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Based on a linearization approximation coupled with path integral formalism, we propose

a method derived from the propagation of quasi-classical trajectories to simulate reso-

nance Raman spectra. This method is based on a ground state sampling followed by an

ensemble of trajectories on the mean surface between the ground and excited states. The

method was tested on three models and compared to quantum mechanics solution based on

a sum-over-states approach: harmonic and anharmonic oscillators and the HOCl molecule

(hypochlorous acid). The method proposed is able to correctly characterize resonance Ra-

man scattering and enhancement, including the description of overtones and combination

bands. The absorption spectrum is obtained at the same time and the vibrational fine struc-

ture can be reproduced for long excited state relaxation times. The method can be applied

also to dissociating excited states (as is the case for HOCl).
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I. INTRODUCTION

Resonance Raman (RR) spectroscopy is a well-established tool to investigate molecular struc-

tures in different environments. For example, in biochemistry it is possible to identify vibrational

signatures of specific chromophores removing the contribution of the environment on the spectra1.

In fact, RR spectroscopy consists in irradiating the sample with an incident laser pulse whose en-

ergy corresponds (or is close) to an electronic transition and then record the Raman spectra. The

resulting Raman intensity of the absorbing molecules is tremendously enhanced and this makes

the RR technique a powerful tool in analytical, physical and biological chemistry2. Moreover, for

the purpose of species identification in complex media, RR not only offers selectivity through tun-

ing of the incident light but it also enhances overtones and combination bands, leading to complex

fingerprints even for simple species. This has been the case, for example, for the radical S•−3 , the

species at the origin of the deep blue colour of ultramarine and lapis lazuli3. While it has only

three vibrational bands, up to six overtones and combination bands are visible using RR4,5. Re-

cently, S•−3 has been identified in high pressure hydrothermal systems through the detection of an

overtone using RR6–8. The same principles of RR are at the basis of its use in material science and

of surface enhanced Raman spectroscopy (SERS)9.

The general theory of RR was given by Albrecht as a special case of Raman scattering10 based

on the time-independent Kramers-Heisenberg-Dirac (KHD) formula11,12. This approach is at the

basis of calculation of RR spectra of molecules given their equilibrium geometry13. It can be com-

bined with time-dependent formulation for the excited-state and both solvation and anharmonicity

can be included14,15.

An alternative approach, based on a time-dependent reformulation of KHD expression, was

developed by Heller and co-workers16–18. This development provides an expression of RR spec-

trum in terms of wave-packet nuclear dynamics in the short-time limit and it was at the basis,

for example, of the method of Ben-Nun and Martinez, who used the ab-initio multiple spawning

method from which RR spectrum of ethylene was successfully obtained19. Another semi-classical

approach, based on Herman-Kluk propagator, was proposed by Voth and co-workers, obtaining

the RR spectrum of I2 in Xe at 230 K in agreement with experiments20.

When computing RR to study chromophores in complex environments, like, e.g. carotenoids

in different solvents, into an isolated protein and in the full biological photo-system21–27, the time-

independent KHD formalism faces a challenge: one has to define a minimum energy structure and
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then obtain the associated normal modes. This can be problematic for the many flexible molecules,

who are particularly interesting to investigate through vibrational spectroscopy. In proteins (and

more in general in biological media), where geometries with minimum energy topology can be

hard (albeit impossible) to be located. For example, it is known that an environment will allow

distortion from planarity of carotenoids (a typical chromophore where RR studies provide much

information) but the minimum energy searches fail for such configurations and theoretical spectra

are often calculated only for planar minimum energy structures22,23,28. The time-dependent for-

malism offers a tempting possibility. However, the semi-classical methods developed so far can

hardly be extended to complex systems mainly due to high computational cost. Further develop-

ments and approximations are thus needed to apply this approach to extended molecular systems.

In general, a practical and successful way of performing theoretical vibrational spectroscopy

of complex molecular systems is using molecular dynamics and spectral density methods. Exam-

ples can be found in biophysics29, ion chemistry30 or crystallography31. Based on linear response

theory, the Fourier transform of the appropriate time-correlation function can provide several spec-

troscopic signals. This approach can be used in the framework of molecular dynamics simulations,

obtaining different spectroscopic signals, like e.g. IR32, Raman33, vibration circular dichroism34,

vibrational sum frequency generation35,36. While nuclei generally evolve classically, the resulting

intensities can be corrected using appropriate pre-factors to include quantum effects37. Recently,

Mennucci and co-workers obtained approximated RR signals from biomolecular simulations38,39

by combining spectral density (obtained from autocorrelation function of excitation energies) with

Huang-Rhys factors, giving a first order approximation of the RR intensity of a discrete set of

vibrational modes40,41.

Additionally, the RR signal could be calculated as the auto-correlation of polarizability along

a molecular trajectory through the so-called Placzek approximation, consisting in neglecting the

vibrational state dependence of the transition energy from a vibrational state i of the electronic

ground state to a vibrational state k of an electronic excited state: ωki ≈
∆Eel

h̄ , where ∆Eel is the

electronic transition energy42. Equivalently, the same result can be obtained from a classical, or

short time, approximation to the Wigner transform of the polarizability operator43,44. The po-

larizability operator then depends only on the atomic positions and taking the derivative of the

Placzek polarizability with respect to the position can provide the Raman intensity of fundamen-

tal transitions42,44,45. Recently, Resonance Raman spectra were thus obtained from DFT-based

molecular dynamics simulations by calculating for each step the polarizability tensor using real
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time time-dependent DFT (RT-TDDFT)46,47. This is a further development of a previous work

from which the Raman spectrum was obtained48 from the Placzek’s polarizability theory49. RT-

TDDFT was also used by other authors to obtain the Placzek’s polarizability tensor and then RR

spectra44,50.

Here we present an extension of these works and we develop a correlation-function based ap-

proach that goes beyond the short time Placzek approximation, to obtain the signal from molec-

ular dynamics simulations while still accounting for vibronic effects and describing overtones

and combination bands. We start from the time-dependent formulation of KDH expression in

the path-integral formalism and apply a forward-backward linearization of the path integral51–56.

Linearization has been shown to be a powerful framework to build semiclassical approximations

to quantum correlation functions, mostly the linearized semi-classical initial value representation

(LSC-IVR)57–61. Our approach uses an extra linearization procedure for approximating the fre-

quency dependent polarizability, which improves over the typical Placzek type approximation,

in particular for the intensity of overtones and combination bands. This second linearization is

closely related to linearization for non-adiabatic processes62–65. It leads to a molecular dynamics

scheme to compute RR spectra and also absorption spectra including vibronic effects.

The algorithm derived and proposed in the present work is applied to simple model systems for

which it can be compared with sum-over-states exact results. We first consider two-dimensional

independent mode displaced harmonic oscillators (IMDHO)42 and then introduce non-harmonicity

using a model due to Heller18. Finally, we consider the case of a dissociative electronic excited

state through an analytical model of HOCl, proposed some years ago and used to model RR

spectrum with a quantum dynamical treatment66,67.

II. THEORY

A. Raman scattering and Absorption

The Raman diffusion cross-section can be expressed from second-order perturbation theory and

using the Born-Oppenheimer approximation as

IRaman(ωs) ∝ ωIω
3
s ∑

i

ρ(i)∑
f

δ (ωI−ωs−ω f i)
∣∣α f i(ωI)

∣∣2 (1)

where i and f denote the initial and final vibrational states, respectively, ρ(i) is the probability

for the system to be in i state,ωI is the incident frequency, ωs the scattered frequency, ω f i is the
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energy difference between the initial and final states and α f i is the polarizability tensor.

The polarizability tensor, corresponding to a transition between vibrational states f and i

of the electronic ground state a, can be expressed with the Kramers-Heisenberg-Dirac (KHD)

equation11,12:

α f i(ωI) =
1
h̄ ∑

n




〈
f
∣∣∣M̂s

∣∣∣n
〉〈

n
∣∣∣M̂I

∣∣∣i
〉

(En−Ei)/h̄−ωI− jΓ

+

〈
f
∣∣∣M̂I

∣∣∣n
〉〈

n
∣∣∣M̂s

∣∣∣i
〉

(
En−E f

)
/h̄+ωI + jΓ




(2)

where n are the vibrational states of the excited state b (in general the KHD equation can be

expressed on multiple excited states, here for simplicity we consider only one). M̂s and M̂I are

the transition dipole operators between electronic states a and b, for scattered (s) and incident (I)

polarizations, respectively. Finally, Γ is a phenomenological damping factor, which is related to

the lifetime of state b (note that here and hereafter we denote the imaginary unit as j to avoid

confusion with initial vibrational state, |i〉).

The second term in Eq. 2 is the non resonant term (NRT ), conjugate to the first term with the

opposite sign for ωI . Since in resonance Raman it is much smaller than the resonant term it is

often omitted.

We first follow Jensen and Lee44 to construct an approximation to the RR signal suitable to

MD simulations by expressing Eq. 1 in the time-domain, by using the spectral representation of

the Dirac distribution:

δ (ω) =
1

2π

∫ +∞

−∞
e− jωt dt. (3)

Then, the RR intensity can be written as

IRaman(ωs) ∝ ωIω
3
s ∑

i

ρ(i)∑
f

1
2π

∫ +∞

−∞
e− j(ωI−ωs)tα∗f i(ωI)e

j
E f
h̄ tα f i(ωI)e

− j
Ei
h̄ t dt. (4)

This can be transformed in a quantum correlation function by introducing a polarizability operator,

P̂(ωI), through

α f i =
〈

f
∣∣∣P̂(ωI)+P̂

NRT (ωI)
∣∣∣i
〉
, (5)
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with each element given by the KHD expression

〈 f |P̂(ωI)|i〉=
1
h̄ ∑

n

〈
f
∣∣∣M̂s

∣∣∣n
〉〈

n
∣∣∣M̂I

∣∣∣i
〉

(En−Ei)/h̄−ωI− jΓ
(6)

〈 f |P̂NRT (ωI)|i〉=
1
h̄ ∑

n

〈
f
∣∣∣M̂I

∣∣∣n
〉〈

n
∣∣∣M̂s

∣∣∣i
〉

(
En−E f

)
/h̄+ωI + jΓ

, (7)

P̂NRT (ωI) denoting the non-resonant term. The RR signal is then expressed in the time domain

by

IRaman(ωs) ∝ ωIω
3
s

∫ +∞

−∞
e− j(ωI−ωs)t

〈(
P̂

†(ωI)+P̂
NRT †(ωI)

)
e j Ĥa

h̄ t
(
P̂(ωI)+P̂

NRT (ωI)
)

e− j Ĥa
h̄ t
〉

ρ

dt,

(8)

where Ĥa is the Hamiltonian operator for the system on state a, 〈·〉ρ denotes an average over the

density operator ρ̂ and Â† the adjoint of operator Â. Neglecting the non-resonant term leads to the

simpler expression:

IRaman(ωs) ∝ ωIω
3
s

∫ +∞

−∞
e− j(ωI−ωs)t

〈
P̂

†(ωI)e
j Ĥa

h̄ t
P̂(ωI)e

− j Ĥa
h̄ t
〉

ρ

dt

∝ ωIω
3
s

∫ +∞

−∞
e− j(ωI−ωs)tTr

(
ρ̂P̂

†(ωI)e
j Ĥa

h̄ t
P̂(ωI)e

− j Ĥa
h̄ t
)

dt,

(9)

The RR signal is now expressed as the Fourier transform of a quantum correlation function of the

frequency dependent polarizability operator P̂(ωI) with dynamics on the electronic state a.

Semiclassical approaches to the calculations of such correlation functions start by expressing

it in terms of Wigner transforms of operators. For a generic operator Ô, we can write the Wigner

transform as:

OW [x0, p0] =
∫ +∞

−∞

〈
x0−

∆x0

2

∣∣∣∣Ô
∣∣∣∣x0 +

∆x0

2

〉
e+

j
h̄ p0∆x0 d∆x0

=
∫ +∞

−∞

〈
x0 +

∆x0

2

∣∣∣∣Ô
∣∣∣∣x0−

∆x0

2

〉
e−

j
h̄ p0∆x0 d∆x0.

(10)

We quickly review such semiclassical approach for the specific case of RR. The quantum correla-

tion function can be rewritten exactly as

IRaman(ωs)∝ ωIω
3
s

∫ +∞

−∞
e− j(ωI−ωs)t

∫∫ +∞

−∞
dx0d p0

(
ρ̂P̂

†(ωI)
)

W
[x0, p0]

((
P̂(ωI)

)
(t)
)

W
[x0, p0] dt,

(11)
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by using the following property of Wigner transforms:

Tr
(

ÂB̂
)
=

1
2π h̄

∫
AW [x, p]BW [x, p]dxd p. (12)

In Eq. (11), we have the Wigner transform of the polarizability operator at time t which is:
((

P̂(ωI)
)
(t)
)

W
[x0, p0] =

(
e j Ĥa

h̄ t
P̂(ωI)e

− j Ĥa
h̄ t
)

W
[x0, p0] (13)

Several approaches, like initial value representation, have employed the linearization of the for-

ward and backward time propagation to justify the semiclassical approximation51–54,57–62,68,69:

IRaman(ωs) ∝ ωIω
3
s

∫ +∞

−∞
dte− j(ωI−ωs)t

∫∫ +∞

−∞
dx0d p0

(
ρ̂P̂

†(ωI)
)

W
[x0, p0]

(
P̂(ωI)

)
W
[xt , pt ]

(14)

where (xt , pt) are the position and momenta at time t along a classical trajectory initiated at time

t = 0 at (x0, p0).

The Wigner transform of ρ̂P̂†(ωI) represents a challenge. Several works have tackled in which

one has a product of density operator with position or momentum operators56,57,70, however here

the polarizability operator is highly non-linear in x̂ and p̂, which gives rise to enhanced overtones

and combination bands in RR spectra. Using the properties of Wigner transforms detailed in

Appendix C, it is possible to obtain a simpler formulation of the Raman intensity:

IRaman(ωs) ∝
2

1+ e−βω
ωIω

3
s

∫ +∞

−∞
dt e− jωt

∫∫ +∞

−∞
dx0d p0 (ρ̂)W [x0, p0]

(
P̂

†(ωI)
)

W
[x0, p0]

×
(
P̂(ωI)

)
W
[xt , pt ]

(15)

Note that this expression coincides, at high temperature, with the classical approximation to

the polarizablity-polarizability correlation while the prefactor ensures that Stokes and anti-Stokes

lines have the expected ratio of intensities at all temperatures.

B. Linearization approach for the frequency dependent polarizability

To proceed further we need to express the Wigner transform of the frequency dependent polar-

ization and here we propose a second linearization step.

As suggested by Heller18, the polarizability operator can be written in the time domain instead

as a sum over vibrational states |n〉 in the electronic excited state b. In fact, using the well-known

relation
1
Ω

= j
∫ +∞

0
e− jΩτ dτ ; Im{Ω}< 0 (16)
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we obtain

〈 f |P̂(ωI)|i〉=
j

h̄ ∑
n

∫ +∞

0
e−Γτe jωIτ

〈
f
∣∣∣M̂s

∣∣∣n
〉

e−
j
h̄ Enτ

〈
n
∣∣∣M̂I

∣∣∣i
〉

e
j
h̄ Eiτ dτ. (17)

The resonant contribution to the polarizability can then be written as the element of the operator:

P̂(ωI) =
j

h̄ ∑
b

∫ +∞

0
e−Γτe jωIτ dτ M̂s e−

j
h̄ Ĥbτ M̂I e

j
h̄ Ĥaτdτ (18)

where we discard again the non-resonant term.

The main difficulty for a semi-classical treatment of the polarizability operator is the propa-

gation over a time τ backward on the ground state a, e
j
h̄ Ĥaτ , and forward on the excited state b,

e−
j
h̄ Ĥbτ . Here, we apply linearization to a path integral formulation of these propagators and we

simplify the discussion for the case of only one excited state b. Note that it can be generalized to

several excited states such that the following discussion does not lose in generality. Final results

generalized for more than one excited state are reported in Appendix B.

We can first write the Wigner transform of the polarizability operator as:

(
P̂(ωI)

)
W
[x, p] =

∫ +∞

−∞
d∆xe

j
h̄ p∆x j

h̄

∫ +∞

0
dτ e−Γτe jωIτ

×

〈
x−

∆x

2

∣∣∣∣M̂se
− j

h̄ ĤbτM̂Ie
j
h̄ Ĥaτ

∣∣∣∣x+
∆x

2

〉 (19)

By applying the linearization procedure detailed in Appendix A to the Wigner transform of the

polarizability operator introduced above, and using the compact notation

exp


− j

2h̄

τ

P+1

P

∑
k=0


Vb (xk)−Va (xk)

+Vb (xk+1)−Va (xk+1)




≈ exp

[
−

j

h̄

∫ τ

0
du (Vb(xu)−Va(xu))

]

︸ ︷︷ ︸
ϕb−a

τ, f wd(x, p)

(20)

which is equivalent to:

exp


− j

2h̄

τ

P+1

P

∑
k=0


Vb (xk)−Va (xk)

+Vb (xk+1)−Va (xk+1)




≈ exp

[
−

j

h̄

∫ 0

−τ
du (Vb(xu)−Va(xu))

]

︸ ︷︷ ︸
ϕb−a

τ,bwd(x, p)

(21)
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where a phase is accumulated over a backward trajectory propagated over the average surface,

Vm, starting from (x, p), we obtain:
(
P̂(ωI)

)
W
[x, p] =

j

h̄

∫ +∞

0
dτ e−Γτe jωIτMs(x)MI (x−τ)ϕb−a

τ,bwd (x, p) (22)

and for the Wigner transform of the adjoint of the polarizability operator:

(
P̂

†(ωI)
)

W
[x, p] =−

j

h̄

∫ +∞

0
dτ e−Γτe− jωIτMs(x)MI (x−τ)ϕa−b

τ,bwd (x, p)

=
(
P̂(ωI)

)⋆
W
[x, p]

(23)

Such trajectory on the mean surface of the ground and excited states is typical in non-adiabatic

dynamics,63,64 leading to an Ehrenfest-like description. It is also found when deriving surface-

hopping from mixed quantum-classical Liouville dynamics71,72, consistent with the fact that mixed

quantum-classical Liouville dynamics can be itself derived through linearization65.

Introducing this result for the polarizability operator into the RR signal intensity, we get the

final expression:

IRaman(ωs) = K
2

1+ e−βω
ωIω

3
s

1
2π

1

h̄2

∫ +∞

−∞
dt e− jωst

∫∫
dx0 dp0

ρ̂W [x0, p0]

2π h̄

×MsMI

∫ +∞

0
dτ e−Γτe− jωIτϕa−b

τ,bwd(x0, p0)

×MsMI

∫ +∞

0
dτ ′ e−Γτ ′e jωIτ

′
ϕb−a

τ ′,bwd(xt , pt)

(24)

C. Absorption

The absorption spectrum is obtained simply from the equilibrium average of the polarizability

operator 〈
P̂(ωI)

〉
=

j

h̄

∫ +∞

0
dt e−Γte jωIt

∫ +∞

−∞
dx
〈

x
∣∣∣ρ̂M̂se

− j
h̄ tĤbM̂Ie

j
h̄ tĤa

∣∣∣x
〉

(25)

Introducing the linearized path-integral (LPI) result as in the previous section for the Wigner

transform of the polarizability operator we obtain the LPI expression for absorption:
〈
P̂(ωI)

〉
=

j

h̄
MsMI

∫ +∞

0
dt e−Γte jωIt

∫∫
dx0 dp0

×
ρ̂W [x0, p0]

2π h̄
ϕb−a

t,bwd(x0, p0)

(26)

This amounts to sampling initial conditions (x0, p0) according to the Wigner transform of the

density operator at finite temperature and for each initial condition performing a short molecular
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dynamics trajectory on the mean potential 1
2(Va +Vb) to obtain the oscillating phase that is then

Fourier transformed.

The linearization of the potentials around the average path is exact if both the ground state and

excited states are harmonic potentials with the same curvature, that is for the case of displaced

harmonic potentials. In that case, Eq. (23) is exact and so is then the LPI result for the Wigner

transform of the polarizability operator. As no further approximation is needed to express the

absorption from it, in this harmonic limit the absorption in the LPI approach is also exact. This

will be illustrated below where we will show that LPI reproduces a virtually exact sum-over-states

approach and thus the vibronic structure of the absorption spectrum.

III. NUMERICAL DETAILS

A. LPI-MD implementation

From the expression of the signal, to compute the RR spectrum we first generate a set of initial

conditions x0, p0 from the Wigner distribution. To do so we have employed the Local Gaussian

Approximation from Liu and Miller58. It consists in a path-integral Monte-Carlo simulation to

generate the initial positions, while momenta are generated randomly from a Gaussian distribution

derived from the local curvature of the potential energy surface. The path-integral calculations

were performed with 128 beads and at each step 16 consecutive beads were resampled using

staging73. 500 steps were used for equilibration and then initial conditions were extracted every

50 steps.

From each initial configuration x0, p0, a trajectory xt , pt is generated on the electronic ground

state with a Velocity-Verlet algorithm. Then at regular intervals, the frequency dependent polariz-

ability is computed by running backward short trajectories on the mean ground and excited state

surfaces, with initial configuration xt , pt , also using a Velocity-Verlet algorithm. The Fourier trans-

form of the phase factor, including the damping factor, along this backward trajectory gives the

frequency dependent polarizability as a function of the incident frequency. The auto-correlation

function of the frequency dependent polarizability is then computed by correlating that quantity at

time t along the ground state trajectory with that quantity at time t = 0. Note that we do not use a

“sliding” average over the ground state trajectory, since the sampling density is not conserved by

the classical dynamics.
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The Fourier transform of the autocorrelation function of the frequency dependent polarizability

is then calculated for each incident frequency to obtain the RR spectrum as a function of both

the incident and scattered frequencies. As for the absorption spectra, one trajectory on the mean

surface, starting from the configuration x0, p0, is enough to average the frequency dependent po-

larizability over the initial configurations.

The calculation of a RR spectrum is thus characterized by: (i) the number of initial config-

urations considered, (ii) the length ∆T of the trajectories on the ground state, (iii) the sampling

interval δT on this trajectory and (iv) the length Taux of the auxiliary trajectories on the mean sur-

face. In the following, we will test the convergence over the number of initial configurations while

the other parameters are dictated by the desired precision in the incident and scattered frequency.

More specifically, the length of the trajectories on the ground state is related to the lowest acces-

sible scattered frequency while the sampling interval to the highest desired frequency. Similarly,

the length of the auxiliary trajectories conditions the accuracy of the RR signal as a function of the

incident frequency. These parameters are given below for all simulations using the three models.

Finally, to make the figures easier to read, the Raman spectra peaks plotted with respect to

the scattered frequency have all been widened. This has been done thanks to a convolution by a

Cauchy–Lorentz distribution of 30 cm−1 width. Furthermore, when showing RR spectrum as a

function of the scattered frequency, an integral over the incident frequency is performed and vice

versa. In each case the integral of the incident and scattered frequencies correspond to integrating

over a vibronic peak or over a vibrational band, respectively.

B. Sum-over-states (SoS) implementation

The reference SoS calculations were performed using a product discrete variable representation

(DVR) of the 2-dimensional wavefunctions74. We have employed a Gauss-Hermite quadrature,

expanding the wavefunctions with Hermite polynomials as eigenstates of an harmonic potential

centered around a mid-point between the equilibrium positions in the ground and excited states.

The curvature of that harmonic potential was adjusted to converge the vibrational wavefunction of

both ground and excited states. The weights and quadrature positions were obtained by diagonal-

ization of the position operator matrix, which was constructed recursively75,76. Typically, we have

used Ndim = 40 basis functions in each direction, thus a total of Nbasis = 1600 basis functions (con-

vergence were tested with Ndim = 50 basis functions in each direction). To ensure convergence of
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the potential energy using Gauss-Hermite quadrature, we have used Npoints = 2Ndim−1 quadrature

points in each direction.

IV. IMDHO MODEL

A. Description

We first apply the linearization approach to a 2-dimensional system for which both the ground

and the excited state potential energy surfaces are modeled by harmonic oscillators (independent-

mode displaced harmonic oscillators, IMDHO, model). We consider here the simplest case where

the harmonic frequencies and modes are identical in both states, which corresponds to neglecting

the Duschinsky rotation. In that case, the linearization step is exact. Non-harmonic models will

be considered in the next sections.

The two potential energy surfaces are given by

Vgs(x,y) =
1
2

mω2
x x2 +

1
2

mω2
y y2 (27)

Ves(x,y) =
1
2

mω2
x (x− xe)

2 +
1
2

mω2
y (y− ye)

2 +V01, (28)

where Vgs and Ves are the ground-state and excited state energies as functions of the two degrees of

freedom, x and y, that have the same mass m, ωx and ωy are the pulsations of x and y, respectively,

being the same at ground and excited state, V01 is the energy shift between ground and excited state

and xe and ye are the shifts of the equilibrium position at the excited state for x and y, respectively.

The values used for the different parameters are listed in Table I. Unless otherwise stated, we have

used a damping factor Γ = 0.02 fs−1, a reasonable value according to Jensen et al.44.

B. Absorption

We have argued that LPI should be exact to describe the absorption spectrum for the IMDHO

model. Figure 1 displays a comparison between converged LPI results and SoS reference showing

that LPI is in excellent agreement with the SoS result.

We will now briefly discuss how the LPI absorption spectrum depends on the different param-

eters of the semi-classical dynamics. First, we have varied the length of the trajectory on the mean

state, using either 30 fs or 300 fs long mean trajectories. Figure 2.a shows that when the mean state
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TABLE I. Parameters used the IMDHO model as in Eqs. 27 and 28.

Parameter Value Units

xe 8.0 pm

ye 12.0 pm

ωx 2123 cm−1

ωy 1592 cm−1

V01 10 eV

m 6.75 g mol−1

trajectories are too short, the vibronic structure disappears in agreement with a lower resolution of

the spectra according to the Nyquist-Shannon sampling theorem.

Another important parameter is the number of initial configurations used to sample the equi-

librium Wigner density, which is then the number of mean surface trajectories. The absorption

spectrum for different numbers of initial conditions is thus shown in Figure 2.b. While the spec-

trum at low wavelengths converges quickly with the number of initial conditions, this is not so at

larger wavelengths where about 20 000 trajectories are needed. It appears that above 125 nm (see

Figure 1), where the absorption spectrum is very small, the LPI signal results from a compensa-

tion of positive and negative random numbers. It is remarkable however that a positive signal is

recovered only when enough statistics is acquired. This explains the small discrepancies between

LPI-MD and SoS signals for ωI > 125 nm, which will disappear in the limit of an infinit number

of initial configurations.

When increasing the temperature, from 300 K to 3000 K, the number of ground state trajectories

should also increase to obtain agreement with reference SoS results, as reported in Figure 3. This

is probably due to the broader range of accessible configurations at this higher temperature.

In the following we will use for the resonance Raman spectra of the IMDHO model the sim-

ulation parameters listed in Table II. By selecting the incident wavelength below 120 nm, we are

able to use a lower number of mean surface trajectories, equal to 2000.

Finally, we compare in Figure 4 our LPI-MD results with those using the Placzek approxima-

tion. LPI appears a clear improvement with respect to the Placzek approximation to reproduce

the vibronic structure. Placzek approximation however correctly captures the overall shape of the

spectrum, as if the damping factor was effectively larger.
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FIG. 1. Absorption spectra obtained from LPI-MD simulations at 300 K for IMDHO model with

Γ = 0.02 fs−1, 20 000 initial configurations and mean state trajectories each 300 fs long (black curve),

compared with SoS results (green curve)

TABLE II. Parameters used for the propagating the ground state and mean surface trajectories for IMDHO

model.

Parameter Value

Timestep 0.1 fs

# Ground state trajectories 2000

# Mean state trajectories 10 000

Length of ground state trajectories 3000 fs

Length of mean state trajectories 300 fs

Damping factor (Γ) 0.02 fs−1

Scattered resolution 0.01 rad.fs−1
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FIG. 2. Absorption spectra for IMDHO model obtained from LPI-MD simulations for different simulation

parameters at 300 K. Panel a): the length for the mean surface tranectories was varied from 30 fs (red) to

300 fs (black). Panel b): the number of initial configurations was varied: 100 (yellow), 500 (orange), 2000

(red) and 20 000 (black).
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FIG. 3. Absorption spectra at 3000 K for IMDHO model with 2000 (red curve) or 20 000 (black curve)

initial configurations compared with a “sum-over-states” approach (green curve)

C. Resonance Raman

We now focus on the RR spectrum of the IMDHO system. While in this ideal situation absorp-

tion is exact within the linearization approximation, indicating that the correct expectation value

of the frequency dependent polarizability operator is correctly obtained, further approximations

are involved for the determination of the RR spectrum, since the time-dependent correlation func-

tion of the polarizability operator is obtained through classical trajectories with initial conditions

sampled from the equilibrium Wigner density. Formally, for the calculation of the RR spetrum of

the IMDHO model the only approximation is considering the Wigner transform of a product of

operators as a product of their Wigner transforms. Note that for the absorption there is no approx-

imation. In this sub-section, we will thus investigate the effect of this approximation on the RR

spectrum.

Two incident frequencies are used for investigating RR spectra: one at about 116 nm, corre-

sponding to a “resonance” condition (it covers the highest intensity peak) and one at about 108 nm,
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FIG. 4. Absorption spectra obtained from LPI-MD simulations at 300 K for IMDHO model with

Γ = 0.02 fs−1, (black curve), compared with SoS results (green curve) and Placzek type polarizability

(cyan curve) approaches.

which gives an example of “near-resonance” spectrum.

Figure 5.a shows the resonance Raman spectrum of the IMDHO system for an incident fre-

quency in the “resonance” region using the LPI-MD approach and compared to the sum-over-

states reference results. Both spectra are normalized to the Rayleigh peak and only the Stokes

region is shown. The anti-Stokes peaks can be obtained from the well-known relation:

IStokes

Ianti-Stokes
= e2β∆E (29)

where ∆E = h̄(ωs−ωI).

Many peaks are observed, not only at the fundamental frequencies of the two modes, ωx and

ωy, but also for overtones and combination bands. These two frequencies are commensurate with

and all peaks are thus multiples of ∆ω = ωx−ωy = 531 cm−1. The presence of these bands while

the dynamics is harmonic is due to the highly non-linear character of the frequency dependent

polarizability operator. The respective intensities of the multiple peaks are well reproduced up to

17

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
43

86
2



Accepted to J. Chem. Phys. 10.1063/5.0143862

about 5000 cm−1. LPI-MD however seems to give rise to spurious peaks at 531 cm−1, 1062 cm−1

and 2655 cm−1. These combination bands have in comparison very low intensities in the SoS

reference. They may arise from coherence not captured by the product of Wigner transforms al-

though they are small and the global agreement between LPI-MD and SoS reference is satisfactory.

This agreement extends to an incident frequency in the low wavelength region of the absorption

spectrum, as shown in Figure 5.b.

A more stringent test is to examine the intensity of RR peaks I(ωs−ωI) as a function of the

incident frequency, ωI . To this end, we have integrated the intensity of the scattered peaks around

both fundamental frequencies ωs−ωI = ωx and ωs−ωI = ωy, as well as around the Rayleigh peak

(ωs−ωI = 0) for reference. The integration range around each peak is ±100 cm−1. The inten-

sity of these two fundamental peaks normalized to the Rayleigh peak is then shown in Figure 6.

Similarly to the absorption spectrum, the peak intensities are well reproduced in a broad region,

including vibronic effect. However, a discrepancy appears at higher wavelengths. This is a region

with small absorbance where we have found that the signal arises from destructive interferences

from different initial positions. We have thus checked if those peaks disappear when using 20 000

initial conditions, which improved the absorption spectrum, as shown in the cyan line shown in

Figure 6. Unfortunately this is not the case. The peaks present in the LPI-MD but not in the SoS

results correspond to transitions from hot vibrational states of the ground electronic state to low vi-

brational states of the excited electronic state. These hot vibrational states of the ground electronic

state are unphysically populated at room temperature, reflecting errors in classical description of

nuclear dynamics. In fact, when we increase the temperature and the dynamics becomes more

classical, this discrepancy decreases as it can be seen in Figure 7. Note that the larger range of ini-

tial conditions at high temperatures necessitates a higher number of sampled initial configurations

(set to 20 000 in Figure 7).

Finally, we investigate the difference between the LPI approach and a Placzek type approxi-

mation. To this end, we have calculated the RR spectrum approximating the frequency dependent

polarizability by using solely the instantaneous excited state energy. The resulting Placzek type

spectra are reported in Figures 8 and 9. Figure 8 shows that the overtones’ intensities are too

strong compared to the intensity of the fundamental modes. Similarly, the vibronic structure is

completely lost in Palczek-type spectra, see Figure 9. LPI-MD thus appears as a clear improve-

ment over this short-time approach.

We should remind that for the IMDHO model the two linearization procedures that lead to the
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FIG. 5. Resonance Raman spectra of the IMDHO system at 300 K: (a) “resonance” and (b) “near resonance”

scattered frequencies. In both cases the signal is integrated over the whole frequency region highlighted in

Figure 6 (see text for the discussion of the integration width). In black we report the LPI-MD results and in

green the SoS ones. The intensities are normalized at the Rayleigh peak.
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FIG. 6. Resonance Raman intensities of the two fundamental vibrational transitions of the IMDHO model

at 300 K (top: transition along x, ωx; bottom: transition along y, ωy) as a function of the incident frequency

(ωI). The intensities are normalized with respect to the Releigh intensity, IRaman(0). Results with LPI-MD

are shown in black (2 000 initial conditions) and cyan (20 000 initial conditions) and compared with sum-

over-states approach shown in green curves. The blue vertical line indicates the incident frequency for the

resonance condition corresponding to Figure 5.a, while the red vertical line indicates the near resonance

condition corresponding to Figure 5.b. The black vertical line indicates the Franck-Condon transition.

dynamics on the mean state for the Wigner transform of the polarizability on one hand, and the

classical trajectory on the ground state, are exact. The only remaining approximation is the Wigner

transform of product of operators written as product of Wigner transforms. Here we found that

this approximation is not too drastic as the rich RR spectrum of this simple model is remarkably

well reproduced by the LPI-MD method. We will now turn to anharmonic systems.
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FIG. 7. Intensity of the Rayleigh peak for the IMDHO model at 3000 K with respect to the incident

frequency for the Rayleigh peak, using 2000 (red curve) or 20 000 (black curve) ground state trajectories,

compared with the sum-over-states result (green curve).

V. HELLER’S MODEL

A. Description

Here we will investigate how the linearization approach performs on a typical model used to

study resonance Raman spectroscopy proposed by by Heller, Sundberg and Tannor18 some years

ago and here called simply “Heller’s model”. As for the IMDHO model, it is a two-dimensional

model, now with an anharmonic excited state potential energy surface. More specifically, the

ground and excited state potential energy surfaces are given by

Vgs(x,y) = mω2x2/2+mω2y2/2

Ves(x,y) = mω2(x− x0)
2/2+mω2(y− y0)

2/2

−K(x− x0)
2(y− y0)+V0

(30)

All parameters of the potential energy surfaces and used in the simulations are reported in
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FIG. 8. Resonance Raman spectra of the IMDHO model at 300 K with respect a “near resonance” scattered

frequency (the signal is integrated over the whole region highlighted in Figure 6), compared with results

from the Placzek type polarizability (cyan curve). The intensities are scaled to have the same values for the

Rayleigh peak.

Tables III and IV, respectively.

In this model, the two vibrational modes along the two degrees of freedom are degenerate. The

vibrational spectrum will then be composed of this fundamental frequency and their overtones.

In particular we will be interested here, following Heller, in the intensities of the first overtone

compared to the fundamental peak.

B. Absorption and resonance Raman

For this anharmonic model, the LPI-MD approach still reproduces well the overall shape and

the vibronic structure of the absorption spectrum as can be seen in Figure 10. However, the spacing

of vibronic structure appears slightly different with respect to the sum-over-states reference.

For the calculation of the resonance Raman spectrum, we have chosen an incident frequency
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FIG. 9. Resonance Raman intensities of the Rayleigh peak and of the two fundamental vibrational transi-

tions of the IMDHO model at 300 K (top: Rayleigh; middle: ωx; bottom: ωy) as a function of the incident

frequency (ωI). Results with LPI-MD are shown in black curves and compared with the Placzek type po-

larizability shown in cyan curves. The blue vertical line indicates the incident frequency for the resonance

condition corresponding to Figure 5.a, while the red vertical line indicates the near resonance condition

corresponding to Figure 5.b. The black vertical line indicates the Franck-Condon transition.
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TABLE III. Parameters used the Heller’s model.

Parameter Value Units

x0 13.996 pm

y0 8.3978 pm

ω 1592.7 cm−1

V0 3.9493 eV

m 6.7540 g.mol−1

K 1.2378·10−4 eV.pm−3

TABLE IV. Parameters used in the LPI-MD simulations with the Heller’s model.

Parameter Value

Timestep 0.1 fs

# Ground state trajectories 2000

# Mean state trajectories 4500

Length of the ground state trajectories 1000 fs

Length of the mean state trajectories 667 fs

Damping factor 0.06 fs−1

Scattered resolution 0.03 rad fs−1

corresponding to a vibronic peak which is in common between LPI-MD and sum-over-states ab-

sorption spectra. Thus, the resonance Raman signals were obtained by integrating over the incident

frequency around 275 nm (see Figure 10). The resulting signals are shown in Figure 11. Since the

two oscillators have the same frequency, only one progression of overtones of this fundamental

frequency is obtained. The peak intensities along this progression for the LPI-MD approach are

very similar to the sum-over-state ones, showing that the proposed LPI-MD approach is able to

correctly catch the non-linear character of the frequency dependent polarizablity.

We now focus on the intensity of the fundamental peak and first overtone as a function of the

incident frequency, as shown in Figure 12. As for the absorption, the spacing of the vibronic

bands is slightly larger than that given by the SoS reference. Nevertheless, the vibronic structure

is well reproduced. It is interesting to see that at the frequency that corresponds to the highest

intensity for the fundamental band, which had been chosen for plotting Figure 11, the overtone

peak is quenched and this phenomenon observed in the SoS reference is well reproduced with
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FIG. 10. Absorption spectra obtained from LPI-MD on Heller’s model at 300 K with Γ = 0.02 fs−1 (black

curve), compared with a “sum-over-states” approach (green curve). The blue vertical line indicates the

incident frequency for the near resonance condition used then to obtain the resonance Raman spectrum.

The black vertical line indicates the Franck-Condon transition.

the LPI approach. However, just like for the independent displaced modes, the LPI approach

overestimates the scattered intensity at higher wavelengths of the incident light.

VI. HYPOCHLOROUS ACID

A. Description

Finally, we investigate a model of a simple tri-atomic molecule, the hypochlorous acid (HOCl),

for which resonance Raman spectroscopy has proved to be a useful tool to study also the ex-

cited state potential energy surface77,78. In fact, the system has a dissociating channel in the X̃1A′

excited state, corresponding to the formation of OH (2Π) and Cl (2P)77–79. This system was pre-

viously studied theoretically by using time-dependent approaches66,67, based on simple analytical

25

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
43

86
2



Accepted to J. Chem. Phys. 10.1063/5.0143862

FIG. 11. Resonance Raman spectra for Heller’s model at 300 K with respect to the scattered frequency for

the near-resonance incident frequency, compared with a sum-over-states approach (green curve). They are

normalized with respect to the Rayleigh peak.

Hamiltonian. In our study, we have used the model proposed by Nambu and Iwata66 modified on

the ground state bending vibration to better reproduce the known vibrational frequency77.

The ground state potential is thus described by a Morse potential for the stretching (R) and a

harmonic oscillator for the bending (θ ):

V g(R,θ) = De× (1− e−a(R−Re))2 +
kθ

2
(θ −θe)

2 (31)

The system has a dissociating channel in the excited state, which is described by a generalized

anti-Morse potential80,81 to describe the diffuse state of the O–Cl stretching:

V ex(R,θ) = P1 +(P4−P1)[1+ exp{−P3(R−P2)}]
2 (32a)

Pi 6=2 =
3

∑
j=0

Ci jθ
2 j (32b)
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FIG. 12. Resonance Raman intensities of the Rayleigh peak, of the fundamental vibrational transitions

and of the first overtone of the Heller model at 300 K (top: Rayleigh; middle: fundamental transition, ω;

bottom: first overtone, 2ωy) as a function of the incident frequency (ωI). Results with LPI-MD are shown in

black curves and compared with the sum-over-states approach shown in green curve. The blue vertical line

indicates the incident frequency for the near resonance condition corresponding to Figure 11. The black

vertical line indicates the Franck-Condon transition.
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TABLE V. Parameters used to define the ground state potential of HOCl (see Eq. (31)) and kinetic energy

(see Eq. (33)).

Parameter Value

Re 168.91 pm

θe 102.45◦

µ 11.49 Da

I 8524Da.pm2

De 1.92 eV

a 0.02444 pm−1

kθ 4.977eV.rad−2

ωR 738 cm−1

ωθ 1272 cm−1

with P2 is fixed at 120pm and where R represents the O–Cl distance (we disregard the small

offset of the OH center of mass from O atom as in the original work of Nanbu and Iwata66) and θ

the HOCl angle. The O–H distance is kept fixed in the model to the equilibrium experimental value

of 0.9643 Å and thus it is not considered in the dynamics66. All the parameters used to describe

the ground and excited potential energy surfaces are reported in Table V and in the original work

of Nanbu and Iwata66.

Since the present aim is not to obtain the exact HOCl spectrum, but to test our LPI-MD ap-

proach on a realistic mode, we made two approximations to simplify the description: (i) we ig-

nored the rotation of the molecule and considered only J = 0 states; (ii) the Herzberg-Teller and

polarization effects have being neglected, assuming equal and constant transition moments along

the two modes.

The Hamiltonian used in the simulations is thus:

HHOCl =
P2

2µ
+

J2
θ

2I
+V (R,θ) (33)

where I is the moment of inertia associated to the angle θ . The parameters used in LPI-MD

simulations are summarized in Table VI.
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TABLE VI. Constants used for the propagation of HOCl LPI-MD simulations.

Parameter Value

Timestep 0.1 fs

# Ground state trajectories 2000

# Mean state trajectories 10 000

Length of the ground state trajectories 3000 fs

Length of the mean state trajectories 150 fs

Damping factors Γ 0.09 – 0.5 fs−1

Scattered resolution 0.04 fs−1

B. Absorption and damping factor

Figure 13 shows the calculated absorption spectrum for different values of the phenomenologi-

cal damping factor in the 0.09–0.5 fs−1 range. In the sum-over-states calculations, we have used a

confinement potential to obtain excited-states vibrational eigenstates, due to the dissociative char-

acter of the potential energy surface. This results in an artificial quantization of these vibrational

eigenstates while a continuum of states should be present. The corresponding absorption spec-

trum then shows a vibronic structure at low Γ that disappears when Γ is increased, mimicking a

broadening of the energy eigenvalue similar to the expected continuum spectrum.

On the other hand, the LPI-MD simulations provide an absorption spectrum nearly independent

of the damping factor (see black curves in the same Figure 13). This is due to the dissociative

trajectories on the mean potential energy surface, occurring on a time-scale of about 6 fs – as

observed by monitoring the distribution in R as a function of time.

Coming back to the absorption spectrum, we find that a good agreement between the sum-over-

states approach and the LPI-MD method is found for Γ = 0.25 fs−1 which would correspond to a

characteristic time of 4 fs, which is on the same order of magnitude of the lifetime observed from

the dynamics on the mean PES. Lower values of Γ lead to an artificial vibronic structure in the

sum-over-states approach, while large values of Γ tend naturally to wash away any structure in the

spectrum.
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FIG. 13. Absorption spectra for HOCl model at 300 K with Γ = 0.09 fs−1 (dashed curves), Γ = 0.25 fs−1

(full curves), Γ= 0.5 fs−1 (half-dashed curves) – black curves, compared with a “sum-over-states” approach

(green curves).

C. Resonance Raman

In Figure 14 we show the RR spectrum using an incident frequency at resonant conditions at

200 nm obtained from LPI-MD simulations and compared with SoS results. The Raman cross-

section, normalized with respect to the Rayleigh peak, is shown for three values of the damping

factor, Γ. The overall agreement is very good in all three cases, although the overtones’ intensities

appear to decrease more quickly in the LPI-MD simulations than in the SoS ones, similar to what

is observed in the Heller model.

Finally, we investigated the intensity of the first resonance Raman peak as a function of the

incident frequency. The result is shown in Figure 15 for different damping factors. Similar to the

absorption, Γ= 0.25 fs−1 leads to a good agreement between LPI-MD and sum-over-states results,

with only a constant scaled intensity. The agreement is still good for the larger value of Γ while

for the lower value we obtain a too strong vibronic structure in the SoS calculations. As discussed
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FIG. 14. Raman spectra for HOCl model at 300 K with respect to the scattered frequency for the incident

frequencies highlighted in Figure 15 with Γ = 0.09 fs−1 (top), Γ = 0.25 fs−1 (middle), Γ = 0.5 fs−1 (bot-

tom) – black curves, compared with a “sum-over-states” approach (green curves), scaled to have the same

intensity for the Rayleigh pick.
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previously, this is due to the unphysical bounding potential added in the SoS calculations.

FIG. 15. Raman cross-section as a function of the incident wavelength obtained from the HOCl model at

300 K for the Rayleigh peak for Γ = 0.09 fs−1 (dashed lines), 0.25 fs−1 (full lines), 0.5 fs−1 (dot-dashed

lines). LPI-MD results are in black, while SoS ones are in green. The wavelength near-resonance region

used for scattered resonance Raman spectra is marked in grey.

VII. CONCLUSION

In this work, we propose a new method to obtain resonance Raman spectra based on path-

integral linearization and amenable to molecular dynamics simulations. The full derivation leads

to a relatively simple algorithm which in principle can be applied to atomistic simulations. The ba-

sis of our method is the time-dependent reformulation of the Kramers-Heisenberg-Dirac formula

of Raman scattering as given by Heller and co-workers some years ago,16–18. While the spirit

is similar, using a time-dependent expression for the Raman scattering instead of a sum of states

the final formulation is different. In the Heller formulation then the dynamics is described (and

done) in terms of wave-packet nuclear dynamics. In one approximate formulation, a semi-classical
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approach is used18 by means of “frozen Gaussian approximation” (FGA), and explicit equations

are obtained for fundamental and overtone based on the overlap between the time-evolving wave-

function and the final wave-function (these bands are calculated separately using a specific equa-

tion for each band). This needs an approximate quantum dynamics on the excited state and a

quantization of the nuclei dynamics on the ground state. For the overtone intensities the second

derivative of the potential is needed as well as for initial conditions in FGA approach (while in

the general wave-packet propagation the second derivatives must be calculated at each step). One

important aspect of the FGA method is that an accurate representation of the wave-function as a

linear superposition of Gaussians at t = 0 is needed, thus involving an expansion which is analyti-

cal only in the case of a harmonic ground state potential. In our approach, we use as starting point

the works of Heller and co-workers and then, by means of two path-integral linearizations, we end

up to a formulation in which the initial conditions are obtained via a path-integral Monte Carlo

procedure and the propagation of each trajectory is classical on the ground state surface and on

the average surface. Then Raman scattering signals are obtained by Fourier transforms similar to

Heller but without the need of calculating explicitly the overlaps. We should also note that in our

method we do not have to calculate any second derivative.

The central quantity of our method, which is probably the most important difference with re-

spect to the semi-classical method developed by Heller and co-workers, is the time evolution of the

ground-to-excited state energy difference during dynamics on the mean potential energy surface

from which the full spectrum (fundamental, overtone and combination bands) is obtained directly.

Such dynamics is typical of linearization techniques,63,64 resulting in a dynamics on a mean po-

tential which recalls the Ehrenfest non-adiabatic approximation. However, in its standard form,

Ehrenfest dynamics consists in propagating the quantum degree of freedom, here the electrons, us-

ing the time-dependent Hamiltonian generated by the dynamics of the classical degree of freedom,

here the nuclei. Here, the electronic state is not propagated resulting in an average potential felt

by the nuclei that has a constant weight, 0.5, on each eigenstate of the time-dependent Hamilto-

nian. As mentioned previously, this is closer to mixed quantum-classical Liouville equations. This

evolution on the mean potential energy surface is used to compute a time-dependent polarizability

whose auto-correlation function leads to the RR signal. This extends upon previous work based

on Placzek type polarizability and includes vibronic effects and enhancement of overtones and

combination bands intensities in the RR spectrum. In the present work we have tested the method

on three models: harmonic and anharmonic potentials plus a model of HOCl with a dissociating
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excited state. The comparison with sum-over-states results show that the method globally catch

the most important features. For independent mode displaced harmonic oscillators, the model is

by construction nearly exact and this is shown by comparison to SoS results.

With the advent of efficient methods to compute excited states energies and gradients using

density functional theory46 it is possible to envision the simulation of RR spectra beyond the

short-time Placzek approximation for realistic systems. Also, to this aim, one could make use of

recent developments, based on quantum thermal bath82–86, to generate dynamics that preserve the

Wigner distribution thus allowing to perform one single long simulation instead of sampling initial

conditions while retaining the quantum description of vibrational modes.87 However, subsequent

molecular dynamics simulations seem to overestimate the population of hot vibrational states of

the ground electronic state, thus overestimating the peaks at incident photon energies lower than

the electronic transition.

Notably, the present method scales as any molecular dynamics method with respect to the

system size. The only parameters that must converge are the trajectory lengths (which is probably

independent on the size of the system) and the number of trajectories. Clearly the choice of initial

conditions is important and for larger systems one can use approximated methods to sample the

Wigner distribution like the quantum thermal bath as shown, for example, by Basire et al.88

Concluding, this work gives the basis to proceed further and be able to get accurate resonance

Raman spectra (with fundamentals, overtones and combination bands) for real systems, since the

present approach can be extended to molecular dynamics simulations in a relatively simple way.

Our research is going in this direction.
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Appendix A: Linearization of the polarizability operator

Here we show how we can apply the linearization path integral (LPI) procedure to the Wigner

transform of polarizability operator of Eq. 19. In particular we can re-write the second term in
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Eq. 19 as:

〈
x−

∆x

2

∣∣∣∣M̂se
− j

h̄ tĤbM̂Ie
j
h̄ tĤa

∣∣∣∣x+
∆x

2

〉
=
∫ +∞

−∞
dx+P+1

∫ +∞

−∞
dx+0

∫ +∞

−∞
dx−0

×

〈
x−

∆x

2

∣∣∣∣M̂s

∣∣∣∣x+P+1

〉〈
x+P+1

∣∣∣∣e−
j
h̄ tĤb

∣∣∣∣x+0
〉

×
〈

x+0

∣∣∣M̂I

∣∣∣x−0
〉〈

x−0

∣∣∣e
j
h̄ tĤa

∣∣∣x−P+1

〉
(A1)

where we can identify the term x−P+1 with x+ ∆x
2 . We can now re-write using the path-integral

formalism where e
j
h̄ tĤ =

(
e

j
h̄ εĤ
)

, with ε = t
P+1 , such that the two terms in Eq. A1 which contain

the propagators on surfaces a and b are:

〈
x−0

∣∣∣e
j
h̄ tĤa

∣∣∣x−P+1

〉〈
x+P+1

∣∣∣e−
j
h̄ tĤb

∣∣∣x+0
〉
=
∫
· · ·
∫

dx+1 · · ·dx+P

∫
· · ·
∫

dx−1 · · ·dx−P

×
〈

x+P+1

∣∣∣e−
j
h̄ εĤb

∣∣∣x+P
〉
. . .
〈

x+1

∣∣∣e−
j
h̄ εĤb

∣∣∣x+0
〉

×
〈

x−0

∣∣∣e
j
h̄ εĤa

∣∣∣x−1
〉
. . .
〈

x−P

∣∣∣e
j
h̄ εĤa

∣∣∣x−P+1

〉
(A2)

We can now apply the Trotter’s theorem, such that

〈
x+k+1

∣∣∣e−
j
h̄ εĤb

∣∣∣x+k
〉
=

〈
x+k+1

∣∣∣∣e−
j
h̄

ε
2 V̂be−

j
h̄ ε p̂2

2m e−
j
h̄

ε
2 V̂b

∣∣∣∣x+k
〉

= e−
j
h̄

ε
2Vb(x

+
k+1)

〈
x+k+1

∣∣∣∣e−
j
h̄ ε p̂2

2m

∣∣∣∣x+k
〉

e−
j
h̄

ε
2Vb(x

+
k )

= e−
j
h̄

ε
2Vb(x

+
k+1)

∫ +∞

−∞
d p+k+1

〈
x+k+1

∣∣∣∣e−
j
h̄ ε

p̂2
2

2m

∣∣∣∣p+k+1

〉〈
p+k+1

∣∣x+k
〉

e−
j
h̄

ε
2Vb(x

+
k )

=
1

2π h̄

∫ +∞

−∞
d p+k+1e

j
h̄ p+k+1(x+k+1−x+k )e−

j
h̄
(p+k+1)

2

2m e−
j
h̄

ε
2Vb(x

+
k+1)e−

j
h̄

ε
2Vb(x

+
k )

(A3)

and similarly on surface a

〈
x−k

∣∣∣e
j
h̄ εĤa

∣∣∣x−k+1

〉
=
(〈

x−k+1

∣∣∣e−
j
h̄ εĤa

∣∣∣x−k
〉)∗

=
1

2π h̄

∫ +∞

−∞
d p−k+1e−

j
h̄ p−k+1(x−k+1−x−k )e

j
h̄
(p−k+1)

2

2m e
j
h̄

ε
2Va(x

−
k+1)e

j
h̄

ε
2Va(x

−
k )

(A4)

Note that for n dimensional coordinates the prefactor is then to be put to the power n. We thus

get:
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〈
x−0

∣∣∣e
j
h̄ tĤa

∣∣∣x−P+1

〉〈
x+P+1

∣∣∣e−
j
h̄ tĤb

∣∣∣x+0
〉
=

1

(2π h̄)2(P+1)

∫ +∞

−∞
· · ·
∫ +∞

−∞
dx+1 . . .dx+P

∫ +∞

−∞
· · ·
∫ +∞

−∞
dx−1 . . .dx−P

×
∫ +∞

−∞
· · ·
∫ +∞

−∞
d p+1 . . .d p+P

∫ +∞

−∞
· · ·
∫ +∞

−∞
d p−1 . . .d p−P

exp

[
j

h̄

P

∑
k=0

(
p+k+1(x

+
k+1− x+k )− p−k+1(x

−
k+1− x−k )

)
]

× exp

[
−

j

h̄
ε

P

∑
k=0

(
(p+k+1)

2

2m
−

(p−k+1)
2

2m

)]
exp

[
−

j

h̄

ε

2

P

∑
k=0

(
Va(x

+
k )−Vb(x

−
k )
)
]

× exp

[
−

j

h̄

ε

2

P

∑
k=1

(
Va(x

+
k )−Vb(x

−
k )
)
]

(A5)

In view of performing linearization with respect to the difference between backward and for-

ward paths, we first make a change of variables:

y =
y++ y−

2
; ∆y = y+− y− (det(JF) =−1) , (A6)

where y≡ x or p. We then have the following relations

(p+k+1)
2− (p−k+1)

2 = 2pk+1∆pk+1 (A7a)

P

∑
k=0

(
p+k+1(x

+
k+1− x+k )− p−k+1(x

−
k+1− x−k )

)

=
P

∑
k=0

∆pk+1 (xk+1− xk)−
P

∑
k=1

∆xk (pk+1− pk)

− p1∆x0 + pP+1∆xP+1.

(A7b)

Thus, we can re-write Eq. (A5) as:
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〈
x−0

∣∣∣e
j
h̄ tĤa

∣∣∣x−P+1

〉〈
x+P+1

∣∣∣e−
j
h̄ tĤb

∣∣∣x+0
〉
=

1

(2π h̄)2(P+1)

∫ +∞

−∞
· · ·
∫ +∞

−∞
dx1. . .dxP

∫ +∞

−∞
· · ·
∫ +∞

−∞
d p1. . .d pP+1 exp

[
j

h̄
(pP+1∆xP+1− p1∆x0)

]

×
∫ +∞

−∞
· · ·
∫ +∞

−∞
d∆x1. . .d∆xP

exp

[
−

j

h̄

P

∑
k=1

∆xk (pk+1− pk)

]
exp

[
−

j

h̄
ε

P

∑
k=0

Vb

(
xk +

∆xk

2

)
−Va

(
xk−

∆xk

2

)]

×
∫ +∞

−∞
· · ·
∫ +∞

−∞
d∆p1. . .d∆pP+1 exp

[
−

j

h̄
ε

P

∑
k=0

pk+1∆pk+1

m

]
exp

[
j

h̄

P

∑
k=0

∆pk+1 (xk+1− xk)

]

(A8)

Integrating over the variables ∆pk, we obtain Dirac distributions such that the propagation of the

mean positions is driven by the momentum in the mean path:

∫ +∞

−∞
· · ·
∫ +∞

−∞
d∆p1. . .d∆pP+1 exp

[
−

j

h̄
ε

P

∑
k=0

pk+1∆pk+1

m

]

× exp

[
j

h̄

P

∑
k=0

∆pk+1 (xk+1− xk)

]

= (2π h̄)P
P

∏
k=0

δ

(
ε

pk+1

m
− xk+1 + xk

)
(A9)

To obtain the evolution of the momentum in the mean path from a force, we now apply lin-

earization by assuming that δxk is small:

Vb

(
xk +

∆xk

2

)
−Va

(
xk−

∆xk

2

)

≈Vb (xk)−Va (xk)+∆xk∇Vm(xk)

(A10a)

where we intruduce the mean potential energy surface Vm:

Vm =
Va +Va

2
(A10b)

By integrating over ∆xk in this linearized expression, we again obtain a series of Dirac distri-
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butions:
∫ +∞

−∞
· · ·
∫ +∞

−∞
d∆x1. . .d∆xP+1 exp

[
−

j

h̄

P

∑
k=1

∆xk (pk+1− pk)

]

× exp

[
−

j

h̄
ε

P

∑
k=0

Vb

(
xk +

∆xk

2

)
−Va

(
xk−

∆xk

2

)]

= (2π h̄)P
P

∏
k=1

δ (pk+1− pk + ε∇Vm(xk))

× exp

[
−

j

h̄
ε

P

∑
k=0

Vb (xk)−Va (xk)

]

(A11)

Now Eq. (A5) can be written in a compact form

〈
x+P+1

∣∣∣e−
j
h̄ tĤb

∣∣∣x+0
〉〈

x−0

∣∣∣e
j
h̄ tĤa

∣∣∣x−P+1

〉
=

1
2π h̄

∫ +∞

−∞





d p1δ
(

ε
pP+1

m − xP+1 + xP

)

d pP+1δ
(

ε p1
m − x1 + x0

)

× exp
[

j

h̄
(pP+1∆xP+1− p1∆x0)

]

× exp


− j

2h̄
ε

P

∑
k=0


Vb (xk)−Va (xk)

+Vb (xk+1)−Va (xk+1)






(A12)

where the trajectory on a mean surface Vm = Va+Vb
2 can start either from (x0, p1) or from

(xP+1, pP+1) but backward in time.

Appendix B: Generalization to N excited states

Here we report the equations to calculate Resonance Raman and absorption spectra for a gen-

eral system composed by N excited states that in the manuscript are reported only for one excited

state b.

Wigner transform of the polarizability operator and its adjoint:

(
P̂(ωI)

)
W
[x, p] =

j

h̄ ∑
b

∫ +∞

0
dτ e−Γτe jωIτMs(x)MI (x−τ)ϕb−a

τ,bwd (x, p) (B1)

(
P̂

†(ωI)
)

W
[x, p] =−

j

h̄ ∑
b

∫ +∞

0
dτ e−Γτe− jωIτMs(x)MI (x−τ)ϕb−a

τ,bwd (x, p)

=
(
P̂(ωI)

)⋆
W
[x, p]

(B2)
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Resonance Raman signal intensity:

IRaman(ωs) = K
2

1+ e−βω
ωIω

3
s

1
2π

1

h̄2

∫ +∞

−∞
dt e− jωst

∫∫
dx0 dp0

ρ̂W [x0, p0]

2π h̄

×∑
b

MsMI

∫ +∞

0
dτ e−Γτe− jωIτϕa−b

τ,bwd(x0, p0)

×∑
b

MsMI

∫ +∞

0
dτ ′ e−Γτ ′e jωIτ

′
ϕb−a

τ ′,bwd(xτ ′ , pτ ′)

(B3)

The absorption spectrum is obtained from the polarizability operator

〈
P̂(ωI)

〉
=

j

h̄ ∑
b

∫ +∞

0
dt e−Γte jωIt

∫ +∞

−∞
dx
〈

x
∣∣∣ρ̂M̂se

− j
h̄ tĤbM̂Ie

j
h̄ tĤa

∣∣∣x
〉

(B4)

which after LPI reads in general as:

〈
P̂(ωI)

〉
=

j

h̄ ∑
b

MsMI

∫ +∞

0
dt e−Γte jωIt

∫∫
dx0 dp0

×
ρ̂W [x0, p0]

2π h̄
ϕb−a

t,bwd(x0, p0)

(B5)

Appendix C: Wigner transform of a product and symmetrized correlation function

It has been shown by Imre et al.89 that, being Λ =
←−
∇p
−→
∇r−

←−
∇r
−→
∇p, the Wigner transform of a

product of operators Â and B̂ can be expanded as

(
ÂB̂
)

W
= AW [r, p]e

h̄Λ
2 j BW [r, p]

= AW [r, p]BW [r, p]+AW [r, p]
h̄

2 j
ΛBW [r, p],+O(h̄2)

(C1)

where in the expansion we left out terms in h̄2. By using symmetrized correlation functions, we

will cancel the term proportional to h̄. Indeed, for a symmetrized correlation function we have

Cs(t) = Tr
[
ρ̂ÂB̂(t)+ ρ̂B̂(t)Â

]

= Tr
[
ρ̂ÂB̂(t)

]
+Tr

[
ρ̂B̂(t)Â

]

= Tr
[
ρ̂ÂB̂(t)

]
+Tr

[
Âρ̂B̂(t)

]

= Tr
[(

ρ̂Â+ Âρ̂
)

B̂(t)
]
.

(C2)
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By making use of the expression of the trace and employing Wigner transforms, we obtain

Cs(t) =
∫∫

dxd p
(

ρ̂Â+ Âρ̂
)

W
[r, p]B̂(t)W [r, p] (C3)

and
(

ρ̂Â+ Âρ̂
)

W
[r, p] can be expanded as

(
ρ̂Â+ Âρ̂

)
W
[r, p] = ρW [r, p]AW [r, p]+O(h̄2), (C4)

using the fact that AW [r, p] h̄
2 j ΛBW [r, p] =−BW [r, p] h̄

2 j ΛAW [r, p].

One has to make the average:

Cr(t) =
1

2π h̄

∫∫
dxd p

(
ρ̂Â+ Âρ̂

2

)

W

[x, p]
(

B̂(t)
)

W
[x, p] (C5)

and finally the Fourier transforms of the symmetrized and the standard correlation functions

are related by63,90

I(ω) =
2

1+ e−β h̄ω
Ir(ω), (C6)

which in our case ensures the correct ratio between Stokes and anti-Stokes intensities.

We should note that by calculating the product of the Wigner transforms instead of the Wigner

transform of the product is actually a better approximation of the symmetrized correlation function

(here up to second order in h̄) than of the initially desired normal one (at first order in h̄). It could

also be noted that these two functions have the same symmetry under time reversal.
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