstructions could be particularly useful to detect events during host diversification 66 
associated with major shifts in microbiota composition or to verify hypotheses on 67 
ancestral diets. A phylogenetic signal in microbiota composition may also inform on 68 
potential long-term evolutionary covariations in abundances between microbial taxa. 69 
Positive or negative covariations may arise from direct interactions between microbial 70 
taxa, such as cross-feeding, trophic relationships, or competition (Faust et al. 2012; 71 
Foster et al. 2017; Kohl 2020), or from (anti)correlated responses to variations in the 72 
environment (e.g. similar or opposite responses to decreased pH). We refer to these 73 
covariations as microbiota integration by analogy with the often observed phenotypic 74 
integration between traits in complex phenotypes (Pigliucci 2003). Such covariations 75 
would indicate constraints in the evolution of microbiota composition. 76 

 77 
Phylogenetic comparative methods offer a rich toolbox for quantifying 78 

phylogenetic signal, reconstructing ancestral states, and detecting integration in 79 
multidimensional phenotypes (Clavel et al. 2015). These methods rely on modeling the 80 
evolution of a set of phenotypic traits across evolutionarily related species through a 81 
multivariate stochastic process, such as the Brownian motion process, running along 82 
the species’ phylogenetic tree (Revell et al. 2008; Harmon 2017). The multivariate 83 
Brownian process models the gradual evolution of traits through the accumulation of 84 
stochastic changes drawn from a multivariate normal distribution with a variance-85 
covariance matrix that reflects the magnitude of the changes for each trait (the variance 86 
terms) and the covariation in the changes between trait pairs (the covariance terms). 87 
This process is relevant to represent long-term variations in the abundances of the 88 
different microbial taxa that constitute the microbiota, as such variations are an 89 
emerging outcome of: (i) the stochastic accumulation of changes in the numerous host 90 
traits that can influence the microbiota, including both extrinsic (e.g. geographic 91 
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location, habitat) and intrinsic (e.g. diet, antimicrobial excretions) traits (Moran et al. 92 
2019; Kohl 2020; Lim and Bordenstein 2020) and (ii) interactions between microbial 93 
taxa (Foster et al. 2017). Indeed, the Brownian motion process has already been used 94 
to model variations in microbial abundances over host evolutionary time (Capunitan et 95 
al. 2020; Labrador et al. 2021). However, the process is not directly applicable to 96 
compositional data made of relative microbial abundances as it does not constrain its 97 
components to sum to 1, and absolute abundances are unfortunately typically not 98 
provided by mainstream metabarcoding technics used to characterize microbiota 99 
composition. Thus, current phylogenetic comparative methods cannot directly be used 100 
in the context of microbiota evolution without transgressing several model assumptions 101 
(Hird 2019). 102 

 103 
Here, we develop an approach to apply the multivariate Brownian motion 104 

process to compositional data. We also include a widely-used tree transformation 105 
(Pagel 1999) that quantifies phylosymbiosis by evaluating how much host phylogeny 106 
contributes to explaining interspecific variation in present-day microbiota composition. 107 
Phylosymbiosis is typically assessed using correlative approaches such as Mantel 108 
tests (Lim and Bordenstein 2020), which are known to suffer from frequent false 109 
negatives, while process-based approaches such as ours tend to be more powerful 110 
(Harmon and Glor 2010; Hird 2019; Perez-Lamarque, Maliet, et al. 2022). We apply 111 
our new approach to the gut bacterial microbiota of mammals and birds. The gut 112 
microbiota is key to the functioning of their hosts, contributing to their nutrition, their 113 
protection, and their development (McFall-Ngai et al. 2013). Strong phylosymbiosis in 114 
gut bacterial microbiota has been reported for mammals, including primates and 115 
rodents (Ochman et al. 2010; Groussin et al. 2017; Kohl et al. 2018), while it is thought 116 
to be absent for birds, with some exceptions in a few young clades (Song et al. 2020; 117 
Trevelline et al. 2020; Bodawatta et al. 2022). We revisit this dichotomy here, on the 118 
premise that previous analyses may have not been powerful enough to detect 119 
phylosymbiosis in birds (Hird 2019). We analyze potential drivers of phylosymbiotic 120 
patterns, including diet, geographic location, and flying ability, we estimate the 121 
ancestral microbiota composition of mammals and birds, and we investigate patterns 122 
of microbiota integration.  123 
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Results & Discussion: 124 
 125 

We developed a method to infer the dynamics of microbiota composition during 126 
host diversification from host-microbiota data (i.e. a fixed, bifurcating host phylogeny 127 
and microbiota relative abundances for each extant host species) using the 128 
multivariate Brownian motion process (Figure 1 and Methods). We assume that all 129 
microbial taxa are present in all hosts, potentially in very low (undetectable) 130 
abundances and that they were already present in the most recent common ancestor 131 
of all host species. These assumptions are met if we consider a taxonomic level in the 132 
definition of microbial taxa that is high enough given the host clade, such as bacterial 133 
orders in the vertebrate gut microbiota. We assume that, from ancestral values at the 134 
root 𝑋", the log-absolute abundances of the different microbial taxa change on the host 135 
phylogeny following a multivariate Brownian motion model with variance-covariance 136 
matrix R (Figure 1a). Under this model, the log-absolute abundances fluctuate around 137 
their ancestral values (log𝑋") without directional change. In addition, we account for 138 
variation linked to present-day factors by including in the model the widely-used 139 
Pagel’s l transformation of the host phylogenetic tree (Pagel 1999). This 140 
transformation extends the terminal branches of the tree by (1-l) of the total tree depth 141 
while compressing the internal branches to keep the total tree depth constant, with l 142 
ranging between 0 and 1 (see Figure 1b and Methods). l estimates close to 1 indicate 143 
that an untransformed tree explains the data quite well, reflecting strong 144 
phylosymbiosis, whereas l estimates close to 0 indicate that the tree has little 145 
explanatory power, reflecting weak or absent phylosymbiosis. Unlike the traditional 146 
case of the multivariate Brownian motion process applied to phenotypic data, where 147 
the phenotype is directly measured at present, in the case of the microbiota, relative 148 
rather than absolute abundances are measured. To handle this difficulty, we treat total 149 
microbial abundances in each host as latent variables, and sample from the joint 150 
posterior distribution of these latent variables and our parameters of interest: Pagel’s 151 
l, which provides us with an estimate of phylosymbiosis, the R matrix which reflects 152 
microbiota integration, and 𝑍", which indicates the relative microbial abundances in the 153 
ancestral microbiota.  154 
 155 

We tested this inference method on data simulated from our model and found 156 
that we can accurately estimate the ancestral bacterial relative abundances 𝑍" (with a 157 
tendency for homogenization) and the variance-covariance matrix 𝑅 between microbial 158 
taxa, provided that the number of host species (𝑛) and bacterial taxa (𝑝) are large 159 
enough (𝑛 ≥ 50 and 𝑝 ≥ 5, see Supplementary Results 1). Similarly, the level of 160 
phylosymbiosis l is accurately estimated for 𝑝 ≥ 5, and its significance is correctly 161 
inferred for 𝑛 ≥ 50 (see Supplementary Results 1). This approach provides a more 162 
powerful way to detect phylosymbiosis than Mantel tests, which often failed at 163 
detecting low levels of phylosymbiosis (0<l<0.5; Table S1). This was expected, as 164 
Mantel tests are correlative and are known to suffer from frequent false negatives in 165 
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comparison with more process-based approaches such as ours (Harmon and Glor 166 
2010; Hird 2019; Perez-Lamarque, Maliet, et al. 2022). 167 

 168 
 169 

 170 
 171 
Figure 1: A comparative phylogenetic model for the dynamics of microbiota 172 
composition during host diversification: (a) We model fluctuations in the abundances of 173 
microbial taxa along a host phylogeny with a multivariate Brownian motion parametrized by 174 
the ancestral abundances (𝑋") and the variance-covariance matrix (R). The variance terms (on 175 
the diagonal) reflect the magnitude of the changes, while the covariance terms reflect positive 176 
or negative covariations in abundances between pairs of microbial taxa. The relative ancestral 177 
abundances (𝑍") and the variance-covariance matrix R are estimated by adjusting the model 178 
to the host-microbiota data (host phylogeny and microbiota relative abundances for each host). 179 
(b) Following the widely-used Pagel’s l transformation, we extend the terminal branches of 180 
the host phylogenetic tree by 1-l of the total tree depth while compressing the internal 181 
branches to keep the total tree depth constant. l is comprised between 0 and 1 and is co-182 
estimated during inference. l close to 1 indicates that closely related hosts tend to have similar 183 
microbiota due to shared evolutionary history (strong phylosymbiosis), while l close to 0 184 
indicates that microbiota composition is determined by present-day processes with little 185 
influence of host evolutionary history (weak or absent phylosymbiosis). The significance of 186 
phylosymbiosis is assessed with permutations.  187 
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We applied our model to the gut bacterial microbiota of 215 mammal species 188 
and 323 bird species from (Song et al. 2020) and found a pervasive signal of 189 
phylosymbiosis. We focused on the 14 most abundant bacterial orders, corresponding 190 
in abundance to 84% and 82% of the total gut bacterial microbiota of mammals and 191 
birds, respectively. We found a markedly higher level of phylosymbiosis in mammals 192 
(𝜆 ≃ 0.65) than in birds (𝜆 ≃ 0.31; Table S2, Figure S1), consistent with previous 193 
literature and our finding that microbiota composition is more species-specific in 194 
mammals than in birds (Table S3). Indeed, bird microbiota is generally more sensitive 195 
to short-term environmental changes such as anthropogenic perturbations or parasite 196 
infections (Bodawatta et al. 2022). By explicitly modeling the non-phylogenetic 197 
component of microbiota composition using a Pagel’s l transformation, we detected a 198 
low but significant level of phylosymbiosis in the gut microbiota of birds (Table S2), 199 
contrary to previous conclusions (Song et al. 2020; Bodawatta et al. 2022) that relied 200 
on Mantel tests. l values are higher at the level of bacterial phyla (Table S2; Figure 201 
S1), suggesting that microbiota composition is more evolutionarily conserved at higher 202 
taxonomic levels. Testing model performance on data simulated directly on the 203 
mammal and bird phylogenetic trees, we found a low type-I error rate and a high 204 
statistical power, suggesting that the phylosymbiosis we detected in birds is not due to 205 
false detection by our method, but rather to a higher power than previously used 206 
methods (Table S4). Phylosymbiosis is not linked to an effect of captivity nor the 207 
spurious concatenation of different studies either (Supplementary Results 2). 208 
Phylosymbiosis is particularly strong in Primates, Passeriformes, and Cetartiodactyla, 209 
lower but significant in Columbiformes, Chiroptera, and Carnivora, and non-significant 210 
in Rodentia, Charadriiformes, and Anseriformes (Table S2). Non-significant 211 
phylosymbiosis in these orders is likely due to an insufficient number of sampled 212 
species (𝑛 < 25, see Supplementary Results 1). It appears that vertebrate orders with 213 
mainly herbivorous diets have stronger phylosymbiosis, although this would need to 214 
be tested more robustly with a better species coverage (Table S2). 215 
 216 

Our results suggest that phylosymbiosis is only partially explained by 217 
evolutionary conservatism in flying ability, diet, or geographic location. First, excluding 218 
flying mammals (Chiroptera) or non-flying birds did not impact our estimates of 219 
phylosymbiosis (Table S2). Second, permutation tests shuffling the microbiota of host 220 
species having the same diet, geographic location, flying ability, or combination of 221 
these traits resulted in much lower l values (Figures 2 & S2). In mammals, l values 222 
resulting from such shuffling are still significant (Figure 2), suggesting that the 223 
evolutionary conservatism of flying ability, diet, and geographic location contributes to 224 
phylosymbiosis without fully explaining it (Moran et al. 2019). In birds, shuffling often 225 
resulted in non-significant l values (Figure 2), indicating a weak or absent contribution 226 
of diet or geographic location in the observed phylosymbiosis. Similarly, the 227 
conservatism of these traits is not sufficient to explain the phylosymbiosis measured in 228 
some of the larger mammal and bird clades, such as Primates, Cetartiodactyla, and 229 
Passeriformes (Figure S3). Thus, we suspect that other evolutionary-conserved 230 
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physiological, immunological, or ecological traits act as host filters (Foster et al. 2017; 231 
Moran et al. 2019) and contribute to phylosymbiosis in the gut microbiota of mammals 232 
and birds (Goodrich et al. 2016; Mazel et al. 2018). 233 
 234 

Our ancestral reconstructions of the microbiota of early mammals and birds 235 
suggest that Proteobacteria and Firmicutes were much more abundant in the ancestral 236 
gut microbiota of birds than mammals (Figures 3, 4, S4 & S5). As common in 237 
phylogenetic ancestral reconstruction, the uncertainty is quite high (Figure S6); it is 238 
larger in mammals than in birds because of the long branches that separate marsupials 239 
and eutherians at the origin of all mammals. In the absence of fossil constraints, 240 
ancestral reconstructions are a phylogenetically-weighted average of extant 241 
characteristics. Estimated ancestral compositions are thus expectedly close from the 242 
average microbiota compositions of extant bird and mammal species, yet they are 243 
distinct (Figure S7). Comparing the ancestral microbiota composition of mammals to 244 
that of the extant wild mammal species, we found the highest similarity with 245 
invertebrate feeders (distance to the centroid: 𝑑=1.46), such as the insectivorous 246 
armadillos (Zaedyus pichiy), and frugivores (𝑑=1.24; Figures 5 & S8; see Methods), 247 
and the lowest similarity with specialist consumers feeding on plants (𝑑=2.50) or meat 248 
(𝑑=2.82). This result is robust to uncertainty in our estimate of ancestral microbiota 249 
composition (Figure S6b) and when including species sampled in captivity (Figure S7). 250 
Given that mammals originated before fleshy fruit plants (Eriksson 2016), this suggests 251 
that ancestral mammals were generalist invertebrate feeders, which is consistent with 252 
the current hypothesis, based on the fossil record and ancestral diet reconstruction, of 253 
a generalist insectivorous diet in early mammals (Gill et al. 2014; Grossnickle et al. 254 
2019). We found the gut microbiota composition of modern birds to be only weakly 255 
structured by diet compared to that of mammals, making the inferred ancestral 256 
microbiota composition of birds less informative in this respect (no strong clustering in 257 
the PCA plots; PermANOVA testing the effect of diet: R2~0.03, p<0.001 in birds versus 258 
R2~0.22, p<0.001 in mammals; Figures 5, S7 & S8; Table S5). In addition, the fact 259 
that, under the assumptions of our model, most extant microbiota compositions in both 260 
mammals and birds remain centered around the estimated ancestral microbiota 261 
composition suggests that only a minority of the extant species experienced major 262 
shifts in their microbiota composition during their evolution.   263 
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 264 
 265 
Figure 2: Phylogenetically-conserved diets, geographic locations, or flying abilities 266 
partially contribute to phylosymbiosis in the gut microbiota of mammals, but not birds. 267 
For both mammals and birds, we compared the estimated level of phylosymbiosis (mean l 268 
value in orange) to levels of phylosymbiosis (l values) estimated when shuffling the species 269 
that have the same diet (green boxplot), geographic location (blue boxplot), flying ability (flying 270 
or non-flying; purple boxplot), or combination of the latter traits (in red). For each shuffling 271 
strategy, we performed 100 randomizations. Combining all traits strongly constrains the 272 
possible permutations, which may consequently retain a phylogenetic signal in the shuffling 273 
and lead to high l values although the traits are actually not strongly contributing to 274 
phylosymbiosis. 275 
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 276 
 277 
Figure 3: Ancestral reconstruction of mammalian gut microbiota: Phylogenetic tree of the 278 
sampled mammal species and associated relative abundances of the 14 most abundant 279 
bacterial orders (bar charts on the right). Pie charts at the root and nodes of the tree represent 280 
estimated ancestral microbiota compositions (mean of the posterior distribution of 𝑍" at the 281 
root and generalized least squares estimates at other internal nodes). Compositions are not 282 
represented at the most recent nodes for the sake of clarity. 283 
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  284 
 285 
Figure 4: Ancestral reconstruction of avian gut microbiota: Phylogenetic tree of the 286 
sampled birds, and associated relative abundances of the 14 most abundant bacterial orders 287 
(bar charts on the right). Pie charts at the root and nodes of the tree represent estimated 288 
ancestral microbiota compositions (mean of the posterior distribution of 𝑍" at the root and 289 
generalized least squares estimates at other internal nodes). Compositions are not 290 
represented at the most recent nodes for the sake of clarity.  291 
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We detected significant changes in microbiota composition in the ancestors of 292 
some mammal and bird orders (Figures 3, 4, & S9). In mammals, the largest shift in 293 
microbiota composition occurred in the ancestor of Chiroptera, with an increased 294 
proportion of Enterobacteriales (Proteobacteria), Mycoplasmatales (Tenericutes), and 295 
to a lesser extent Actinomycetales (Actinobacteria), as well as a decreased proportion 296 
of Bacteroidales (Bacteroidetes), and in Firmicutes, Clostridiales were replaced by 297 
Bacillales and Lactobacillales (Figure 3; Table S6). Other shifts occurred in the 298 
ancestor of Carnivora, with an increased proportion of Fusobacteriales (Fusobacteria), 299 
and in the ancestors of Primates and Cingulata, with an increased proportion of some 300 
Firmicutes orders (e.g. Erysipelotrichales; Figures 3 & S9). In addition, Proteobacteria 301 
(especially Enterobacteriales and Pseudomonadales) almost disappeared in the 302 
ancestral microbiota of Ungulata and Simiiformes (New and Old World monkeys; Table 303 
S6). In birds, we found a shift in microbiota composition in the ancestor of 304 
Passeriformes, with more Bacillales and Enterobacteriales, and to a lesser extent 305 
Pseudomonadales, and a quasi-disappearance of Bacteroidales (Figures 4 & S5; 306 
Table S6). The ancestors of Anseriformes and Charadriiforms were characterized by 307 
a larger proportion of Bacteroidales, as well as a large proportion of Fusobacteriales, 308 
often absent or present in low abundances in other bird gut microbiota. Finally, the 309 
relative abundance of Actinomycetales increased in Columbiformes (Table S6). We 310 
found similar estimates of ancestral gut microbiota composition when running separate 311 
inferences for the different mammal and bird orders (Figure S9). Some of these 312 
compositional shifts might be linked to the ecological changes that these lineages 313 
experienced, such as the acquisition of flight for bats or carnivorous diets for Carnivora 314 
and Charadriiforms (Nishida and Ochman 2018; Song et al. 2020). 315 
 316 
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 317 
 318 
Figure 5: Projection of the estimated ancestral gut microbiota of mammals and birds 319 
onto the space of present-day gut microbiota. Top panels: projection of bacterial orders 320 
contributing to the two principal components (PC). Colors represent the contribution of the taxa 321 
to the principal components. Percentages indicate the explained variance of each PC. Only 322 
the 9 most abundant orders are represented for the sake of clarity. Bottom panels: Projection 323 
of the extant and ancestral microbiota compositions. Extant microbiota of species sampled in 324 
the wild are colored according to the species’ diet. For each diet, the ellipse contains on 325 
average 95% of the distribution approximated by a multivariate t-distribution and the centroid 326 
is indicated by a diagonal cross. Ancestral microbiota compositions of mammals and birds are 327 
represented in blue. On each PCA plot, we indicated the three extant species with microbiota 328 
compositions closest to the ancestral microbiota composition. The ancestral gut microbiota of 329 
mammals is closest to the gut microbiota of present-day invertebrate feeders; the gut 330 
microbiota of birds does not strongly reflect diet.   331 
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Far from varying as uncorrelated units during the evolutionary history of 332 
mammals and birds, we found significant covariances between many microbial taxa, 333 
both positive and negative (Figure 6a), suggesting strong constraints in the evolution 334 
of the microbiota. These patterns of microbiota integration are strikingly similar in 335 
mammals and birds (Figure 6b), indicating that they are conserved over long 336 
evolutionary times. Our simulation analyses on the mammal and bird trees suggest 337 
that these results are not artefactual, since we recover significant covariances only 338 
when we include them in the simulations (Table S7, Supplementary Results 1). Similar 339 
covariances were obtained when performing separate inferences on the different 340 
mammal and bird orders (Figure S10), which both confirms our results and suggests 341 
that the model assumption of a constant variance-covariance matrix across the host 342 
phylogenetic tree is reasonable. Combined with the high bacterial variability in time, 343 
across individuals, and across host species at low taxonomic levels, these consistent 344 
patterns at the level of bacterial orders on large time scales suggest that there is a 345 
certain level of functional redundancy among bacteria taxa within orders in the 346 
vertebrate gut microbiota. 347 

 348 
Both visual inspection and integration analyses of the covariances revealed that 349 

bacterial orders cluster into two main subsets within which taxa tend to covary in a 350 
concerted way, while taxa from different subsets tend to be anti-correlated (Figure 6; 351 
see Methods). The first subset (“subset 1”) is formed in particular by the orders 352 
Clostridiales, Bacteroidales, and Fusobacteriales, and the second subset (“subset 2”) 353 
is mainly composed of the orders Enterobacteriales, Lactobacillales, Pseudomonades, 354 
Actinomycetales, and Bacillales. Although some host species have a microbiota 355 
composed of an even mixture of these two bacterial subsets, one subset generally 356 
prevails, leading to the existence of two main gut microbiota profiles. The first subset 357 
is dominant in the microbiota of most mammals (excluding Chiroptera), the ancestors 358 
of birds, and some extant bird lineages (e.g. Anseriformes, Columbiformes, or 359 
Accipitriformes); the second subset predominates in the microbiota of Chiroptera and 360 
other bird lineages, including Passeriformes (Figure S11). This result suggests the 361 
existence of two main gut microbiota profiles conserved over millions of years across 362 
vertebrates.  363 
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 364 
 365 
Figure 6: Estimated variances and covariances between the main bacterial taxa tend to 366 
be similar in the gut microbiota of mammals and birds. (a) For each variance-covariance 367 
matrix between bacterial taxa estimated using our model of host microbiota evolution, we 368 
represented negative covariances in red and positive covariances in blue, while variances are 369 
represented in shades of green. Non-significant covariances are represented in white. Grey 370 
rectangles correspond to subsets of bacterial orders that tend to covary positively. (b) 371 
Correlation between covariances between the main bacterial taxa estimated in the gut 372 
microbiota of mammals or birds. The red line indicates the corresponding linear model, while 373 
the grey line corresponds to y=x.  374 
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We can only speculate on the processes underlying positive or negative 375 
covariances between bacterial orders: we cannot distinguish from our analyses 376 
whether they indicate direct interactions between bacterial taxa (e.g. cross-feeding or 377 
competition) or indirect interactions mediated by similar/opposed microbial responses 378 
to changes in the gut environment. For instance, the frequent and strong negative 379 
covariations observed between the abundant Enterobacteriales (Proteobacteria) and 380 
the major bacterial orders Clostridiales (Firmicutes) and Bacteroidales (Bacteroidetes) 381 
may result from direct competitions (Shealy et al. 2021), host immunological controls 382 
over Proteobacteria (Mirpuri et al. 2013), and/or be mediated by the oxygen 383 
concentration in the gut, as Proteobacteria are facultative anaerobes, while other phyla 384 
are obligate anaerobes (Shin et al. 2015). The strongest positive covariations we 385 
inferred between Actinomycetales, Pseudomonadales, and Rhizobiales, which are the 386 
most abundant bacterial orders in plant tissues (Wagner et al. 2016), may reflect a 387 
plant-based diet, which would lead to a concomitant increase of plant-associated 388 
bacteria in the gut microbiota of herbivorous vertebrates (Dion-Phénix et al. 2021). 389 
Some of the covariations we detected (e.g. the negative covariation between 390 
Lactobacillales and Bacteroidales) have also been observed in human microbiome 391 
data using co-occurrence network analyses (Faust et al. 2012), suggesting that at least 392 
some covariations between microbial taxa that occur over short timescales within host 393 
species are conserved over macroevolutionary timescales. 394 
 395 

To test the adequacy of our model to the data, we simulated microbiota under 396 
our model using the parameters estimated on mammal and bird data. We found that 397 
simulated microbiota have compositions similar to those observed in extant mammals 398 
and birds (Figure S12), which indicates that, despite its simple assumptions, our 399 
multivariate Brownian motion model generates realistic gut microbiota (Hird 2019; 400 
Labrador et al. 2021). Nevertheless, the gut microbiota composition of mammals and 401 
birds appears more constrained than the sets of compositions we can simulate using 402 
multivariate Brownian motions (Figure S12). This is particularly true for mammals and 403 
may be linked to constraints that are not accounted for by our model, such as selective 404 
pressures toward particular microbiota compositions, the potential existence of 405 
carrying capacities for some bacterial orders, or non-constant or non-homogeneous 406 
variance-covariance matrices (e.g., more frequent shifts in microbiota composition 407 
early in clades history, effects of host traits such as diet or gut pH on covariation). 408 
Extensions of our multivariate Brownian motion approach could accommodate such 409 
constraints, but this may complexify inferences. We hope that this work will foster the 410 
development of more complex models that may better represent microbiota evolution 411 
in systems that present non-Brownian behaviors. As a first step, extensions that relax 412 
the constant variance assumption (e.g., the early-burst model; Harmon et al. 2010) 413 
would be relatively straightforward to implement and could be particularly relevant to 414 
account for the major shifts in microbiota composition that took place at the origin of 415 
some mammalian orders (e.g., in bats). Meanwhile, by relying on a simple and flexible 416 
Brownian motion process, our phylogenetic comparative model for microbiota 417 
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evolution is general enough to be broadly applied across other host-microbiota 418 
systems and reveal the global trends of microbiota evolution.  419 
 420 

Besides modeling assumptions, our results may be influenced by the inherent 421 
biases of metabarcoding data. Bacterial relative abundances characterized using 422 
metabarcoding techniques are a distortion of the actual relative abundances (Knight et 423 
al. 2018; Lavrinienko et al. 2021), since metabarcoding is sensitive to the number of 424 
rRNA copies in the bacterial genomes, primer biases, and the quality and 425 
completeness of the reference database for taxonomic assignation (at the bacterial 426 
order/phylum level in our case). These issues are unlikely to artefactually generate 427 
phylosymbiosis or covariations across bacterial taxa because we expect such biases 428 
to be homogeneous across host species; nevertheless, they are likely to affect our 429 
ancestral reconstructions of microbiota compositions.  430 

 431 
Our approach to quantifying phylosymbiosis characterizes microbiota 432 

composition in terms of the relative abundances of higher bacterial taxa (orders or 433 
phyla). This characterization hides variations in the presence/absence of bacterial taxa 434 
at lower taxonomic levels (e.g. genus or species). Indeed, distinct mammal or bird 435 
species are known to host different bacterial species (Song et al. 2020), and this may 436 
not translate into abundance variations at higher taxonomic levels if the different 437 
bacterial species belong to the same higher taxa. Besides the widely-used Mantel 438 
tests, such variations could be accounted for by stochastic processes modeling the 439 
evolution of presence/absence on host phylogenies (Braga et al. 2020), although we 440 
are not aware that these approaches have been used to detect bacterial 441 
phylosymbiosis. Yet another level of variation in microbiota composition that can 442 
contribute to phylosymbiosis arises through genetic differentiation below the bacterial 443 
species level: if a bacterial species is vertically transmitted during host diversification, 444 
we expect bacterial strains from closely related host species to be more genetically 445 
similar (Sanders et al. 2014; Groussin et al. 2017; Perez-Lamarque and Morlon 2019). 446 
This latter process can be specifically tested thanks to cophylogenetic methods that 447 
consider the evolution of each microbial species separately (Dismukes et al. 2022; 448 
Perez-Lamarque and Morlon 2022). The above-mentioned methods are 449 
complementary, as they focus on different levels of variations in microbiota 450 
composition, and on the distinct processes that simultaneously generate 451 
phylosymbiosis (Moran et al. 2019; Lim and Bordenstein 2020).  452 

 453 
Phylosymbiosis is a widespread pattern that has fascinated microbial ecologists 454 

and evolutionary biologists since its discovery, spurring debates on the main processes 455 
underlying the pattern. Drawing upon phylogenetic comparative methods, we have 456 
developed a new approach to studying phylosymbiosis. Our results on simulations and 457 
birds suggest that phylosymbiosis may be even more prevalent than currently 458 
recognized, but sometimes undetected with correlative approaches. We have shown 459 
that conservatisms in diet, geographic location, and flying ability are not enough to 460 
explain phylosymbiosis, calling for an investigation of the role of other host ecological 461 
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traits, as well as physiological and immunological traits. One of our most striking 462 
results, in the face of the well-known high variability of the gut microbiota, is its high 463 
level of integration, with conserved covariations between bacterial orders over millions 464 
of years. The same two subsets of bacterial orders tend to covary in a concerted way 465 
in both mammals and birds, leading to the existence of two main gut microbiota profiles 466 
in vertebrates. Hence, microbial interactions combined with phylogenetically-467 
conserved host traits shape microbiota composition over millions of years, supporting 468 
the view of vertebrate gut microbiota as ‘ecosystems on a leash’ (Foster et al. 2017).  469 
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Methods: 470 
 471 
A multivariate Brownian motion model for variations in microbiota composition 472 
over host evolutionary time: 473 
 474 
 We denote by 𝑝 the total number of microbial taxa detected across the 475 
microbiota of the 𝑛 sampled host species. Standard metabarcoding techniques only 476 
measure the relative abundance of each microbial taxon 𝑗 in each extant host species 477 
𝑖, which we denote by 𝑍89 = 𝑋89 𝑌8⁄ , where 𝑋89 is the unmeasured absolute abundance 478 
of microbial taxon 𝑗 in host 𝑖 and 𝑌8 = ∑ 𝑋899  is the unmeasured total microbial 479 
abundance in the microbiota of host 𝑖. We assume that the logarithms of microbial 480 
absolute abundances log𝑋89  vary along the host phylogenetic tree according to a 481 
multivariate Brownian motion starting from the ancestral abundances at the root, 482 
denoted by 𝑋"9 (Figure 1). Indeed, taking the logarithm of the abundances yields values 483 
on the real axis that are amenable to be modeled with a Brownian motion, similar to 484 
continuous phenotypic traits. This model implies a log-normal distribution of 485 
abundances, as is commonly observed in microbial communities (Quince et al. 2008), 486 
and it can easily accommodate undetected microbial taxa in some hosts by assigning 487 
them very low unobserved relative abundances. To make the model identifiable, we 488 
express the total abundances 𝑌8 relative to the unknown total abundance at the root 𝑌", 489 
and we only infer 𝑌>8 = 𝑌8 𝑌"⁄ . Each microbial taxon 𝑖 is characterized by a certain 490 
variance and pairs of microbial taxa can affect each other through a covariance term, 491 
so that their changes in abundance over time can be positively or negatively correlated. 492 
All variance and covariance values are assumed to be constant along the host 493 
phylogeny and are summarized by the invertible variance-covariance matrix R (Figure 494 
1a). 495 
 496 
Model inference: 497 
 498 

To infer the model parameters, we sampled from their joint posterior distribution 499 
𝑃(log𝑍" , 𝑅, 𝜆, log	𝑌>C,… , log	𝑌>E|𝑍CC,… , 𝑍89, … , 𝑍EG, 𝐶) using a No U-turn Hamiltonian 500 
Monte Carlo sampler, a computationally efficient Markov Chain Monte Carlo algorithm 501 
for continuous variables (Supplementary Methods 1). We implemented it in the 502 
probabilistic programming language Stan and we ran and compiled it through the 503 
RStan interface (R Core Team 2022; Stan Development Team 2022). Inferences were 504 
performed with 4 independent chains and a minimum of 4,000 iterations per chain 505 
including a warmup of 2,000 iterations. We checked the convergence of the chains 506 
using the Gelman statistics and effective sample sizes (ESS). We extracted the mean 507 
posterior value of each parameter and its associated 95% credible interval across 508 
posterior samples. 509 

 510 
We considered a covariance to be significant if 0 was not included in its 95% 511 

credible interval. We could not use the same approach for l, because it only takes 512 
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positive values. Furthermore, model selection using Bayes factors led to many false 513 
negatives on simulated data (Supplementary Methods 2 & Results 1). Therefore, we 514 
assessed the significance of l using permutations. We shuffled at random the extant 515 
host species to break the phylogenetic structure and ran again model inference of the 516 
randomized dataset. We performed 100 replications and compared the distribution of 517 
l values thus obtained to the original l estimate: if the original l was greater than at 518 
least 95% of the l values obtained through permutations, we considered that there 519 
was a significant impact of host evolution on microbiota evolution. 520 
 521 
Simulations: 522 
 523 

We evaluated our approach using simulations. We simulated the evolution of a 524 
microbiota along a host phylogeny using Multivariate Brownian motions for log-525 
abundances. We simulated phylogenies with n = 20, 50, 100, or 250 extant host 526 
species using a pure birth model (pbtree function in the phytools R-package (Revell 527 
2012)). We considered microbiota with p = 3, 5, 10, or 15 microbial taxa and uniformly 528 
sampled the logarithms of their ancestral abundances at the root of the host phylogeny 529 
between -4 and 0 before normalizing them so that ∑ 𝑍"99 = 1. We generated random 530 
positive definite variance-covariance matrices R following (Uyeda et al. 2015) and 531 
(Clavel et al. 2019) with eigenvalues of 1/4. Finally, we applied Pagel’s l 532 
transformations with l = 1, 0.75, 0.5, 0.25, or 0. For each combination of n, p, and l 533 
values, we performed 100 independent simulations, leading to a total of 8,000 534 
simulations. We verified that our approach correctly estimates the parameters l, 𝑍", 535 
and R, and detects phylosymbiosis (significant l) and covariations (significant R 536 
components) when they are simulated. We compared the performances of our 537 
approach for detecting phylosymbiosis to that of Mantel tests (Perez-Lamarque, Maliet, 538 
et al. 2022).  539 

 540 
We also evaluated our inference approach using data simulated on the 541 

phylogenetic tree of mammals or birds, and using conditions and parameters matching 542 
the empirical data. We performed simulations with 7 taxa (corresponding to the 7 543 
bacterial phyla in the data, see below) and 14 taxa (corresponding to the 14 bacterial 544 
orders in the data). We used values of l = 1, 0.75, 0.5, 0.25, or 0, and values for the 545 
other model parameters similar to those estimated from the empirical data (Figure 546 
S13). We performed 100 simulations per condition (thus reaching a total of 2,000 547 
simulations). 548 
 549 
Empirical application: 550 
 551 
We downloaded the dataset of (Song et al. 2020) that gathered the gut microbiota of 552 
2,677 mammal individuals from >200 species and 1,630 bird individuals from >300 553 
species, characterized by metabarcoding using the V4 region of the 16S rRNA gene. 554 
Only studies using the standard protocol of the Earth Microbiome Project (Thompson 555 
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et al. 2017) were included (see (Song et al. 2020) for details), making samples 556 
comparable across different studies (Knight et al. 2018). Song et al. converted bacterial 557 
reads into amplicon sequence variants (ASV), assigned each ASV taxonomically using 558 
the Greengenes database (DeSantis et al. 2006; Song et al. 2020), and rarefied ASV 559 
tables at 10,000 reads per sample. We complemented their dataset with the consensus 560 
phylogenetic trees of (Upham et al. 2019) and (Jetz et al. 2012) for mammals and 561 
birds, respectively. We only kept the species having their microbiota compositions 562 
characterized by at least 2 microbiota samples (Table S2). We checked that gut 563 
microbiota from the same host species were more similar than gut microbiota from 564 
different species using PermANOVA (Oksanen et al. 2016). Then, we obtained the 565 
microbiota composition of each host species by averaging the samples per species 566 
and extracted the relative abundances of the main bacterial orders and phyla per host 567 
species. We verified that similar results were obtained when repeating our analyses by 568 
randomly sampling one individual per host species (Figure S14). We only considered 569 
the 14 most abundant bacterial orders, i.e. those that each represented more than 1% 570 
of the total bacterial abundance (which correspond in abundance to 84% and 82% of 571 
the total gut bacterial microbiota of mammals and birds, respectively) and the 7 most 572 
abundant bacterial phyla (95% and 96% of the gut microbiota of mammals and birds 573 
respectively; Figure S15). We also repeated all analyses using only the 9 (resp. 5) 574 
most abundant orders (resp. phyla). We did not apply our model at lower taxonomic 575 
levels mainly because the assumptions of our model (all microbial taxa are present in 576 
all hosts, potentially in undetectable abundances and they were already present in the 577 
most recent common ancestor of all host species) are more likely to be met at high 578 
taxonomic levels. At lower taxonomic levels, the microbiota evolution of mammals and 579 
birds may be better represented using models of colonization and extinction (Song et 580 
al. 2020) than models of fluctuations in bacterial abundances such as ours. In addition, 581 
running the model with several hundreds of taxa would be computationally intensive. 582 
Finally, the quality of the taxonomic assignation and the number of taxa representing 583 
more than 1% of the gut microbiota decreased sharply at low taxonomic levels: only 584 
81% and 45% of the gut microbiota of mammals and birds are assigned at the family 585 
and genus levels, respectively, and among them, only 60% and 18% of the bacterial 586 
taxa represent more than 1% of the gut microbiota.  587 
 588 

Our multivariate Brownian motion model of microbiota does not explicitly 589 
consider losses of bacterial taxa from the microbiota through time. Yet, some bacterial 590 
taxa can be absent or undetected in the gut microbiota of mammals and birds. We 591 
assumed that the absence of a particular taxon came from a very low abundance, 592 
below the detection threshold: we thus arbitrarily set the relative abundances of absent 593 
taxa to 0.001%. Setting the minimal relative abundances of absent taxa to 0.01% 594 
reduced the estimated variance of the rare taxa but did not affect other estimates 595 
(Figure S16). 596 

 597 
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We applied the model separately on all mammals and all birds, getting estimates 598 
of Pagel’s l, the ancestral microbiota composition 𝑍", and the variance-covariance 599 
matrix R for each vertebrate class.  600 
 601 
Effect of host traits on phylosymbiosis:  602 
 603 

We gathered data on host species traits from (Song et al. 2020) for diet, 604 
geographic location, and flying ability. We assigned a dominant diet to each host 605 
species as either “plants”, “fruits”, “invertebrates” or “meat” following the EltonTraits 606 
database (Wilman et al. 2014). We assigned a geographic location to each species by 607 
picking the biogeographic realm (Afrotropical, Antarctic, Australasian, Nearctic, 608 
Neotropic, Oriental, or Palearctic) where the highest number of wild individuals were 609 
sampled, or if not available, where the highest number of captive individuals were 610 
sampled (this was the case for 48% of the mammalian species and 18% of the avian 611 
ones). We treated flying ability as binary (yes/no). First, we assessed the influence of 612 
flight on the gut microbiota by performing inferences on non-flying mammal species 613 
only (i.e. excluding bats) and on flying bird species only. Similarly, we investigated the 614 
effect of captivity on our inferences by replicating them using only the gut microbiota 615 
of wild or captive individuals. Second, we tested whether the evolutionary conservatism 616 
of diet, geographic location, or flying ability may explain phylosymbiosis in mammals 617 
and birds by performing permutations. We shuffled host species having the same diet, 618 
geographic location, and/or flying ability and re-ran the inferences on these 619 
randomized datasets. For each tested trait, we performed 100 independent 620 
randomizations. Finally, we verified that phylosymbiosis did not artefactually arise from 621 
the concatenation of the separate studies composing this dataset by randomizing the 622 
species that came from the same study. 623 
 624 
Comparison between ancestral and present-day microbiota composition: 625 
 626 

We compared the estimated ancestral microbiota composition 𝑍" of all 627 
mammals or birds to that of extant species using principal component analysis (PCA) 628 
after applying a centered log-ratio transform to the abundances (Aitchison 1983). 629 
Given 𝑍", we also jointly estimated the ancestral abundances at each node of the host 630 
phylogenetic tree using generalized least squares following (Martins and Hansen 1997; 631 
Cunningham et al. 1998; Clavel et al. 2019). As a first attempt to infer past diet based 632 
on the estimated ancestral microbiota composition 𝑍", we computed the centroid of 633 
each of the four diet categories and computed the distance 𝑑8 between 𝑍" and each 634 
centroid on the first five PC axes. We additionally performed separate model inference 635 
for all orders of mammals (Carnivora, Cetartiodactyla, Chiroptera, Primates, and 636 
Rodentia; Table S2) and birds (Anseriformes, Charadriiformes, Columbiformes, and 637 
Passeriformes) represented by at least 15 species, and compared the ancestral 638 
microbiota composition obtained with separate and joint inferences.  639 
 640 
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Integration analyses: 641 
  642 

We identified the significantly positive or negative covariances between 643 
bacterial orders. In addition, to characterize potential subsets of bacterial taxa that tend 644 
to vary in a concerted way, we clustered taxa using the cluster_fast_greedy function in 645 
the R-package igraph (Csardi and Nepusz 2006), based on the estimated variance-646 
covariance matrix R, modified to retain information of only positive covariances 647 
(negative ones were set to 0).  648 
 649 
Model adequacy:  650 
 651 
To assess whether our model for the evolution of the gut microbiota of mammals and 652 
birds yields realistic microbiota compositions, we simulated the process of microbiota 653 
evolution on the mammal or bird phylogenies using the parameters estimated for 654 
mammals and birds (log𝑍", 𝑅, and 𝜆). Next, we compared the simulated microbiota 655 
compositions to the empirical microbiota compositions of the extant mammal or bird 656 
species using principal component analysis (PCA). We performed 20 independent 657 
simulations for each of our model inferences. 658 
 659 
Data availability: 660 
 661 
Raw data and processed data from (Song et al. 2020) used to perform the empirical 662 
applications are available in Qiita (https://qiita.ucsd.edu/study/description/11166). 663 
Our phylogenetic comparative method, referred to as ABDOMEN (A Brownian moDel 664 
Of Microbiota EvolutioN), is available on GitHub with a tutorial: 665 
https://github.com/BPerezLamarque/ABDOMEN.  666 
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