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On Abel-Jacobi Maps of Lagrangian Families

Chenyu Bai

Abstract
We study in this article the cohomological properties of Lagrangian families on projective hyper-Kähler

manifolds. First, we give a criterion for the vanishing of Abel-Jacobi maps of Lagrangian families. Using
this criterion, we show that under a natural condition, if the variation of Hodge structures on the degree 1
cohomology of the fibers of the Lagrangian family is maximal, its Abel-Jacobi map is trivial. We also construct
Lagrangian families on generalized Kummer varieties whose Abel-Jacobi map is not trivial, showing that our
criterion is optimal.

0 Introduction

Let X be a projective hyper-Kähler manifold [1], that is, a simply connected complex projective manifold whose
space of holomorphic 2-forms is generated by a nowhere degenerate 2-form σX . The dimension of X is an even
number 2n. A Lagrangian subvariety L of X is a dimension n irreducible possibly singular subvariety of X such
that, denoting j : L̃ → L ↪→ X a desingularisation of L, j∗σX = 0 in H0(L̃,Ω2

L̃).

In this article, we will be considering Lagrangian families of a hyper-Kähler manifold X .

Definition 0.1. A Lagrangian family of a hyper-Kähler manifold X is a diagram

L X

B

q

p (1)

where p is flat and projective, L and B are connected quasi-projective manifolds and q maps birationally the
general fiber Lb := p−1(b), b ∈ B, to a Lagrangian subvariety of X . In what follows, we will denote jb the
composition Lb ↪→ L → X .

Lagrangian families were studied by Voisin in [14, 15] in different contexts, as generalizations of Lagrangian
fibrations. While Lagrangian fibrations do not exist in general on projective hyper-Kähler manifolds (as this
forces the Picard number to be at least 2), Lagrangian families (and even Lagrangian coverings for which q is
dominant) are relatively common. See, for example, constructions in [8, 11] on Lagrangian families (coverings)
on Fano varieties of lines of cubic fourfolds and on Hilbert schemes of K3 surfaces. Works of Voisin [14, 15]
indicate that the existence of Lagrangian coverings implies important properties of the hyper-Kähler manifold
in question. For example, it is shown in [15] that a very general projective hyper-Kähler fourfold admitting a
Lagrangian covering satisfies Lefschetz standard conjecture for degree 2 cohomology. Studies of examples of
Lagrangian families lead us to consider the following problem, which is motivated in the article [13].

Problem 0.2. Consider a Lagrangian family of a hyper-Kähler manifold X of dimension 2n given by a diagram
as in (1). What can be said of the map

ψL : B → CHn(X)

b 7→ q∗(Lb)
? (2)
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Let us first explain the relation between this problem and article [13]. In [13], the following conjecture is
proposed and proved for some cases.

Conjecture 0.3. Let L and L′ be two constant cycle Lagrangian subvarieties of a hyper-Kähler manifold X . If
the cohomological classes [L] = [L′] in H2n(X ,Q), then L is rationally equivalent to L′ as algebraic cycles in X .

Here, a subvariety Z of a smooth projective variety X is called a constant cycle subvariety, if any two points
z,z′ in Z are rationally equivalent in X , or equivalently, if the image of the Gysin map i∗ : CH0(Z) → CH0(X)

is Z where i : Z ↪→ X is the inclusion map. The notion of constant cycle subvarieties is first proposed in [7]
for curves in K3 surfaces. It is then studied in a more general setting in [13]. The condition constant cycle is a
strong condition for Lagrangian subvarieties. In contrast with Lagrangian subvarieties, constant cycle Lagrangian
subvarieties cannot deform into families.

Lemma 0.4. Constant cycle Lagrangian subvarieties of X are rigid as constant cycle subvarieties.

Proof Following the notations in [13], let

SnX := {x ∈ X : the rational equivalence orbit of x has dimension ≥ n}.

As is shown in [13, Theorem 1.3], SnX is a countable union of irreducible varieties of dimension ≤ n and constant
cycle Lagrangian subvarieties of X are exactly irreducible components of SnX of dimension n. Hence, constant
cycle Lagrangian subvarieties of X are rigid. □

One may now wonder if the condition constant cycle can be dropped in Conjecture 0.3. This motivates
us to think about the Problem 0.2. Since the Lagrangian subvarieties in the Lagrangian family have the same
cohomological class, if the map ΨL defined in Problem 0.2 is nonconstant, then we cannot drop the condition
constant cycle in Conjecture 0.3, presenting the subtlety of Conjecture 0.3.

A weaker invariant of algebraic cycles in a projective manifold is the Abel-Jacobi invariant [16, Chapter 12].
Let us denote Φn

X : CHn(X)hom → J2n−1(X) the Abel-Jacobi map of X . We will recall the definitions and basic
properties of the Abel–Jacobi invariant and the Abel–Jacobi maps in the beginning of Section 1. If two cycles
homologeous to 0 are rationally equivalent, then they have the same Abel-Jacobi invariant in the intermediate
Jacobians (see Proposition 1.2). Problem 0.2 thus motivates the following question.

Problem 0.5. Consider a Lagrangian family of a hyper-Kähler manifold X of dimension 2n given by a diagram
as in (1). Let 0 ∈ B be a point. Under which conditions is the Abel-Jacobi map

ΨAJ
L : B → J2n−1(X)

b 7→ Φn
X (q∗(Lb −L0))

(3)

trivial?

Note that ΨAJ
L (b) = Φn

X (ΨL (b)−ΨL (0)). Problem 0.5 can be viewed as a first step to study Problem 0.2.

In this article, we first give a criterion for the vanishing of the Abel-Jacobi map (3) for Lagrangian families
of a hyper-Kähler manifold (see also Proposition 1.5).

Proposition 0.6. Consider a Lagrangian family of a hyper-Kähler manifold X of dimension 2n as in (1), satisfy-
ing the following condition :

♣ For general b ∈ B, the contraction by q∗σX gives an isomorphism ⌟q∗σX : TB,b
∼=→ H0(Lb,ΩLb).
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Then the Abel-Jacobi map (3) is trivial if and only if for general b ∈ B, the restriction map

j∗b : H2n−1(X ,Q)→ H2n−1(Lb,Q)

is zero.

The condition ♣ is natural. According to [11, Proposition 2.4], the deformations of a smooth Lagrangian sub-
variety are non-obstructed, and a local deformation is still Lagrangian. Therefore, if we take (B,b) to be a germ
of the Hilbert scheme of deformations of a smooth Lagrangian subvariety L ⊂ X , and L → B the correspond-
ing family, then condition ♣ holds since TB,b ∼= H0(Lb,NLb/X ) by unobstructedness and ⌟σX : H0(Lb,NLb/X )→
H0(Lb,ΩLb) is an isomorphism for a smooth Lagrangian variety.

Using this criterion, we give a response to Problem 0.5.

Theorem 0.7. Consider a Lagrangian family of a hyper-Kähler manifold X of dimension 2n given by a diagram
as in (1), satisfying condition ♣. Assume that the variation of Hodge structures on the degree 1 cohomology of
the fibers of p : L → B is maximal, i.e., the period map

P : B → Gr(h1,0(L),H1(L,C))
b 7→ H1,0(Lb)⊂ H1(Lb,C)∼= H1(L,C),

(4)

where L is a general fiber of p : L → B, is generically a local immersion. Then the Abel-Jacobi map (3) is trivial.

This response to Problem 0.5 is conditional. However, it can be shown that the condition “maximal variation
of Hodge structures” cannot be dropped. In fact, we construct in Section 4 Lagrangian families satisfying ♣ for
which the Abel-Jacobi map is shown to be nontrivial using Proposition 0.6. The variation of weight 1 Hodge
structures of the constructed Lagrangian families is not maximal.

In Section 3, we shall explore under which conditions the variation of weight 1 Hodge structures is maximal.
Let H2(X ,Q)tr be the orthogonal complement of NS(X)Q in H2(X ,Q) with respect to the Beauville-Bogomolov-
Fujiki form q of X (see [1]) and let b2(X)tr be the dimension of H2(X ,Q)tr .We prove the following result (see
also Proposition 3.2):

Proposition 0.8. Consider a Lagrangian family of a hyper-Kähler manifold X of dimension 2n given by a dia-
gram as in (1), satisfying condition ♣. Assume that the Mumford-Tate group of the Hodge structure H2(X ,Q)

is maximal, i.e. it is the special orthogonal group of (H2(X ,Q)tr,q), and assume that b2(X)tr ≥ 5. If h1,0(Lb) is

smaller than 2⌊
b2(X)tr−3

2 ⌋, then the variation of weight 1 Hodge structures of p is maximal.

Corollary 0.9. Under the same assumptions as in Proposition 0.8, the Abel-Jacobi map (3) is trivial.

Let p : L →B, q : L →X be a Lagrangian family. Up to shrinking B, we may assume that the map p : L →B
is smooth. Let

π : A := Alb(L /B)→ B

be the relative Albanese variety of p : L → B. In the proof of Theorem 0.7 and Proposition 0.8, we use a
similar construction to those in [9, 14] to get a holomorphic 2-form σA on A . If we assume the condition
♣, π : A → B is a Lagrangian fibration with respect to σA (see Section 2). It is interesting to notice that, by
this construction, under condition ♣, we can translate the problem concerning Lagrangian families to a problem
concerning Lagrangian fibrations. However, the total space of the Lagrangian fibration is no longer a hyper-
Kähler manifold, but a completely integrable system over an open subset of the base, as studied for instance
in [6, Chapter 7].

The organisation of the article is as follows. In Section 1, we prove Proposition 0.6. In Section 2, we construct
a Lagrangian fibration structure on the relative Albanese variety and use it to prove Theorem 0.7. In Section 3,
we discuss the condition on the maximality of the variation of Hodge structures. In Section 4, we construct
Lagrangian families satisfying ♣ whose Abel-Jacobi map is nontrivial, showing that Theorem 0.7 is optimal.
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1 A Criterion

In this section, we establish a criterion for the vanishing of the Abel-Jacobi map (3). Let us first recall the Abel–
Jacobi invariant and the Abel–Jacobi map defined by Griffiths. We follow the presentation in [16, Chapter 12].
Throughout this presentation only, X is a compact Kähler manifold.

Definition 1.1. The k-th intermediate Jacobian J2k−1(X) is the complex torus

J2k−1(X) = H2k−1(X ,C)/(FkH2k−1(X)⊕H2k−1(X ,Z)).

The Abel-Jacobi map
Φk

X : CHn(X)hom → J2n−1(X)

Z = ∂Γ 7→
∫

Γ

associates to any cycle Z = ∂Γ homologous to zero the current of integration along Γ (See [16, 12.1.2]). For
an algebraic cycle Z of codimension k in X , the associated an element Φk

X (Z) in J2k−1(X) [16, 12.1.2] is called
the Abel–Jacobi invariant of the cycle Z. The triviality of Abel–Jacobi invariant is a weaker condition than the
rational equivalence.

Proposition 1.2. Let Z be an algebraic cycle that is rationally equivalent to 0 in X. Then the Abel–Jacobi
invariant of Z is 0.

Proof It is proven in [16, Lemme 21.19]. □

Let Z ⊂ B×X be a flat family of subvarieties of codimension k in X . More precisely, B is a connected
complex manifold, and Z is a subvariety of codimension k in B×X , flat over B. Let p : Z → B and q : Z → X
be the projection maps to the two components. Let 0 ∈ B be a reference point.

Definition 1.3. The Abel–Jacobi map of the family Z ⊂ B×X with respect to the reference point 0 ∈ B is the
map

ΨAJ
L : B → J2k−1(X)

b 7→ Φk
X (q∗p∗(b)−q∗p∗(0)).

Theorem 1.4 (Griffiths). We have the following properties about the Abel–Jacobi map.
(i) The Abel–Jacobi map ΨAJ

L : B → J2k−1(X) is holomorphic.
(ii) The image of the differential of ΨAJ

L at any point lies in Hk−1,k(X)⊂ H2k−1(X ,C).

Proof (i) is proven in [16, Théorème 12.4] and (ii) is proven in [16, Corollary 12.19 and Remarque 12.20]. □

This concludes the presentation of Abel–Jacobi invariants and Abel–Jacobi maps. From now on, let X be a
hyper-Kähler manifold of dimension 2n. With the notation jb : Lb → X as in the introduction, we prove
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Proposition 1.5. Consider a Lagrangian family of hyper-Kähler manifold X of dimension 2n given by a diagram
as in (1).
(a) If for general b ∈ B, the restriction map

j∗b : H2n−1(X ,Q)→ H2n−1(Lb,Q)

is zero, then the Abel-Jacobi map (3) is trivial.
(b) If condition ♣ holds (see Proposition 0.6), then the converse of (a) holds.

Remark 1.6. The cohomology group H2n−1(Lb,Q) has a Hodge structure of weight 2n− 1 and level 1. By
Hodge symmetry and using the fact j∗b : H2n−1(X ,Q) → H2n−1(Lb,Q) is a morphism of Hodge structures, we
conclude that j∗b : H2n−1(X ,Q)→ H2n−1(Lb,Q) is zero, if and only if j∗b : Hn−1,n(X)→ Hn−1,n(Lb) is zero.

Proof Let dΨAJ
L ,b : TB,b → Hn(X ,Ωn+1

X ) denote the differential of the Abel-Jacobi map ΨAJ
L at point b ∈ B

(Theorem 1.4). Let jb∗ : H0(Lb,ΩLb)→ Hn(X ,Ωn+1
X ) be the Gysin map, which is the Serre dual to the following

composition
j∗b : Hn(X ,Ωn−1

X )→ Hn(Lb,Ω
n−1
L |Lb

)→ Hn(Lb,Ω
n−1
Lb

). (5)

By the above remark, the proposition follows from the following lemma and the fact that

∪σX : Hn(X ,Ωn−1
X )→ Hn(X ,Ωn+1

X )

is an isomorphism since ∧σX : Ω
n−1
X → Ω

n+1
X is a vector bundle isomorphism. □

Lemma 1.7. The following diagram is commutative:

TB,b Hn(X ,Ωn−1
X )

H0(Lb,ΩLb) Hn(X ,Ωn+1
X ).

dΨAJ
L ,b

⌟q∗σX ∪σX

jb∗

(6)

Proof We are going to show that the Serre dual of the diagram (6) is commutative.

Let L•Ωi
L |Lb

be the Leray filtration [16, Chapter 16] induced on the vector bundle Ωi
L |Lb

by the exact se-
quence

0 → p∗ΩB,b → ΩL |Lb
→ ΩLb → 0,

and defined by L jΩi
L |Lb

= p∗Ω
j
B,b ∧Ω

i− j
L |Lb

. Since Lb is supposed to be Lagrangian, q∗σX ∈ H0(Lb,L1Ω2
L |Lb

)

and thus the cup product
∪q∗σX : Ω

•
L |Lb

→ Ω
•+2
L |Lb

sends LkΩ•
L |Lb

to Lk+1Ω
•+2
L |Lb

. Denoting q∗σX the image of q∗σX in H0(Lb,Gr1
LΩ2

L |Lb
) ∼= H0(Lb,ΩLb)⊗ΩB,b,

this implies the existence of the following commutative diagram

L1Ω
n+1
L |Lb

= Ω
n+1
L |Lb

KLb ⊗ p∗ΩB,b = Gr1
LΩ

n+1
L |Lb

L0Ω
n−1
L |Lb

= Ω
n−1
L |Lb

Ω
n−1
Lb

= Gr0
LΩ

n−1
L |Lb

,

∪q∗σX ∪q∗σX
(7)

where KLb is the canonical bundle of Lb. Taking the n-th cohomology of (7) and combine it with q∗ :
Hn(X ,Ω•

X )→ Hn(Lb,Ω
•
L |Lb

), we get the following commutative ladder

Hn(X ,Ωn+1
X ) Hn(Lb,Ω

n+1
L |Lb

) Hn(Lb,KLb ⊗ p∗ΩB,b)∼= ΩB,b

Hn(X ,Ωn−1
X ) Hn(Lb,Ω

n−1
L |Lb

) Hn(Lb,Ω
n−1
Lb

).

q∗

q∗

∪σX ∪q∗σX ∪q∗σX (8)
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Lemma 1.8. The composite in the first row of the diagram (8) coincides with the dual of dΨL ,b.

Proof Let p̄ : L̄ → B̄, q̄ : L̄ → X be a relative completion of p : L → B with respect to the morphism
q : L → X . More precisely, B̄ is a smooth projective variety, p̄ is a flat morphism extending p, and q̄ is a
morphism extending q. The extended family has a Abel–Jacobi map ΨAJ

L̄
: B̄→ J2n−1(X) that induces a morphism

of complex tori ψ : Alb(B̄)→ J2n−1(X) whose differential is given by the morphism of Hodge structures ([16,
Théorème 12.17])

q̄∗ p̄∗ : H2d−1(B̄,Z)→ H2n−1(X ,Z),

where d = dimB. It is well-known that the differential of the Albanese map alb : B̄ → Alb(B̄) at a point b ∈ B
is given by the dual of the evaluation map evb : H0(B̄,ΩB̄) → ΩB̄,b. Hence, the dual of dΨAJ

L ,b is given by the
correspondance p̄∗q̄∗ : Hn(X ,Ωn+1

X )→ H0(B̄,ΩB̄) composed with the evaluation map evb : H0(B̄,ΩB̄)→ ΩB̄,b
∼=

ΩB,b. The domain B̄ can be restricted to B before the evaluation map evb : H0(B̄,ΩB̄) → ΩB,b. Therefore, the
dual of dΨAJ

L ,b is given by the correspondance p∗q∗ : Hn(X ,Ωn+1
X )→ H0(B,ΩB) composed with the evaluation

map evb : H0(B,ΩB)→ ΩB,b. The Gysin map p∗ : Hn(L ,Ωn+1
L )→ H0(B,ΩB) is given by the Leray filtration.

Taken together, the dual of dΨAJ
L ,b is given by

Hn(X ,Ωn+1
X )

q∗→ Hn(L ,Ωn+1
L )→ Hn(L ,KL /B ⊗ p∗ΩB)→ H0(B,Rn p∗ΩL /B ⊗ΩB)

evb→ ΩB,b.

Since the restriction to the fiber Lb and taking the Leray filtration are commutative processes, the above composite
of maps is equal to the one that takes the restriction to the fiber Lb first and then takes the Leray filtration. The
latter one is exactly the first row of the diagram (8). □

As in (5), the composite in the second row is j∗b. Taking into account of Lemma 1.8, the diagram 8 is indeed
the Serre dual of the diagram (6). This concludes the proof of Lemma 6. □

2 Lagrangian Fibrations

In this section, we associate to any Lagrangian family satisfying condition ♣ a Lagrangian fibration with the help
of a construction appeared in [9, 14], and use this Lagrangian fibration to prove Theorem 0.7.

General Constructions

Let (1) be a Lagrangian family of a hyper-Kähler manifold X of dimension 2n. We fix a relative polarization of
L → B given by a hyperplane section of X . Let

π : A := Alb(L /B)→ B

be the relative Albanese variety of p : L → B.

Lemma 2.1. Let l be the relative dimension of p : L → B. Then there exist an open dense subset B0 ⊂ B and
a finite covering B′

0 → B0 such that, denoting p′0 : L ′
0 → B′

0 the base change of p under B′
0 → B0 ↪→ B and

π ′
0 : A ′

0 → B′
0 the relative Albanese variety of p′0, there is a cycle Z0 ∈CH l(A ′

0 ×B′
0
L ′

0) such that

[Z0]
∗ : p′0∗ΩL ′

0/B′
0
→ π

′
0∗ΩA ′

0/B′
0

is an isomorphism.

Proof Let B0 ⊂ B be the subset of regular points of p : L → B. For b ∈ B0, let Cb ⊂ Lb be a complete
intersection curve and JCb the Jacobian variety of Cb. By Lefschetz theorem on hyperplane sections, j∗ : JCb →
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Ab := Alb(Lb) is surjective. By the semi-simplicity of polarized Hodge structures, there exists a Q-section
s : Ab → JCb of j∗, i.e., there exists N > 0 such that j∗ ◦ s = N · idAb . On JCb ×Cb, we have the Poincaré divisor
db ∈CH1(JCb ×Cb) such that [db]

∗ : H1(Cb,Q)→ H1(JCb ,Q) is an isomorphism of Hodge structures, exhibiting
the inverse of the pull-back of the Jacobi map jacb : Cb → JCb . Let us consider

Ab ×Cb JCb ×Cb

Ab ×Lb

(s,idCb )

(idAb , j)

and define Zb := (idAb , j)∗(s, idCb)
∗(db) ∈ CH l(Ab ×Lb). Then [Zb]

∗ : H1(Lb,Q) → H1(Ab,Q) is given by the
composition

H1(Lb,Q)
j∗→ H1(Cb,Q)

d∗b→ H1(JCb ,Q)
s∗→ H1(Ab,Q), (9)

which is an isomorphism by the definition of s. In fact, let ( j∗)∗ : H1(Ab,Q) → H1(JCb ,Q) be the pull-back
map of j∗ : JCb → Ab = Alb(Lb). Precomposing the left-hand-side of ( j∗)∗ : H1(Ab,Q) → H1(JCb ,Q) with
the natural identification H1(Alb(Lb),Q) ∼= H1(Lb,Q), and post-composing the right hand side with the pull-
back of the Jacobi map jac∗b : H1(JCb ,Q) → H1(Cb,Q), we would get the pull-back map j∗ : H1(Lb,Q) →
H1(Cb,Q). Since jac∗b : H1(JCb ,Q)→ H1(Cb,Q) is the inverse of d∗

b : H1(Cb,Q)→ H1(JCb ,Q), the composite
d∗

b ◦ j∗ : H1(Lb,Q) → H1(JCb ,Q) of the first two maps of the composition (9) is exactly the pull-back map of
j∗ : JCb → Ab = Alb(Lb) at the level of cohomology, after the natural identification H1(Alb(Lb),Q)∼= H1(Lb,Q).
Since j∗ ◦ s = N · idAb , we get the desired isomorphism.

The cycles Zb are defined fiberwise, but standard arguments [17, Chapter 3] show that they can be constructed
in family over a smooth generically finite cover B′

0 → B0. Let us spell out the standard arguments. By the
theory of Hilbert schemes, there are countably many connected projective B0-schemes H1, . . . ,Hi, . . . together
with the universal families of cycles Z1, . . . ,Zi, . . . such that for each i ∈ N, every fiber of Zi → Hi is a cycle
Zb ∈ Z 1(Ab × Lb) such that [Zb]

∗ : H1(Lb,Q) → H1(Ab,Q) is an isomorphism. By the construction of the
previous paragraph, the structure map

⋃
i∈N Hi → B0 is surjective, thus there is i ∈ N, such that Hi → B0 is

surjective. Since Hi → B0 is projective, we may take a multisection of the map B′
0 → B0, and the universal family

Zi restrited to B0 gives the desired 1-cycle. □

For the sake of simplicity, we shall note B0, L0 and A0 instead of B′
0, L ′

0 and A ′
0 . We define a holomorphic

2-form σA0 on A0 by setting
σA0 := [Z0]

∗q∗0σX , (10)

where q0 : L0 → X is the natural map.

Proposition 2.2. (a) The 2-form σA0 is closed.
(b) σA0 vanishes on fibers of π0 : A0 → B0.

(c) The composite morphism κ : TB0

⌟q∗0σX−→ p0∗ΩL0/B0

[Z0]
∗

→ π0∗ΩA0/B0 is given by the contraction ⌟σA0 .

Proof (a) Let Zq := (id,q0)∗Z0 ∈CH(A0 ×X). Then by the projection formula, σA0 = [Zq]
∗σX . Let A ′ be a

projective completion of A0. Then Zq extends to a cycle Z̄q of A ′×X . σA0 extends to a 2-form σA ′ := [Z̄q]
∗σX

which is automatically closed since A ′ is projective. Thus, σA0 = σA ′|A0 is also closed.

(b) Since Z0 is a cycle in A0×B0 L0 ⊂A0×L0, the morphism [Z0]
∗ : H∗(L0)→H∗(A0) preserves the Leray

filtrations on both sides. Therefore, σA0 ∈ H0(A0,π
∗
0 ΩB0 ∧ΩA0)⊂ H0(A0,Ω

2
A0
) since q∗0σX ∈ H0(L0, p∗0ΩB0 ∧

ΩL0) by the definition of Lagrangian families. Therefore, σA0 vanishes on the fibers of π0 : A0 → B0.

(c) By Lemma 2.1, [Z0]
∗ induces an isomorphism H0(B0,ΩB0 ⊗ p0∗ΩL0/B0) → H0(B0,ΩB0 ⊗ π0∗ΩA0/B0)

which sends ⌟q∗0σX to ⌟σA0 . □
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By (b) and (c) of the above proposition, we get the following diagram that is commutative up to a sign:

0 TA0/B0 TA0 π∗
0 TB0 0

0 π∗
0 ΩB0 ΩA0 ΩA0/B0 0.

(π∗
0 κ)∗ ⌟σA0 π∗

0 κ (11)

Here, the commutativity of the second square is dual to Proposition 2.2 (c). Since the dual of ⌟σA0 : TA0 → ΩA0

is given by −⌟σA0 : TA0 → ΩA0 , the first square is anti-commutative.

Lemma 2.3. If condition ♣ (see Proposition 0.6) holds for all b ∈ B0, then σA0 is nowhere degenerate on A0.

Proof If condition ♣ holds, then π∗
0 κ : π∗

0 TB0 → ΩA0/B0 is an isomorphism. By the commutativity of (11) and
the five lemma, ⌟σA0 : TA0 → ΩA0 is an isomorphism, which means that σA0 is nowhere degenerate. □

Symmetry

Let (1) be a Lagrangian family of a hyper-Kähler manifold X of dimension 2n. We fix a relative polarization of
L → B given by a hyperplane section of X . Let b ∈ B be a general point. The infinitesimal variation of Hodge
structures on degree 1 cohomology of the fibers of p : L → B at b is given by (see [16, Lemme 10.19])

∇̄ : TB,b → Hom(H0(Lb,ΩLb),H
1(Lb,OLb)).

Precomposed with the map ⌟q∗σX : TB,b → H0(Lb,ΩLb), the map ∇̄ induces a bilinear map

S : TB,b ×TB,b → H1(Lb,OLb)

(u,v) 7→ ∇̄u(v⌟q∗σX ).
(12)

Proposition 2.4. The bilinear map S is symmetric in the sense that S(u,v) = S(v,u) for any u,v ∈ Tb,B.

Proof By Griffiths’ transversality [16, Chapter 17], S(u,v) = ρ(u)⌟(v⌟q∗σX ), where ρ : TB,b → H1(Lb,TLb) is
the Kodaira-Spencer map. Therefore, we need to show that the following diagram is commutative

TB,b ⊗TB,b H1(Lb,TLb)⊗TB,b

H0(Lb,ΩLb)⊗TB,b H1(Lb,OLb),

ρ⊗id

⌟q∗σX⊗id β

α

(13)

where α(ω,v) = ρ(v)⌟ω and β (u,χ) = u⌟(χ⌟q∗σX ).

To see the commutativity of (13), restrict the commutative ladder (11) to Lb and apply the cohomology on Lb,
then the commutativity of (11) implies the commutativity of (13). Indeed, (13) is the connecting homomorphism
of the cohomology of (11) tensored by TB,b. □

Remark 2.5. When condition ♣ is satisfied, the symmetry of S comes from the completely integrable system
structure on (A0,σA0). What we proved is in fact the symmetry of

S′ : TB,b ×TB,b → H1(Ab,OAb)

(u,v) 7→ ∇̄u(v⌟σA0).
(14)

Fixing a relative polarisation on A0 → B0, we have natural isomorphisms (always under ♣): H1(Ab,OAb)
∼=

H0(Ab,ΩAb)
∗ ∼= T ∗

B,b and we can thus view S′ as an element in T ∗
B,b ⊗T ∗

B,b ⊗T ∗
B,b. If this relative polarisation is

principal, Donagi and Markman proved in [6, Lemma 7.2] that S′ lies in Sym3T ∗
B,b. This result is called “weak

cubic condition” in [6, Lemma 7.2]. See also [12, Theorem 4.4]
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Now we are ready to prove the main theorem.

Proof of Theorem 0.7. Under the assumptions of Theorem 0.7, assume by contradiction that the Abel–Jacobi
map (3) is not constant. In what follows, we fix a relative polarization on p0 : L0 →B0 induced from a hyperplane
section of X , so that R2n−1 p0∗Q∼= R1 p0∗Q. By Proposition 0.6, the morphism

j∗ : H2n−1(X ,Q)→ R2n−1 p0∗Q∼= R1 p0∗Q

of variations of Hodge structures on an open subset B0 ⊂ B containing b is not zero. Hence, there is a non-
zero locally constant sub-variation of Hodge strutures I := Im j∗ ⊂ R1 p0∗Q. Since I is locally constant, for
any ω ∈ I1,0

b and u ∈ TB,b, ∇u(ω) = 0. Recall that ♣ means that ⌟q∗σX : TB,b → H0(Lb,ΩLb) is bijective. Let
F := (⌟q∗σX )

−1(I1,0) ⊂ TB,b. Then by the symmetry of S given by Proposition 2.4, F lies in the kernel of ∇̄,
which contradicts our assuption that the variation of Hodge structures is maximal.

3 Maximal Variations

In this section, we study under what conditions could the variation of Hodge structures of a Lagrangian family be
maximal. Consider a Lagrangian family of a hyper-Kähler manifold X of dimension 2n satisfying the condition
♣ given by the diagram as in (1). Let U ⊂ B be a simply connected open subset of B0 ⊂ B and let

P : U → Gr(h1,0(L),H2(L,C))
b 7→ H1,0(Lb)⊂ H1(Lb,C)∼= H1(L,C),

(15)

be the local period map of the Lagrangian family.

In what follows, we are going to use a universal property of the Kuga-Satake construction proved in [10,
Proposition 6].

Theorem 3.1 ([10]). Let (H2,q) be a polarized Hodge structure of hyper-Kähler type of dimension ≥ 5. Assume
that the Mumford–Tate group of the Hodge structure on H2 is maximal, namely the special orthogonal group of
(H2,q). Let H be a simple effective weight-1 Hodge structure, such that there exists an injective morphism of
Hodge structures of bidegree (−1,−1)

H2 ↪→ Hom(H,A)

for some weight-1 Hodge structure A. Then H is a direct summand of the Kuga–Satake Hodge structure

H1
KS(H

2,q). In particular, dimH ≥ 2⌊
dimH2−1

2 ⌋.

With the same notations as in the introduction, we prove

Proposition 3.2. Assume that the Mumford-Tate group of the Hodge structure H2(X ,Q) is maximal, i.e. it is the
special orthogonal group of (H2(X ,Q)tr,q) and assume b2(X)tr ≥ 5. If the dimension of H0,1(Lb) is smaller than

2⌊
b2(X)tr−3

2 ⌋ for a general fiber Lb of p : L → B, then the variation of weight 1 Hodge structure of p is maximal.

Proof We use the same argument as in [10] where similar results were proved for Lagrangian fibrations.
Assuming that the period map (15) is not generically an immersion, we are going to prove that dimH0,1(Lb) ≥
2⌊

b2(X)tr−3
2 ⌋. By assumption, the nonempty general fibers of P are of dimension ≥ 1. Let b ∈U be a general point

and let Bb the fiber of P passing through b. Let Ub = Bb∩U . Then the fibers of π|Ub : AUb →Ub are isomorphic
with each other. Thus, up to a base change by a finite covering of Ub, we may assume π|Ub : AUb →Ub is trivial,
i.e., AUb =Ub ×Ab. Let πFb : AFb → Fb be a smooth completion of π|Ub , then AFb is birational to Fb ×Ab, which
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gives a morphism H2(AFb)→ H2(Fb ×Ab). Recall by Lemma 2.1, we get a morphism [Z]∗ : H2(X)→ H2(A )

that sends σX to a holomorphic 2-form which is non-degenerate on AU . Finally, the rational map AFb 99K A

induces H2(A )→ H2(AFb). Compositing all these maps, we get a morphism

α : H2(X)tr ↪→ H2(X)→ H2(A )→ H2(AFb)→ H2(Fb ×Ab)→ H1(Fb)⊗H1(Ab), (16)

where the last map is given by the projection in the Künneth decomposition.

Lemma 3.3. α : H2(X)tr → H1(Fb)⊗H1(Ab) is injective.

Proof Since h2,0(X) = 1 and H2,0(X) is orthogonal to NS(X) with respect to the Beauville-Bogomolov-Fujiki
form, H2(X)tr is a simple Hodge structure. Therefore, to show the injectivity of α it suffices to show that α is
not zero. We claim that α(σX ) ̸= 0. Indeed, Since Ab is Lagrangian with respect to σA (Proposition 2.2 (b)),
in the Künneth’s decomposition of H2(Ab ×Fb), the image of σX in H0(Fb)⊗H2(Ab) is zero. If furthermore
α(σX ) = 0 in H1(Fb)⊗H1(Ab), then the image of σX on Fb ×Ab comes from a 2-form on Fb, which has rank
≤ dimFb. Therefore, the rank of σA has rank ≤ dimFb on AUb . On the other hand, the codimension of AUb in
AU is dimB−dimFb, and thus the non-degeneration of σAU implies that σA has rank ≥ 2dimFb on AUb . This
is a contradiction since we are assuming dimFb ≥ 1. □

We are now in the position to use the universal property of the Kuga-Satake construction (see Theorem 3.1
above). Since α : H2(X)tr → H1(Fb)⊗H1(Ab) is nonzero, there is at least one simple direct factor A of Ab such
that H2(X)tr → H1(Fb)⊗H1(A) is nonzero thus injective. Taking H2 as H2(X)tr, we conclude by Theorem 3.1
that

dimH0,1(Lb) = dimAb ≥ dimA ≥ 1
2
×2⌊

dimH2(X)tr−1
2 ⌋ = 2⌊

b2(X)tr−3
2 ⌋,

as desired. □

4 Example of a Lagrangian Family with Nontrivial Abel-Jacobi Map

Recall the construction of generalized Kummer varieties introduced in [1]. Let A be an abelian surface and A[n+1]

the Hilbert scheme of length n+1 subschemes of A. Let alb : A[n+1] → A be the composition of the Hilbert-Chow
morphism and the summation map

A[n+1] → A(n+1) → A.

Note that alb is an isotrivial fibration. The generalized Kummer variety Kn(A) is defined to be the fiber of alb
over 0 ∈ A. As is shown in [1], Kn(A) is a hyper-Kähler manifold of dimension 2n.

In this section, we are going to construct Lagrangian families of X := Kn(A) for n ≥ 2, satisfying condition
♣ and whose Abel-Jacobi map is not trivial.

For any x ∈ A, one defines a subvariety Zx of Kn(A) consisting of Artinian subschemes of A of length n+ 1
supported on x and −nx, with multiplicities n and 1, respectively. By [3, Proposition VI.1.1], Zx is a rational
variety of dimension n−1 if x is not an (n+1)-torsion point. Let Z =

⋃
x∈A Zx and let π : Z → A send elements

in Zx to x. For any curve C ⊂ A, define ZC =
⋃

x∈C Zx.

Now let B be a connected open subset of the Hilbert scheme of deformations of a smooth curve C ⊂ A and
C → B the corresponding family.

Lemma 4.1. {ZC}C∈B is a Lagrangian family of Kn(A) satifying condition ♣.

Proof Since for general C, ZC is a fibration over a curve C whose general fibers are rational, any holomorphic
2-form on ZC is 0. Furthermore, dimZC = n = dimKn(A)/2. These imply that {ZC}C∈B is a Lagrangian family.
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We now show that this family satisfies condition ♣. Denoting L the total space of the family {ZC}C∈B and L a
general fiber, and using as before the following notation

L X

B

q

p ,

we need to show that ⌟q∗σKn(A) : H0(L,NL/Z) = H0(L,NL/L )→ H0(L,ΩL) is an isomorphism. Since the general
fibers of π are rational, q∗σKn(A) = π∗σA, where σA is the unique (up to coefficients) holomorphic 2-form on A.
Therefore, we can conclude by the commutativity of the following diagram

H0(C,NC/A) H0(C,ΩC)

H0(L,NL/Z) H0(L,ΩL)

⌟σA

π∗ π∗

⌟π∗σA

noting that the two vertical arrows are isomorphims since the fibers of π are rational, and that ⌟σA :
H0(C,NC/A)→ H0(C,ΩC) is an isomorphism since σA is nondegenerate. □

Proposition 4.2. The Abel-Jacobi map of the Lagrangian family {ZC}C∈B is not trivial.

Proof Let i : C ↪→ A be a general curve in the family C → B. By Proposition 1.5(a), it suffices to show that the
restriction map H2n−1(X ,Q)→ H2n−1(ZC,Q) is nonzero.

Define an injective morphism
β : A×A ↪→ A(n+1)

(x,y) 7→ n{x}+{y},
where we use the notation {x} ∈Z0(A) the 0-cycle of the point x ∈ A. Consider the following pull-back diagram
defining a subvariety Z′ ⊂ A[n+1]

Z′ A[n+1]

A×A A(n+1)

α

π ′ c

β

,

where c : A[n+1] → A(n+1) is the Hilbert-Chow morphism. Then Z = Z′∩Kn(A)⊂ A[n+1]. We have the following
commutative diagram where all three squares are pull-back diagrams

Z X = Kn(A)

Z′ A[n+1]

A

A×A A(n+1) A

π α

π ′ c alb

f

β ∑

,

Here f : A → A×A defined by x 7→ (x,−nx) is the fiber over 0 ∈ A of the trivial fibration ∑◦β : A×A → A.

By [5, Corollary 5.1.5], [Z′]∗ : H2n−1(A[n+1],Q) → H1(A×A,Q) is surjective. Furthermore, the restriction
map f ∗ : H1(A× A,Q) → H1(A,Q) is surjective since f is the fiber of a trivial fibration. These imply that
[Z]∗ : H2n−1(X ,Q) → H1(A,Q) is surjective. Finally, since the restriction map i∗ : H1(A,Q) → H1(C,Q) is
injective by Lefschetz hyperplane theorem, the composition map i∗ ◦ [Z]∗ : H2n−1(X ,Q)→ H1(C,Q) is nonzero.
This implies that the restriction map H2n−1(X ,Q)→ H2n−1(ZC,Q) is nonzero, as desired. □
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