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Abstract

We show that the Oldroyd B fluid model is the Eulerian form of a
Lagrangian model with an internal variable that satisfies the second prin-
ciple of thermodynamics under some conditions on the initial value of
the internal variable. We similarly derive a compressible version of the
Oldroyd B model and several nonlinear versions thereof. We also derive
Lagrangian formulations of the Zaremba-Jaumann and Oldroyd A fluid
models. We discuss whether or not these new models satisfy the second
principle.

1 Introduction
In [8], we introduced a fairly general framework for thermo-visco-elastic mate-
rials with or without internal variables that are frame-indifferent, may have all
kinds of material symmetries, and satisfy the second principle of thermodynam-
ics. Our work is based on the Coleman-Noll approach [1]–[2]. Among several
other examples, we showed that the Oldroyd B fluid model, an incompress-
ible complex fluid model introduced by Oldroyd in [9], could be made part of
our framework by considering part of the Cauchy stress, the so-called polymer
stress σp, as an internal variable. We also showed that if the Oldroyd B model
is taken as a model without any internal variable, then the Coleman-Noll pro-
cedure implies that the Eulerian internal dissipation is what we called the naive
dissipation σ : d. We proceeded to show by means of numerical examples that
this naive dissipation does not stay nonnegative during evolutions of the fluid,
which means that the second principle is violated by this formulation of the Ol-
droyd B fluid, and by many other similar complex fluid models. In addition, we
proved that even if the Oldroyd B model is formulated using the polymer stress
as internal variable, there is nonetheless no choice of Helmholtz free energy in
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this internal variable that makes the non naive internal dissipation nonnegative
either. As a consequence, we cast some doubts on the thermodynamic valid-
ity of the Oldroyd B model, a question that we had not seen addressed in the
literature.

In the present paper, we show that our concerns were partially ill-founded
by rewriting the Oldroyd B model as a Lagrangian model with an a priori
more physical choice of internal variable and Helmholtz free energy, and by
showing that in this form, it actually satisfies an adapted form of the second
principle of thermodynamics. We take an altogether completely different route,
inspired by a Lagrangian approach by Francfort and Lopez-Pamies, [4], who
were motivated by the same thermodynamical concerns about the Oldroyd B
fluid. They derived a quadratic Oldroyd B-like fluid model, with a slightly
different objective derivative than the usual Oldroyd B derivative, starting from
a standard generalized material point of view, see [6], which is meant to ensure
that the second principle of thermodynamics is satisfied by models thus derived.
Their model is quadratic in the sense that the ordinary differential equation in
time satisfied by the Cauchy stress σ, used in such models as a replacement for a
constitutive law, features a square term σ2 in place of σ as in the usual Oldroyd
B model. Francfort and Lopez-Pamies did not however obtain the classical,
linear (with respect to σ) Oldroyd B model.

We realized that the quadratic Oldroyd B-like model of [4] can alternatively
be seen as fitting within our general framework of [8]. This prompted us to
try and derive the classical Oldroyd B model in a Lagrangian formulation with
an internal variable. It however turns out that this Lagrangian formulation is
actually equivalent, with a specific choice of free energy, to the Eulerian one we
introduced in [8], and thus cannot satisfy the second principle of thermodynam-
ics for all possible evolutions.

We therefore propose here a conditional version of the second principle of
thermodynamics, which is adequate for general models with internal variables,
beyond the present Oldroyd B Lagrangian rewriting. Internal variables satisfy
some differential constraint, here in the form of an ordinary differential equation,
and the issue of initial values for such an equation seems to be quite overlooked in
the literature. It is actually crucial for frame-indifference and material symmetry
questions, see [8], and it is absolutely crucial here for the second principle.

We thus say that the second principle is satisfied for an initial value of the
internal variable if, given any admissible deformation, the corresponding dissi-
pation remains nonnegative at all subsequent times. If the set C of such initial
values is nonempty, then we say that the second principle is conditionally satis-
fied under condition C. Note that the set C does not need to be invariant under
the evolution of the internal variable, so it is not just a question of restricting
the set of internal variables.

In the case of the Oldroyd B model, we entirely characterize the set of initial
conditions that allow for the conditional second principle to hold. In Eulerian
terms, this set corresponds to initial polymer Cauchy stresses that are positive
semi-definite. Our main conclusion is therefore that the Oldroyd B fluid satisfies
the conditional second principle of thermodynamics for these initial conditions
and these initial conditions alone. Moreover, this is a case when the condition
set C is not invariant, thus making this result a rather subtle one.

This article is as follows. We first recall the notation of [8] and review
briefly the notion of objective derivative and the classical Oldroyd B model.
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We then do a quick rundown of the thermo-visco-elastic theory with internal
variables described in [8], in a simplified form appropriate for our purposes
here. Next we show how the idea of [4] can be modified in order to obtain the
classical Oldroyd B fluid as a specific instance of such a visco-elastic material.
We then show that this instance is equivalent to our previous Eulerian rewriting
of Oldroyd B in [8], both in terms of internal variable and of internal dissipation.

At this point, we introduce the notion of conditional second principle as
an adequate replacement of the Coleman-Noll view of the second principle, in
the case of models with an internal variable. We identify the set of initial
conditions that make the Oldroyd B fluid satisfy this version of the second
principle, namely symmetric positive semi-definite matrices, in both Lagrangian
and Eulerian descriptions.

We conclude the article by various generalizations of the Oldroyd B model
and their connection with the conditional second principle, that are obtained
by the same Lagrangian approach. These include a compressible version of the
Oldroyd B fluid, incompressible nonlinear versions among which is the quadratic
one obtained by Francfort and Lopez-Pamies, and the Zaremba-Jaumann and
Oldroyd A fluids.

2 General notation
As in [8], we use the convention of denoting any quantity pertaining to the
Lagrangian description with an uppercase letter and the corresponding Eulerian
quantity with the corresponding lowercase letter. We also differentiate between
a given quantity and a constitutive law for that same quantity by using a hat
or a tilde for the latter, e.g. TR for the first Piolà-Kirchoff stress tensor as
opposed to T̂R for a constitutive law for this tensor. On the Lagrangian side of
things, starting from a deformation mapping (X, t) 7→ ϕ(X, t), we will use as
thermodynamic variables the deformation gradient F (X, t) = ∇Xϕ(X, t) and
the deformation rate H(X, t) = ∇XV (X, t) = ∂F

∂t (X, t), where V is the velocity
of particules. In the present articule, we will ignore thermal effects. They
can easily be added, see [8]. On the Eulerian side, and following the above
convention, we let v(x, t) = V (X, t) for the Eulerian velocity and h(x, t) =
∇xv(x, t) = H(X, t)F−1(X, t) for its gradient, with the understanding that
(x, t) = Φ(X, t) = (ϕ(X, t), t). We also let d(x, t) = 1

2

(
h(x, t) + h(x, t)T

)
for the

stretching tensor and w(x, t) = 1
2

(
h(x, t)− h(x, t)T

)
for the spin tensor.

We denote the first Piolà-Kirchoff stress tensor by TR and the Cauchy stress
tensor by σ, which are related by σ(x, t) = 1

detF (X,t)TR(X, t)FT (X, t) at all
corresponding space-time points. Even though the latter is an Eulerian quantity,
it will sometimes be expedient to look at it from the Lagrangian point of view.
In particular, in the context of the Oldroyd B fluid, we will need to compute
its material derivative σ̇ = ∂σ

∂t + vi
∂σ
∂xi

, which is just σ̇ = ∂
∂t (σ ◦Φ). We use the

Helmholtz free energy with specific density Am, and set the reference volumic
mass to 1 for simplicity. We will most of the time work in an incompressible
setting, expressed by the fact that detF = 1 in the Lagrangian description and
divx v = 0 in the Eulerian description. In this case, it is worth noticing that
σ = TRF

T at all corresponding points.
We denote the set of 3 × 3 matrices by M3. We let M+

3 be the subset of
matrices with strictly positive determinant, Sym3 the set of symmetric matrices,
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Sym+
3 (resp. Sym+

3 ) the set of symmetric positive definite (resp. positive semi-
definite) matrices, Skew3 the set of skew-symmetric matrices, SL(3) the set of
matrices with determinant 1, sl(3) the set of trace-free matrices and SO(3) the
set of rotation matrices. For any M ∈ M3, cofM denotes the cofactor matrix
of M , and Sym(M) and Skew(M) respectively denote the symmetric and skew-
symmetric parts of M .

3 Objective derivatives
Objective derivatives occur in situations when one wishes to differentiate Eu-
lerian quantities, typically the Cauchy stress tensor, with respect to time, in
a way that is compatible with frame-indifference. These are called derivatives
even though they are not derivation operators in the technical sense. The earli-
est example of such an objective derivative is the Zaremba-Jaumann derivative,
see [13].

In Lagrangian terms, we are considering two deformations ϕ and ϕ∗ that are
related via

ϕ∗(X, t) = Q(t)ϕ(X, t) + a(t), (1)

where Q and a are arbitrary regular functions with values respectively in SO(3)
and R3. We express (1) in Eulerian terms as (x∗, t) = (Q(t)x+ a(t), t).

The principle of frame-indifference, for which we refer to [12], requires that
the corresponding Cauchy stresses must satisfy

σ∗(Q(t)x+ a(t), t) = Q(t)σ(x, t)Q(t)T , (2)

or σ∗(x∗, t) = Q(t)σ(x, t)Q(t)T with obvious notation.
Let us remark that the stretching tensor d is also frame-indifferent in the

sense that
d∗(x∗, t) = Q(t)d(x, t)Q(t)T , (3)

whereas the velocity gradient h is not. Indeed, h∗ = QhQT + Q̇QT .
Loosely speaking, an objective derivative is a differential operator that is of

first order in time and depends on h in such a way that it transforms as above in
the same circumstances. It can thus be used for constitutive purposes to derive
frame-indifferent models of differential type.

Definition 3.1. A first order in time differential operator is an objective
derivative, or is objective, if

∗

σ∗(x∗, t) = Q(t)σ(x, t)Q(t)T , (4)

for all functions σ, Q and a with values in Sym3, SO(3) and R3 respectively,
where σ∗ and σ are related via (2).

It is clear that the material derivative does not satisfy (4) and is thus not
an objective derivative. Actually, any derivation satisfies Leibniz’s rule and
therefore cannot be objective.

A constitutive differential equation for the Cauchy stress can then be as-
sumed of the form

σ(x, t) = G(σ(x, t), d(x, t))

4



for instance in the simplest cases, and if G is itself frame-indifferent, i.e.,
G(QσQT , QdQT ) = QG(σ, d)QT , then the resulting differential model will sat-
isfy the principle of frame-indifference.

At this point, there is no really natural standout candidate among objective
derivatives. We describe below all the objective derivatives of the specific form

σ = σ̇ +Ob(σ, h), (5)

with Ob: Sym3 ×M3 → Sym3.
A function Obs : Sym3 ×Sym3 → Sym3 is said to be objective if

Obs(QσQT , QdQT ) = QObs(σ, d)Q
T , (6)

for all (σ, d) ∈ Sym3 ×Sym3 and Q ∈ SO(3). We note that the set of such
objective functions is entirely characterized, see [11]. In particular, it contains
all symmetric-valued polynomials in (σ, d). The following result is stated in [5].

Proposition 3.2. An operator of the form (5) is objective if and only if

Ob(σ, h) = σw − wσ +Obs(σ, d). (7)

with w = Skew(h), d = Sym(h), and Obs : Sym3 ×Sym3 → Sym3 is an objec-
tive function.

Proof. Let be an operator of the form (5). Let σ and σ∗ be related via (2).
It follows from the definition of the material derivative that

.∗
σ∗ =

∂

∂t
(σ∗ ◦ ϕ∗) = Q̇σQT +QσQ̇T +Qσ̇QT .

Consequently, we have

∗

σ∗ =
.∗
σ∗ +Ob(σ∗, h∗)

= Q̇σQT +QσQ̇T +Qσ̇QT +Ob(QσQT , QhQT + Q̇QT ).

equality being understood at corresponding space-time points (x∗, t) and (x, t).
The operator is thus objective if and only if

QOb(σ, h)QT = Q̇σQT +QσQ̇T +Ob(QσQT , QhQT + Q̇QT ), (8)

for all functions σ, h, and Q.
Let us first derive two necessary conditions for to be objective. For all

Q ∈ SO(3) and z ∈ Skew3, we let Q(t) = etzQ, so that Q̇(0) = zQ. Considering
constant values for σ and h, we see that (8) implies that

QOb(σ, h)QT = zQσQT −QσQT z +Ob(QσQT , QhQT + z), (9)

for all σ ∈ Sym3, h ∈ M3, Q ∈ SO(3) and z ∈ Skew3.
Taking z = 0, we obtain a first necessary condition,

QOb(σ, h)QT = Ob(QσQT , QhQT ), (10)

for all Q ∈ SO(3), σ ∈ Sym3 and h ∈ M3.
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Taking next Q = I and z = − Skew(h), we obtain a second necessary condi-
tion,

Ob(σ, h) = −Skew(h)σ + σ Skew(h) + Ob(σ, Sym(h)), (11)

for all σ ∈ Sym3 and h ∈ M3. Defining Obs to be the restriction of Ob to
Sym3 ×Sym3, we see that (7) holds. Moreover, by (10), Obs is an objective
function from Sym3 ×Sym3 to Sym3.

Conversely, let us assume Ob to be of the form (7) with an objective function
Obs. Let us show that the resulting operator is an objective derivative by
checking that (8) holds for all functions σ, h of (x, t), and Q of t.

Since Q is SO(3)-valued, then Q̇(t)Q(t)T = z(t) is a Skew3-valued function.
Let us compute Ob(QσQT , QhQT + Q̇QT ) using (6), omitting the time and
space variables for brevity. We will need the following expressions

Sym(QhQT + Q̇QT ) = QdQT ,

Skew(QhQT + Q̇QT ) = QSkew(h)QT + z.

Replacing them in (7), we obtain

Ob(QσQT , QhQT + Q̇QT ) = −(QSkew(h)QT + z)QσQT

+QσQT (QSkew(h)QT + z) + Obs(QσQT , QdQT )

= −QSkew(h)σQT +Qσ Skew(h)QT

− zQσQT +QσQT z +QObs(σ, d)Q
T

= Q
(
−Skew(h)σ + σ Skew(h) + Obs(σ, d)

)
QT

− Q̇σQT −QσQ̇T

= QOb(σ, h)QT − Q̇σQT −QσQ̇T ,

that is to say (8).

Many classical objective derivatives are of the form of Proposition 3.2, with
Obs a simple symmetric-valued polynomial in (σ, d).

• The Zaremba-Jaumann derivative
□
σ = σ̇+σw−wσ, with Obs = 0, which

is thus the simplest objective derivative in this sense. Moreover, all other
objective derivatives under consideration are of the form σ =

□
σ+Ob′s(σ, d)

for some other objective function Ob′s (more generally, the difference be-
tween any two such objective derivatives is an objective function of (σ, d)).

• The Oldroyd A or lower convected derivative
△
σ = σ̇ + hTσ + σh with

Obs(σ, d) = dσ + σd.

• The Oldroyd B or upper convected derivative
▽
σ = σ̇ − hσ − σhT with

Obs(σ, d) = −dσ − σd.

• The Truesdell derivative
◦
σ =

▽
σ + tr(h)σ with Obs(σ, d) = −dσ − σd +

tr(d)σ.

Note that the notation is not universal, and neither is the vocabulary, with
corotational, covariant and contravariant rates also being in use for the first
three objective derivatives.
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We will encounter more objective derivatives of the same general form in
Section 8.2. Some classical objective derivatives are not of the form (7), such as
the Green-Naghdi derivative, which mixes Lagrangian and Eulerian elements.
Unfortunately, even though it is apparently used in commercial software, it can
be shown that this particular derivative gives different results with different
choices of reference configuration. This sort of disqualifies it since arbitrary
reference configuration choices for the same material must produce the same
Eulerian behavior.

As we already mentioned, objective derivatives are too numerous, and there
is no obvious way of choosing among them. Two objective derivatives however
stand out in this respect. Indeed, it is well known that the Truesdell and
Oldroyd B derivatives are produced by time differentiation of the Cauchy stress
expressed with the second Piolà-Kirchhoff stress in the compressible case and
incompressible case respectively, with the simple formulas below.

Proposition 3.3. Let Σ = F−1σ cofF be the second Piolà-Kirchhoff stress.
For all deformations, we have

◦
σ =

1

detF
F
∂Σ

∂t
FT . (12)

In particular, in the incompressible case, we have

▽
σ = F

∂Σ

∂t
FT . (13)

Proof. The relation between the Cauchy stress and the second Piolà-Kirchhoff
stress reads

σ(ϕ(X, t), t) =
1

detF (X, t)
F (X, t)Σ(X, t)FT (X, t).

Therefore, omitting (X, t) in the right-hand side for brevity,

∂

∂t

(
σ(ϕ(X, t), t)

)
= − 1

(detF )2
∂

∂t
(detF )FΣFT

+
1

detF

(
HΣFT + FΣHT + F

∂Σ

∂t
FT

)
= − 1

detF

∂

∂t
(detF )σ +HF−1σ + σF−THT

+
1

detF
F
∂Σ

∂t
FT .

We have ∂
∂t (detF ) = detF divx v, so that reinterpreting the above in (almost)

Eulerian terms, we obtain

σ̇ = − tr(h)σ + hσ + σhT +
1

detF
F
∂Σ

∂t
FT ,

which is precisely equation (12).
If detF (X, t) = 1 for all (X, t), then tr(h) = 0 and formula (12) reduces to

formula (13).

This result may induce a slight preference for the above derivatives in the
incompressible and compressible cases respectively. Moreover, the second Piolà-
Kirchhoff stress is especially well suited to the study of the Oldroyd B fluid model
as we will see below.
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4 The Oldroyd B complex fluid model
We give a very brief introduction to the Oldroyd B fluid model. We refer to [7]
for historical and physical insights and [10] for a review of mathematical results
pertaining to this model. The Oldroyd B model is a model for an incompressible
viscoelastic fluid that is supposed to be a dilute suspension of polymer molecules
in a Newtonian fluid solvent. It is a model of differential type, see [12], in the
sense that the Cauchy stress is not expressed as a function of thermodynamic
variables by means of a constitutive law, but is given by a first order differential
equation in time that involves the Oldroyd B derivative

σ + λ1
▽
σ = 2η

(
d+ λ2

▽
d
)
, (14)

where η > 0 is a global viscosity coefficient and λ1, λ2 > 0 are relaxation
times. For the model to be physically relevant, it is assumed that λ2 ≤ λ1.
It is frame-indifferent by construction. Of course, the tensor σ above does not
include the indeterminate pressure term −pI that is the Lagrange multiplier of
the incompressibility constraint tr(d) = 0. In the sequel, by Cauchy stress, we
will mean Cauchy stress modulo the indeterminate pressure as long as no initial
value is specified for the differential equation (14).

There is a classical additive decomposition of the Cauchy stress that sim-
plifies equation (14), namely σ = σs + σp, obtained by letting ηs = λ2

λ1
η and

ηp =
(
1− λ2

λ1

)
η and

σs = 2ηsd and σp + λ1
▽
σp = 2ηpd, (15)

where σs is the Newtonian solvent stress with solvent viscosity ηs and σp is
interpreted as a polymer stress with polymer viscosity ηp. Conversely, (15)
implies (14) with η = ηs + ηp and λ2 = λ1ηs

ηs+ηp
and the two formulations are

equivalent.
There are many different ways of deriving the Oldroyd B model from various

hypotheses. We concentrate below on a phenomenological Lagrangian approach
with a view to testing the compatibility of the Oldroyd B model with the second
principle of thermodynamics.

5 Viscoelastic materials with internal variables
We place ourselves within the general thermo-visco-elastic framework devel-
oped in [8], by using the thermodynamic variables F and H, complemented by
a symmetric matrix-valued internal variable Bi, without thermal effects. This
framework relies heavily on the exploitation of the second principle of thermo-
dynamics or Clausius-Duhem inequality via the Coleman-Noll procedure, see
again [8].

We are given a constitutive law for the Helmholtz free energy specific density
of our material Âm : M+

3 ×M3 × Sym3 → R, so that the free energy density at
point (X, t) is given by Am(X, t) = Âm(F (X, t), H(X, t), Bi(X, t)). We also
are given a constitutive law for the first Piolà-Kirchhoff stress T̂R : M+

3 ×M3 ×
Sym3 → M3 so that likewise TR(X, t) = T̂R(F (X, t), H(X, t), Bi(X, t)). Finally,
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we are given a differential constraint for the internal variable of the form

∂Bi

∂t
(X, t) = K̂(F (X, t), H(X, t), Bi(X, t)), (16)

where the flow rule K̂ : M+
3 × M3 × Sym3 → Sym3 is the last constitutive

ingredient of the model.
The above constitutive ingredients are written for a compressible material.

Since we are also interested in incompressible materials, it is in this case enough
to restrict all the above constitutive laws to F ∈ SL(3), and (F,H) in the tangent
bundle to SL(3). We just keep this implicit. In addition, we still ignore the
indeterminate pressure term in the stress tensors. This indeterminate pressure
must naturally be taken into account in the dynamics equation.

With the above provisos in mind, the outcomes of the Coleman-Noll proce-
dure are first that Âm does not depend on H, second that there is a natural
decomposition of the constitutive law for the first Piolà-Kirchhoff stress

T̂R(F,H,Bi) = T̂Rd(F,H,Bi) +
∂Âm

∂F
(F,Bi), (17)

and third that the internal dissipation has a constitutive law given by

D̂int(F,H,Bi) = T̂Rd(F,H,Bi) : H − ∂Âm

∂Bi
(F,Bi) : K̂(F,H,Bi). (18)

The second principle reduces here to the mechanical part of the Clausius-Planck
inequalities, D̂int(F,H,Bi) ≥ 0 for all possible arguments in the Coleman-Noll
approach, see [8]. This is a constitutive restriction. The internal dissipation
is a power term which appears as a source term in the heat equation when
thermal effects are also taken into consideration. We will see later on that in
the case of the Oldroyd B fluid, it is necessary to partly modify the Coleman-Noll
approach. Namely, we will identify which evolutions of the internal variables
make the internal dissipation given by the above constitutive law nonnegative,
see Definition 7.3 below.

6 A Lagrangian formulation for the Oldroyd B
model

The original idea of [4] was to use the standard generalized materials formalism,
see [6], to derive a Lagrangian material that would become an Oldroyd B model
in the Eulerian description, while satisfying the second principle by construction
and having a variational structure. This did not succeed, possibly because stan-
dard generalized materials are not versatile enough. However, upon translating
this work into our visco-elastic framework with internal variables, we realized
that the latter is versatile enough.

By convention, in the sequel, when we write an equality between an Eulerian
quantity and a Lagrangian quantity, it will be meant at corresponding space-
time points (x, t) = (ϕ(X, t), t). This keeps the length of formulas under control.
Throughout the next two sections, all deformations will be incompressible, i.e.,
detF = 1.

9



Following [4], we start with the nonlinearly elastic neo-Hookean energy

Ŵ (F ) =
µ

2
∥F∥2, µ > 0. (19)

This energy is frame-indifferent and can be rewritten as W̃ (C) = µ
2 trC, where

C = FTF is the usual strain or Cauchy-Green tensor. We use this nonlinearly
elastic stored energy function to define the constitutive law of the Helmholtz
free energy specific density Âm for our material in the Lagrangian description
by

Âm(F,Bi) = W̃ (BiC) =
µ

2
Bi : C, (20)

where Bi is a symmetric-valued, dimensionless internal variable. Then

∂Âm

∂F
(F,Bi) = µFBi and

∂Âm

∂Bi
(F,Bi) =

µ

2
C. (21)

Note that Bi is symmetric but BiC is not. This form of free energy is inspired
by a more general choice of internal variable Fi ∈ M3 and more general choices
of Ŵ , see [8] for details.

We take here the simplest kinematically viscous stress possible, which is that
of the Newtonian fluid with viscosity ηs in the Lagrangian description,

T̂Rd(F,H,Bi) = 2ηs Sym(HF−1)F−T . (22)

It is independent from the internal variable.
The natural decomposition of the first Piolà-Kirchhoff stress (17) translates

as a natural decomposition of the Cauchy stress σ = σs +σp into a solvent part

σs = TRdF
T = 2ηsd,

a Newtonian viscous stress, and a remainder

σp =
∂Âm

∂F
(F,Bi)F

T ,

which will turn out to exactly correspond to the polymer part in decomposi-
tion (15). By (21), we have

σp = µFBiF
T . (23)

Let us define Σp = F−1σpF
−T to serve as the second Piolà-Kirchhoff stress

part corresponding to σp. Clearly,

Σp = µBi. (24)

The numerical value of the modulus µ will become irrelevant, but we keep it for
reasons of dimensional homogeneity.

To complete the identification of the Oldroyd B fluid as a visco-elastic ma-
terial with an internal variable, we just need to specify the flow rule. We thus
choose

K̂(F,H,Bi) = − 1

λ1
Bi +

2ηp
µλ1

F−1 Sym(HF−1)F−T . (25)

10



In other words, the ordinary differential equation (16) for the internal variable
here assumes the form

∂Bi

∂t
= − 1

λ1
Bi +

2ηp
µλ1

F−1 Sym(HF−1)F−T . (26)

It is easy to check that with these choices, the resulting incompressible ma-
terial is frame-indifferent. It clearly has a symmetric Cauchy stress constitutive
law. It can also be directly shown in this Lagrangian description that the cor-
responding material is fluid, see [8]. This is however not really necessary since,

Proposition 6.1. The visco-elastic material defined by (20), (22), and (25) is
the Oldroyd B fluid with material constants λ1, λ2 and η.

Proof. We have already seen that σs = 2ηsd by (22). Moreover, due to the
neo-Hookean choice (20), equation (23) holds. Proposition 3.3 applied to (23)
and (24) then shows that

▽
σp = µF

∂Bi

∂t
FT . (27)

We now substitute the ordinary differential equation (26) in the above relation,
and obtain

▽
σp = µF

(
− 1

λ1
Bi +

2ηp
µλ1

F−1 Sym(HF−1)F−T
)
FT

= − µ

λ1
FBiF

T +
2ηp
λ1

Sym(HF−1)

= − 1

λ1
σp +

2ηp
λ1

d,

or in other words
σp + λ1

▽
σp = 2ηpd, (28)

which is the polymer part of the Oldroyd B fluid constitutive differential equa-
tion. As already seen in Section 4, this is equivalent to

σ + λ1
▽
σ = 2η(d+ λ2

▽
d),

with σ = σs + σp, η = ηs + ηp and λ2 = λ1ηs

ηs+ηp
. This is the Oldroyd B fluid

model with global viscosity η and relaxation times λ1 and λ2.

Remarks 6.2. We have shown that the specific instance of visco-elastic materi-
als with internal variables described above satisfies the Oldroyd B equation in
the Eulerian description. Conversely, given any Oldroyd B fluid, we can manu-
facture such a material that reproduces its behavior. Indeed, it suffices to take
ηs =

λ2

λ1
η, ηp =

(
1− λ2

λ1

)
η, and any nonzero value for µ in the Lagrangian model.

It is a posteriori interesting that the thermodynamically motivated decompo-
sition of the first Piolà-Kirchhoff stress (17) actually corresponds to the Cauchy
stress decomposition for the Oldroyd B fluid (15), which initially looked like
little more than an algebraic trick.

In [8], we rephrased the standard Oldroyd B model as an Eulerian model
with an internal variable. We did this by choosing ξ = σp for the internal
variable, having a free energy âm only function of ξ, and using the differential

11



constitutive law (28) itself as a flow rule. We deemed this choice to have little
physical significance at the time. A special case of it is however equivalent to
the present, much more physically grounded, Lagrangian approach. Indeed,

σp = µFBiF
T so that Bi =

1

µ
F−1ξF−T .

In terms of Eulerian flow rule, we had the ordinary differential equation for ξ

▽
ξ =

1

λ1

(
−ξ + 2ηpd

)
. (29)

Proposition 6.3. The differential equations (26) and (29) are equivalent, and
we have

Âm(F,Bi) = âm(ξ) with âm(ξ) =
1

2
tr ξ.

Proof. Indeed, since ξ = µFBiF
T , it follows from Proposition 3.3 that

▽
ξ =

µF ∂Bi

∂t FT so that substituting (26) therein, we obtain (29) and conversely.
Moreover, we have

Âm(F,Bi) =
µ

2
Bi : C =

µ

2
tr(BiF

TF ) =
1

2
tr(µFBiF

T ) =
1

2
tr ξ,

hence the equivalence in terms of free energies as well.

With this specific choice of Eulerian free energy, we are thus recovering in
Eulerian terms our Lagrangian model, the flow rule of which is taylored to
precisely reproduce the Oldroyd B differential constitutive law.

7 The Oldroyd B fluid and the second principle
of thermodynamics

Historically, Oldroyd introduced his A and B models without any concern for
thermodynamics, see [9]. The issue of whether or not the Oldroyd B fluid is
compatible with the second principle does not seem to be very prominent in
the Oldroyd B literature, even though it is a continuum mechanics model that
should obey the rules of thermodynamics.

This is not a trivial issue. Indeed, in [8], we showed that if the Oldroyd B
model is considered as an Eulerian model with no internal variable, then the
internal dissipation must be the naive one dint,naive = σ : d. In a series of
very convincing numerical experiments, we also showed that, rather generically,
dint,naive can become strictly negative after some time. The idea is to impose,
via adapted forces, a periodically shaking velocity field and compute the corre-
sponding evolution of the Cauchy stress at one rest point in the fluid. Because
the Oldroyd B fluid involves a differential equation in time, the stress tensor
lags behind the stretching tensor in some sense, and ends up in opposition of
phase with the latter, hence the strictly negative inner product, see [8] for de-
tails. This is not a mathematical proof, but the numerics are fairly simple and
standard, and the numerical error should be minimal whereas the second prin-
ciple violation by this internal variable free version of the Oldroyd B model is
very large.
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It turns out that the equivalence between our Eulerian formulation with the
internal variable ξ = σp of [8] and our present Lagrangian formulation extends to
internal dissipation and second principle issues. Let us start with the Lagrangian
formulation.

Proposition 7.1. The constitutive law for the Lagrangian internal dissipation
is

D̂int(F,H,Bi) = 2ηs∥ Sym(HF−1)∥2 + µ

2λ1
Bi : C. (30)

Proof. We compute all the terms in formula (18). Consider first the Newtonian
fluid term,

T̂Rd(F,H,Bi) : H = 2ηs
(
Sym(HF−1)F−T

)
: H = 2ηs tr

(
F−1 Sym(HF−1)H

)
= 2ηs tr

(
Sym(HF−1)HF−1

)
= 2ηs Sym(HF−1) :

(
HF−1

)
= 2ηs∥Sym(HF−1)∥2,

which is to be expected from the corresponding Eulerian expression. Next we
look at the dissipation coming from the internal variable. It follows from (21)
that

−∂Âm

∂Bi
(F,Bi) : K̂(F,H,Bi) = −µ

2
C :

(
− 1

λ1
Bi +

2ηp
µλ1

F−1 Sym(HF−1)F−T
)

=
µ

2λ1
C : Bi −

ηp
λ1

L(H),

where L(H) = C :
(
F−1 Sym(HF−1)F−T

)
. This linear form vanishes since

L(H) = tr
(
CF−1 Sym(HF−1)F−T

)
= tr

(
FT Sym(HF−1)F−T

)
= tr

(
Sym(HF−1)

)
= 0.

Indeed, Sym(HF−1) = d and tr d = 0 by incompressibility. This completes the
proof of relation (30).

In order to compare this result to the Eulerian dissipation considered in [8],
we recall the notation used therein for the flow rule in the form ξ̇ = k̂(h, ξ) with

k̂(h, ξ) = hξ + ξhT +
1

λ1

(
−ξ + 2ηpd

)
, (31)

which is a rewriting of (29), and the internal dissipation

d̂int(h, ξ) = σ : d− ∂âm
∂ξ

(ξ) : k̂(h, ξ) with σ = 2ηsd+ ξ. (32)

The two Lagrangian and Eulerian approaches are here again equivalent for
the choice âm(ξ) = 1

2 tr ξ.

Proposition 7.2. At all corresponding values of the thermodynamic variables,
we have

D̂int(F,H,Bi) = d̂int(h, ξ)

where
d̂int(h, ξ) = 2ηs∥d∥2 +

1

2λ1
tr ξ. (33)
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Proof. We have here ∂âm

∂ξ (ξ) = 1
2I, so that

d̂int(h, ξ) = 2ηsd : d+ ξ : d− 1

2
tr(k̂(h, ξ)),

with
tr(k̂(h, ξ)) = 2ξ : h− 1

λ1
tr ξ = 2ξ : d− 1

λ1
tr ξ,

by incompressibility and the symmetry of ξ. Therefore, (33) holds true.
We have already noticed that tr ξ = trσp = µBi : C, from which the equality

of Lagrangian and Eulerian dissipations follows.

Now Proposition 5.11 of [8] states that there is no free energy âm in the
variable ξ that can make the Eulerian dissipation nonnegative for all values of
d ∈ sl(3) and ξ ∈ Sym3. In particular, the choice âm(ξ) = 1

2 tr ξ does not yield a
nonnegative dissipation in the sense of Coleman-Noll, and the same thus holds
true for our Lagrangian formulation.

We can however lower our expectations and wonder whether there are initial
conditions for the internal variable that result in a nonnegative dissipation at
all subsequent times and for any admissible deformation ϕ. This makes for an
acceptable version of the second principle for the Oldroyd B fluid, and more
generally for materials with internal variables, albeit not strictly speaking that
of Coleman and Noll as revisited in [8], where we required the dissipation to be
nonnegative for all initial conditions of the internal variables.

To be more precise, given some reference configuration Ω ⊂ R3, we say that
a deformation ϕ : Ω̄×R → R3 is admissible if it is of class C1, det∇Xϕ(X, t) = 1
for all X ∈ Ω and t ∈ R+, and for all t ∈ R+, ϕ(·, t) is a diffeomorphism between
Ω̄ and ϕ(Ω, t).

Definition 7.3. We will say that the second principle is satisfied for an initial
value of the internal variable if, given any admissible deformation, the corre-
sponding dissipation is nonnegative for all t ≥ 0. If the set C of such initial
values is nonempty, we say that the second principle is conditionally satisfied
under condition C.

The difference with the Coleman-Noll approach of [8] is that we do not
expect this to hold for any initial value of the internal variable and thus the
constitutive law (30) for the internal dissipation is not required to only take
nonnegative values for all possible arguments.

However, if we examine the proof of [8] in this new light, we can see that
there is little change in the conclusions listed in Section 5. It is still necessary
that Âm does not depend on H when Bi ∈ C, the decomposition of the first
Piolà-Kirchhoff stress is unchanged, and the internal dissipation (18) must be
nonnegative for all F , H, and all Bi ∈ C.

Conversely, if the condition set C is invariant by the flow rule, then the
above conditions are sufficient for the conditional second principle. We will see
however that such an invariance does not hold in the case of the Oldroyd B
fluid, cf. Proposition 7.6. The issue of whether or not the conditional second
principle holds for Oldroyd B is thus somewhat subtler than this.

Since the above general statements are not proved here, we proceed in the
Oldroyd B case without referring to them in the sequel, which is thus self-
contained.
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In the specific case of our Lagrangian formulation for the Oldroyd B fluid,
we already have a free energy Âm that does not depend on H. The constitutive
law for the internal dissipation (30) clearly does not take nonnegative values for
all F ∈ M+

3 , H ∈ M3, and Bi ∈ Sym3 without restrictions on Bi. Let us proceed
to identify the set C of initial conditions that will ensure that the conditional
second principle holds, if any.

We need the following standard lemma.

Lemma 7.4. Let B and C be two symmetric positive semi-definite n × n ma-
trices. Then we have

B : C ≥ n(detB)
1
n (detC)

1
n . (34)

In particular, B : C ≥ 0.

Proof. We first remark that

B : C = tr(BC) = tr(B
1
2B

1
2C

1
2C

1
2 ) = tr(C

1
2B

1
2B

1
2C

1
2 ) = ∥B 1

2C
1
2 ∥2.

Let M = B
1
2C

1
2 and Mi ∈ Rn be its column vectors. We have

B : C =

n∑
i=1

∥Mi∥2 ≥ n
( n∏
i=1

∥Mi∥2
) 1

n ≥ n(detM)
2
n = n(detB)

1
n (detC)

1
n ,

by the inequality between the arithmetic and geometric means and by the
Hadamard inequality.

Note that inequality (34) is sharp.

Proposition 7.5. It is necessary that Bi(X, 0) be positive semi-definite for all
X ∈ Ω for the second principle to hold conditionally.

Proof. Here and in the ensuing proofs, we fix a Lagrangian point X0 ∈ Ω
throughout and write Bi(X0, t) = Bi(t) and so on, since X only plays the
role of a parameter and the sole relevant variable is the time variable t.

Let us assume that Bi(0) is such that the second principle holds condition-
ally. Let F0 ∈ SL(3) be arbitrary and take ϕ(X, t) = F0X. This choice is
admissible with C(t) = C0 = FT

0 F0 and H(t) = 0 for all t. The internal dissi-
pation at t = 0 is thus Dint(0) =

µ
2λ1

Bi(0) : C0 by (30). The conditional second
principle then implies that

Bi(0) : C0 ≥ 0,

for all C0 ∈ Sym+
3 ∩SL(3). Multiplying by any positive factor and by continuity,

it follows that we must have Bi(0) : C0 ≥ 0 for all C0 ∈ Sym+
3 . Diagonalizing

Bi(0) in the form Bi(0) = Q∆QT with Q ∈ SO(3) and ∆ diagonal, we see that
∆ : C0 ≥ 0 for all C0 ∈ Sym+

3 . Choosing C0 = diag(1, 0, 0), we obtain that
∆11 ≥ 0, and similarly for the other eigenvalues of Bi(0).

We thus have that C ⊂ Sym+
3 . Let us remark that Sym+

3 is precisely the
set of Bi ∈ Sym3 such that D̂int(F,H,Bi) ≥ 0 for all F ∈ M+

3 and H ∈ M3.
Indeed, if Bi ∈ Sym+

3 , then Bi : C ≥ 0 for all C ∈ Sym+
3 by Lemma 7.4. If the

set Sym+
3 was invariant by the flow rule, then the internal dissipation would be

nonnegative by the previous remark. This is not the case in general.
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Proposition 7.6. If ηp > 0, there is an admissible deformation such that
Bi(X, 0) ∈ Sym+

3 , but Bi(X, t) /∈ Sym+
3 for some t > 0. If ηp = 0, then

Bi(X, 0) ∈ Sym+
3 implies that Bi(X, t) ∈ Sym+

3 for all t ≥ 0.

Proof. From now on, we denote time differentiation with a prime since t is the
only relevant variable. Assume first that ηp > 0. We take ϕ(X, t) = F (t)X
with F (t) = diag(et, e−t, 1). This is obviously an admissible deformation, which
corresponds to a steady Eulerian flow h(t) = d(t) = diag(1,−1, 0). Assuming
λ1 = 1 without loss of generality, equation (26) becomes in this case,(

etBi(t)
)′

=
2ηp
µ

diag(e−t,−e3t, 0).

Integrating this between 0 and t, we obtain

Bi(t) = e−tBi(0) +
2ηp
µ

diag
(
e−t − e−2t,

1

3

(
e−t − e2t

)
, 0
)
.

If ηp > 0, then for any Bi(0) including all positive semi-definite ones, the small-
est eigenvalue of Bi(t) thus goes to −∞ when t → +∞. Consequently, Bi(t)

exits Sym+
3 in finite time.

If, on the contrary, ηp = 0, then for all admissible deformations, Bi(t) =

e−
t

λ1 Bi(0) for all t. Therefore, the flow rule obviously preserves positive semi-
definiteness in this particular case.

See also another example, albeit a numerical one, of evolution that does not
preserve positive semi-definiteness in Section 8.3, Figure 2.

It is quite remarkable that, when ηp > 0 and in spite of Proposition 7.6, the
conditional second principle still holds.

Proposition 7.7. For any ηp ≥ 0, the Oldroyd B fluid satisfies the second
principle of thermodynamics conditionally if and only if Bi(X, 0) is positive
semi-definite for all X.

Proof. The necessity was proved in Proposition 7.5. Let us thus assume that
Bi(0) is positive semi-definite. It is well known that

C ′(t) = 2FT (t)d(t)F (t).

Let us rewrite the second term in the flow rule (25), which only depends on t,
with this remark:

F−1 Sym(HF−1)F−T =
1

2
F−1F−TC ′F−1F−T =

1

2
C−1C ′C−1 = −1

2
(C−1)′.

The ordinary differential equation (26) for Bi is then rewritten as

∂Bi

∂t
= − 1

λ1
Bi − η∗(C

−1)′, (35)

where η∗ =
ηp

µλ1
≥ 0. This differential equation is linear with continuous right-

hand side, therefore the Cauchy problem is well-posed on R+ for any initial

16



value Bi(0) ∈ Sym3. Moreover, it has constant coefficients, thus the Duhamel
formula provides an expression for Bi,

Bi(t) = e−
t

λ1 Bi(0)− η∗e
− t

λ1

∫ t

0

e
s
λ1 (C−1)′(s) ds,

Integrating the second term by parts, we obtain

e
t

λ1 Bi(t) = Bi(0) + η∗

(
C−1(0)− e

t
λ1 C−1(t) +

1

λ1

∫ t

0

e
s
λ1 C−1(s) ds

)
.

Consequently,

e
t

λ1 Bi(t) : C(t) = Bi(0) : C(t) + η∗C
−1(0) : C(t)− 3η∗e

t
λ1

+
η∗
λ1

∫ t

0

e
s
λ1 C−1(s) : C(t) ds

= Bi(0) : C(t) + η∗
(
C−1(0) : C(t)− 3

)
+

η∗
λ1

∫ t

0

e
s
λ1

(
C−1(s) : C(t)− 3

)
ds.

By Lemma 7.4, we first have Bi(0) : C(t) ≥ 0 for all t ≥ 0 since Bi(0) and
C(t) are both symmetric positive semi-definite. Secondly, C−1(s) and C(t) are
symmetric positive definite and belong to SL(3), by incompressibility. Therefore,
also by Lemma 7.4, we have C−1(s) : C(t) ≥ 3 for all s ≥ 0 and consequently
Bi(t) : C(t) ≥ 0 for all t ≥ 0. The nonnegativity of the internal dissipation then
follows from formula (30).

Remark 7.8. In the case of the example of Proposition 7.6, we obtain that

Bi(t) : C(t) = e−tBi(0) : C(t) +
2ηp
µ

(
et +

1

3
e−3t − 4

3

)
≥ 0

for all t.
Note that when ηp = 0, the result of Proposition 7.7 is trivial in view of

Lemma 7.4 and the second part of Proposition 7.6.
The following is then a direct consequence of Proposition 7.2.

Corollary 7.9. The Eulerian dissipation dint remains nonnegative for all times
and all given velocity fields if and only if σp(0) is positive semi-definite.

Of course, the naive dissipation σ : d will still change sign for some velocity
fields.

The question now is whether it is legitimate to only consider initial values for
the internal variable that ensure the conditional second principle. For a general
model, the physical meaning of a given internal variable may be unclear. It can
be a question of principle to only pick such initial conditions, if they exist. In
the particular case of the Oldroyd B fluid, we actually have

Bi(0) =
1

µ
Σp(0) =

1

µ
F−1(0)σp(0)F

−T (0),

or directly in the Eulerian description

ξ(0) = σp(0).
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Now of course, the polymer stress is not entirely well defined from the consti-
tutive point of view, unless an initial value is chosen for it. Furthermore, since
the model is incompressible, the actual physical Cauchy stress is of the form

σ(0) = 2ηsd(0) + σp(0)− p(0)I,

where p is the indeterminate pressure (that we have ignored up to now). So
the quantity that is physically meaningful is σp(0) − p(0)I = σ(0) − 2ηsd(0).
From the constitutive point of view, we are at liberty to incorporate some of the
indeterminate pressure into σp(0) in such a way that it becomes positive semi-
definite without changing the right-hand side, and thus consider the second
principle to be satisfied in all situations.

If we were considering an initial-boundary value problem that was well-
posed, then the pressure would be determined by the problem data and the
above liberty would no longer be available.
Remark 7.10. A natural question is whether or not the present formulation of
the Oldroyd B model admits a dissipation potential in the sense of standard
generalized materials, [4]-[6], or in the somewhat different sense introduced in
[8].

In the case ηp > 0, the answer is clearly negative, otherwise the second
principle would hold unconditionally. The case ηp = 0 can be considered as
unconditional if we restrict the internal variable to Sym+

3 , which is then invariant
under the flow rule. This is a convex set and the function P̂diss : M+

3 × M3 ×
Sym+

3 × Sym+
3 → R defined by

P̂diss(F,H,Bi,Λ) = ηs∥Sym(HF−1)∥2 + 1

λ1
Bi : Λ.

is clearly convex with respect to (H,Λ), takes nonnegative values, and is such
that P̂diss(F, 0, Bi, 0) = 0. This function is a dissipation potential for T̂Rd

1 and
K̂, in a slightly generalized sense compared to [8] allowing for more flexibil-
ity in the arguments of the potential, namely that we have T̂Rd(F,H,Bi) =
∂P̂diss

∂H

(
F,H,Bi,

∂Âm

∂Bi
(F,Bi)

)
and K̂(F,H,Bi) = −∂P̂diss

∂Λ

(
F,H,Bi,

∂Âm

∂Bi
(F,Bi)

)
,

thus yielding a nonnegative dissipation. Of course, this remark adds very little
insight into this particular situation compared to our direct approach.

8 A few variants of the Oldroyd B model
In this section, we develop a few generalizations of the Oldroyd B model based on
Lagrangian formulations and discuss their relationship with the second principle.

8.1 Compressible Oldroyd B models
Before we start with the modeling, let us draw a small list of useful identities
that relate C = FTF and d, the first of which was already noted earlier, namely
that

∂C

∂t
= 2FT dF,

∂C−1

∂t
= −2F−1dF−T , (36)

1The dissipation potential for the compressible Newtonian fluid in Lagrangian form we
wrote in Remark 3.9 of [8] is incorrect and should read P̂diss(F,H) = ν detF∥ Sym(HF−1)∥2.
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and

tr(d) =
1

2
C−1 :

∂C

∂t
= −1

2

∂C−1

∂t
: C, (37)

at all corresponding Lagrangian and Eulerian space-time points. Moreover,

∂J

∂t
= J tr(d). (38)

Let us now see what kind of model can be obtained by removing the in-
compressibility assumption. In the compressible case, there is no indeterminate
pressure, and the whole Cauchy stress, including the polymer stress, will be
entirely determined by the constitutive laws plus initial conditions, as opposed
to what happens in the incompressible case.

We start with a free energy density of the form

Âm(F,Bi) = ŵ(J) +
µ

2
Bi : C,with J = detF, (39)

with µ > 0. In addition to the neo-Hookean term featuring the internal variable,
there is an elastic fluid term ŵ : R∗

+ → R. Differentiating (39) with respect to
F , we obtain

∂Âm

∂F
(F,Bi) = ŵ′(J) cofF + µFBi.

According to equation (17), we thus obtain a standard decomposition of the
first Piolà-Kirchhoff stress as

T̂R(F,H,Bi) = T̂Rd(F,H) + ŵ′(J) cofF + µFBi,

and of the Cauchy stress as

σ̂(F,H,Bi) =
1

J
T̂Rd(F,H)FT + ŵ′(J)I +

µ

J
FBiF

T .

Similarly as before, we let σ = σs + σp with

σ̂s(F,H) =
1

J
T̂Rd(F,H)FT and σ̂p(F,Bi) = ŵ′(J)I +

µ

J
FBiF

T . (40)

Without loss of generality, we assume the reference configuration to be ho-
mogeneous and with mass density equal to 1. In the spirit of the Oldroyd B
fluid, we assume that the solvent is a compressible Newtonian fluid, the stress
of which assumes the Eulerian form

σs = 2η̄s(ρ)d+ λ̄s(ρ) tr(d)I,

where ρ = 1
J is the Eulerian mass density, and the viscosities η̄s, λ̄s are given

functions defined on R∗
+ such that η̄s ≥ 0 and 2η̄s + 3λ̄s ≥ 0 in order for the

viscous Newtonian dissipation to be nonnegative for all d. In Lagrangian terms,
this reads

T̂Rd(F,H) =
(
2ηs(J) Sym(HF−1) + λs(J) tr(HF−1)I

)
cofF, (41)

where ηs(J) = η̄s(J
−1) and λs(J) = λ̄s(J

−1).
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We again define a polymer second Piolà-Kirchhoff stress by Σp = JF−1σpF
−T .

Letting ẑ(J) = Jŵ′(J), we obtain from (40)

Σ̂p(F,Bi) = ẑ(J)C−1 + µBi. (42)

Of course, in the compressible case, we expect the Truesdell derivative to
play a leading role.

Proposition 8.1. We have

◦
σp = ẑ′(J) tr(d)I − 2ẑ(J)

J
d+

µ

J
F
∂Bi

∂t
FT . (43)

Proof. From (42) and (36)–(38), we deduce that

∂Σp

∂t
=

∂

∂t

(
ẑ(J)C−1

)
+ µ

∂Bi

∂t

= ẑ′(J)J tr(d)C−1 − 2ẑ(J)F−1dF−T + µ
∂Bi

∂t
.

We then appeal to Proposition 3.3 to conclude.

In order to derive an Oldroyd B-like equation for σp, we choose three func-
tions λ1, η∗ and λ∗ from R∗

+ to R, with λ1 strictly positive, then consider the
following flow rule

K̂(F,H,Bi) = − 1

λ1(J)
Bi − η∗(J)(C

−1)′ +
λ∗(J)

2
(C−1 : C ′)C−1. (44)

Here, λ1 plays again the role of a relaxation characteristic time and η∗ and
λ∗ somewhat that of Lamé viscosity coefficients. The notations (C−1)′ and C ′

are shorthand for −2F−1 Sym(HF−1)F−T and 2FT Sym(HF−1)F respectively,
viz. identities (36).

Proposition 8.2. The polymer stress satisfies the equation

σp + λ̄1(ρ)
◦
σp = 2η̄p(ρ)d+ λ̄p(ρ) tr(d)I − p̄(ρ)I, (45)

where λ̄1(ρ) = λ1(ρ
−1), η̄p(ρ) = ηp(ρ

−1), λ̄p(ρ) = λp(ρ
−1), with

ηp(J) =
λ1(J)

J

(
µη∗(J)− ẑ(J)

)
, (46)

λp(J) =
λ1(J)

J

(
µλ∗(J) + Jẑ′(J)

)
, (47)

and finally, p̄(ρ) = −ρẑ(ρ−1).

Proof. Let us rewrite the flow rule (44) by mixing Eulerian and Lagrangian
quantities, using identities (36)–(38) and omitting the variable J as argument
in the various functions for brevity,

∂Bi

∂t
= − 1

λ1
Bi + 2η∗F

−1dF−T + λ∗ tr(d)C−1,

and replace it in equation (43), which yields

◦
σp = ẑ′ tr(d)I − 2ẑ

J
d− 1

λ1

µ

J
FBiF

T +
µ

J
(2η∗d+ λ∗ tr(d)I),

hence the result since σp = 1
J (ẑI + µFBiF

T ).
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Remarks 8.3. The right-hand side of (45) assumes the form of a compressible
Newtonian Cauchy stress with viscosities η̄p(ρ) and λ̄p(ρ), and elastic pressure
p̄(ρ). We consider this to be a compressible generalization of the expression of
the Oldroyd B model in terms of σp, i.e., the second part of (15). The polymer
viscosities and elastic pressure are arbitrary functions at this point.

The equation can be equivalently rewritten in terms of σ as (omitting ρ for
brevity)

σ + λ̄1
◦
σ = 2η̄d+ λ̄ tr(d)I − p̄I + λ̄1

( ◦︷ ︸︸ ︷
2η̄sd+ λ̄s tr(d)I

)
, (48)

with η̄(ρ) = η̄s(ρ) + η̄p(ρ) and λ̄(ρ) = λ̄s(ρ) + λ̄p(ρ). Equation (48) is in turn a
compressible generalization of equation (14).

Let us now turn to second principle considerations for this compressible
model.

Proposition 8.4. The constitutive law for the internal dissipation is given by

D̂int(F,H,Bi) = J
(
2ηs(J)∥ Sym(HF−1)∥2 + λs(J)

(
tr(HF−1)

)2)
− µ

2

(
2η∗(J) + 3λ∗(J)

)
tr(HF−1) +

µ

2λ1(J)
Bi : C (49)

in Lagrangian form.

Proof. This follows directly from equation (18), relation (41), the definition (44)
and the fact that ∂Âm

∂Bi
= µ

2C as before.

Note that the only viscosity coefficients that play a role in the constitutive
law for the internal dissipation are ηs, λs, η∗, and λ∗.

Let us first write a necessary condition.

Proposition 8.5. If the compressible Oldroyd B fluid satisfies the second prin-
ciple of thermodynamics conditionally, then Bi(X, 0) is positive semi-definite.

Proof. Same proof as Proposition 7.5.

Remarks 8.6. The question now is is this condition sufficient? We already know
that it is sufficient for incompressible deformations, by the results of Section 7.
For a general compressible deformation however, the third term in equation (49)
is clearly problematic. Consider for instance ϕ(X, t) = eαtF0X, with F0 ∈ M+

3 ,
for which HF−1 = αI. For Bi(0) = 0, the initial dissipation is

Dint(0) = 3J
(
2ηs(J0) + 3λs(J0)

)
α2 − 3µ

2

(
2η∗(J0) + 3λ∗(J0)

)
α,

with J0 = detF0. For any F0 such that 2η∗(J0) + 3λ∗(J0) ̸= 0, it is clear that
Dint(0) < 0 for α sufficiently small and of the same sign as 2η∗(J0) + 3λ∗(J0).
The second principle thus cannot be satisfied with the condition Bi(0) positive
semi-definite in this case.

If we assume 2η∗(J) + 3λ∗(J) = 0 for all J , this problem disappears. This
assumption is thus made from now on.
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We nevertheless still have the following negative result in the case of constant
coefficients.

Proposition 8.7. Assume that ηs, λs, λ1 and η∗ are constant functions and
λ∗ = − 2

3η∗ ̸= 0. Then the compressible Oldroyd B fluid does not satisfy the
second principle of thermodynamics conditionally for any Bi(X, 0).

Proof. Without loss of generality, we may assume that λ1 = 1 by rescaling the
time variable. The ordinary differential equation for Bi thus assumes the form

∂Bi

∂t
= −Bi − η∗

((
C−1

)′
+

1

3
(C−1 : C ′)C−1

)
.

Now it is easily checked that

1

3
(C−1 : C ′) =

1

3

(
ln(detC)

)′
=

(
ln((detC)1/3)

)′
.

This suggests a decoupling of the form

f(t) = (detC(t))−1/3 and M(t) =
1

f(t)
C−1(t),

with f(t) ∈ R∗
+,M(t) ∈ Sym+

3 ∩SL(3), where f and M are independent of each
other. This considerably simplifies the equation as

∂Bi

∂t
= −Bi − η∗fM

′.

By Duhamel’s formula, it follows that

Bi(t) = e−tBi(0)− η∗e
−t

∫ t

0

esf(s)M ′(s) ds,

and the internal dissipation becomes

Dint(t) = f(t)−3/2
(
2ηs∥d(t)∥2 + λs(tr d(t))2

)
+

µe−t

2
Bi(0) : C(t)− µη∗e

−t

2f(t)

∫ t

0

esf(s)M ′(s) : M−1(t) ds. (50)

We are assuming that η∗ ̸= 0. There are two cases depending on the sign of
η∗. We start with the simplest case, η∗ < 0. A simple incompressible deforma-
tion f(t) = 1 will be sufficient. Let α ∈ ]−1, 1[ and define

F (t) = diag(e−αt/2, eαt/2, 1).

Let us compute all the relevant quantities for the deformation ϕ(X, t) = F (t)X:

H(t) =
α

2
diag(−e−αt/2, eαt/2, 0), d(t) =

α

2
diag(−1, 1, 0),

C(t) = M−1(t) = diag(e−αt, eαt, 1), M ′(s) = α diag(eαs,−e−αs, 0).

With these formulas in hand, we obtain that

2ηs∥d(t)∥2 + λs(tr d(t))2 = ηsα
2,

e−tBi(0) : C(t) = Bi(0) : diag(e−(α+1)t, e(α−1)t, e−t),
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and

e−t

∫ t

0

esf(s)M ′(s) : M−1(t) ds =
2α2

α2 − 1
+ α

(e(α−1)t

1− α
− e−(α+1)t

α+ 1

)
.

Since |α| < 1, we thus have

Dint(t) → α2
(
ηs −

µη∗
α2 − 1

)
when t → +∞,

which is strictly negative for |α| close enough to 1. This holds for any initial
value Bi(0).

Assume now that η∗ > 0. By Proposition 7.7, incompressible deformations
cannot be used to construct a counter-example. For any initial value Bi(0),
we construct a deformation for which Dint(1) < 0, which is sufficient for our
purpose, as follows. We start with

F (t) = f(t)−1/2 diag(et(1−t)/2, et(t−1)/2, 1),

and will adjust f later on. We again compute the relevant quantities,

d(t) =
(1
2
− t

)
diag(1,−1, 0)− 1

2
f ′(t)f(t)−1I,

C(t) = f(t)−1 diag(et(1−t), et(t−1), 1),M(t) = diag(et(t−1), et(1−t), 1)

M ′(s) = (2s− 1) diag(es(s−1),−es(1−s), 0).

For t = 1, M−1(1) = I so that M ′(s) : M−1(1) = 2(1 − 2s) sinh(s(1 − s)). We
will take f such that f ′(1) = 0 so that d(1) = − 1

2 diag(1,−1, 0). In addition,
we will also take f(1) = 1. We substitute all these values in (50) for t = 1 and
obtain

Dint(1) = ηs +
µ

2e
tr(Bi(0))−

µη∗
e

∫ 1

0

f(s)es(1− 2s) sinh(s(1− s)) ds. (51)

Let us now take α > 0 and let f(s) = α on [0, 1/2]:∫ 1

0

f(s)es(1− 2s) sinh(s(1− s)) ds = αI0 +

∫ 1

1/2

f(s)es(1− 2s) sinh(s(1− s)) ds

with

I0 =

∫ 1/2

0

es(1− 2s) sinh(s(1− s)) ds > 0.

Since es|(1− 2s) sinh(s(1− s))| ≤ e sinh(1/4) ≤ 1 on [1/2, 1], we see that∣∣∣∫ 1

0

f(s)es(1− 2s) sinh(s(1− s)) ds− αI0

∣∣∣ ≤ ∫ 1

1/2

f(s) ds.

We now extend f to [1/2, 1] in a C1-fashion, with f ′(1) = 0, f(1) = 1 and∫ 1

1/2
f(s) ds ≤ αI0

2 , which is clearly possible. It follows that

Dint(1) ≤ ηs +
µ

2e
tr(Bi(0))−

αµη∗I0
2e

< 0

for α large enough.
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Remark 8.8. Going back to the general case λ1 ̸= 1 and as a side remark, we
notice that

−
∫ t

0

e
s
λ1 f(s)M ′(s) ds = C−1(0)− e

t
λ1 C−1(t) +

∫ t

0

(
e

s
λ1 f(s)

)′
M(s) ds

by integration by parts. Therefore,

−
∫ t

0

e
s
λ1 f(s)M ′(s) ds : M−1(t) = C−1(0) : M−1(t)− 3e

t
λ1 f(t)

+

∫ t

0

(
e

s
λ1 f(s)

)′
M(s) : M−1(t) ds.

Now M is SL(3)-valued so that C−1(0) : M−1(t) ≥ 3f(0) by Lemma 7.4. There-
fore, if

(
e

s
λ1 f(s)

)′ ≥ 0, that is to say if 1
λ1
f + f ′ ≥ 0, it follows that

−
∫ t

0

e
s
λ1 f(s)M ′(s) ds : M−1(t) ≥ 3f(0)−3e

t
λ1 f(t)+3

∫ t

0

(
e

s
λ1 f(s)

)′
ds = 0.

In the case when η∗ > 0, we deduce from this that if 1
λ1
f + f ′ ≥ 0, then

the dissipation remains nonnegative at all positive times when Bi(0) is positive
semi-definite. This condition is equivalent to J(t) ≤ e

3
2λ1

(t−s)J(s) for all s ≤ t,
or in Eulerian terms divx v ≤ 3

2λ1
, i.e., what we could call moderately expansive

deformations, which include of course incompressible deformations. The prob-
lem with the second principle in the compressible case with constant coefficients
thus occurs when deformations expand faster than this, which is the case of the
second counter-example above.

There is one case when we can prove that the second principle is conditionally
satisfied.

Proposition 8.9. If η∗ = λ∗ = 0, the compressible Oldroyd B fluid satisfies
the second principle of thermodynamics conditionally when Bi(X, 0) is positive
semi-definite.

Proof. In this case, the flow rule reduces to ∂Bi

∂t = − 1
λ1(J)

Bi, so that Bi(X, t) =

e
−

∫ t
0

ds
λ1(J(s))Bi(X, 0). If Bi(X, 0) is positive semi-definite, then so is Bi(X, t)

and Bi(X, t) : C(X, t) ≥ 0 for all t.

Remarks 8.10. This result is a little disappointing. It would be worthwhile
to find more general conditions with non constant coefficients under which the
compressible Oldroyd B model satisfies the second principle conditionally, with
the possible inclusion of thermal effects.

8.2 Nonlinear Oldroyd B models
We return to the incompressible case and define a whole family of nonlinear
incompressible Oldroyd B-type models in the Lagrangian description. We keep
Âm based on the neo-Hookean material as in (20), so that σp = µFBiF

T as in
(23), but consider more elaborate flow rules. Specifically, given k ∈ N, we set

K̂k(F,H,Bi) = − µk

λ1µk
Bi(CBi)

k +
2ηp
µλ1

F−1 Sym(HF−1)F−T . (52)
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For k = 0 and µ0 = 1, this is the linear flow rule (25) which gives rise to the
usual Oldroyd B model. The constant µk > 0 is a physical parameter that is
homogeneous to a pressure to the power k. Indeed, C and Bi are dimensionless
whereas the shear modulus µ is homogenous to a pressure.

Proposition 8.11. The Eulerian polymer stress corresponding to the data (20),
(22), and (52) satisfies

▽
σp = − 1

λ1µk
σk+1
p +

2ηp
λ1

d. (53)

Proof. We proceed exactly as in the proof of Proposition 6.1 by substituting the
flow rule (52) into equation (27). The second term in the flow rule gives rise to
the second term in the right-hand side of (53) as before. The first term becomes

µF
(
− µk

λ1µk
Bi(CBi)

k
)
FT = − 1

λ1µk

(
µFBiF

T
)k+1

= − 1

λ1µk
σk+1
p

by equation (23).

We thus obtain nonlinear incompressible Oldroyd B models by writing σ =
σs + σp with σs = 2ηsd.

Corollary 8.12. The Eulerian form of the above Lagrangian model reads

1

µk
(σ − 2ηsd)

k+1 + λ1
▽
σ = 2

(
ηpd+ λ1ηs

▽
d
)
. (54)

Remark 8.13. These models are frame-indifferent by construction. This also fol-
lows from the fact that the left-hand side of (54) features an objective derivative
of σ and the right-hand side an objective derivative of d

λ1
1
σ = 2ηλ2

2

d , (55)

where η = ηs + ηp and λ2 = λ1ηs/η as before, which is also the general form of
the classical linear Oldroyd model.

There is no nice general expression for 1 because of the noncommutative
binomial expression. It however yields a symmetric-valued polynomial in (σ, d),
which is an objective function. Let us expand a couple of examples for small k.

For k = 1, we obtain

(σ − 2ηsd)
2 = σ2 − 2ηs(σd+ dσ) + 4η2sd

2,

so that (54) can be rearranged as

σ2 − 2ηs(σd+ dσ) + µ1λ1
▽
σ = 2

(
µ1ηpd− 2η2sd

2 + µ1λ1ηs
▽
d
)
.

or

λ1

(
□
σ−

(2ηλ2

µ1λ2
1

+1
)
(σd+dσ)+

σ2

µ1λ1
+

4λ2
2η

2

λ3
1

d2
)

= 2ηλ2

(
□
d+

λ1 − λ2

λ1λ2
d−2d2

)
,

where
□
σ denotes the Zaremba-Jaumann derivative, in order to exhibit the ob-

jective derivatives 1 and 2, see the remarks following Proposition 3.2. These
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objective derivatives are not unique because we could actually distribute the
terms in d and d2 at will in either side of the equation. All terms containing σ
must however remain in the left-hand side.

When ηp = 0, ie., λ1 = λ2, and µ1 = 1, this is precisely the quadratic model
obtained by [4].

For k = 2, we obtain a cubic Oldroyd B model which can be rearranged as
follows

σ3 − 2ηs(σ
2d+ σdσ + dσ2) + 4η2s(σd

2 + dσd+ d2σ) + µ2λ1
▽
σ

= 2
(
µ2ηpd+ 4η3sd

3 + µ2λ1ηs
▽
d
)
,

among other possibilities.
All these models involve nonlinear differential equations for Bi or σp as soon

as k ≥ 1, whereas the corresponding differential equations are linear for k = 0.
Consequently, given a prescribed, smooth enough deformation ϕ(X, t) and an
initial value for Bi or σp, the existence of the internal variables is a priori only
ensured locally in time when k ≥ 1. It is not clear that they exist globally in
time.
Remark 8.14. In the quadratic case k = 1, we see that Z = µ

λ1µ1
Bi is a solution

of the matrix Riccati equation Z ′ + ZCZ = G, with G = − ηp

λ2
1µ1

(C−1)′. If
G = 0, that is to say ηp = 0, i.e., the Francfort-Lopez-Pamies case, or C
constant in time, then the homogeneous Riccati equation is classically solved as
Z(t) = Z(0)

(
I+

(∫ t

0
C(s) ds

)
Z(0)

)−1, provided the matrix between parentheses
is invertible. This is the case when Z(0) is positive semi-definite. Indeed, let
Y (t) = I +

(∫ t

0
C(s) ds

)
Z(0). Consider u ∈ kerY (t). We thus have

0 = u+
(∫ t

0

C(s) ds
)
Z(0)u.

Multiplying this on the left by uTZ(0), we obtain

0 = uTZ(0)u+ uTZ(0)
(∫ t

0

C(s) ds
)
Z(0)u.

Both terms are nonnegative, hence uTZ(0)
(∫ t

0
C(s) ds

)
Z(0)u = 0. But C(s) is

positive definite for all s, and so is its integral. It follows that Z(0)u = 0, and
thus u = 0.

Conversely, if we assume that Z(0) has at least one strictly negative eigen-
value, taking C(t) = I makes Y (t) become non invertible in finite time, which
corresponds to blowup of the Riccati equation solution. So positive semi-
definiteness of the initial condition is a necessary and sufficient condition for
global existence of the internal variable in these particular cases.

If on the other hand G ̸= 0, it is possible to give examples of C(t) such
that the associated Riccati equation with positive initial conditions blows up in
finite time. Sufficient conditions for global existence may possibly be obtained
by optimal control arguments.

More generally, by taking linear combinations of the first terms of several
flow rules of the form (52), we obtain models of the form

▽
σp = − 1

λ1
σpP (σp) +

2ηp
λ1

d, (56)
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where P ∈ R[X] is any polynomial. For instance, P (X) = 1 + εX, ε > 0 small,
would correspond to a quadratic correction of the classical linear Oldroyd B
model.

Let us now discuss second principle issues for these nonlinear models. We
just consider the monomial models above.

Proposition 8.15. The constitutive law for the internal dissipation correspond-
ing to the flow rule K̂k is given by

D̂int(F,H,Bi) = 2ηs∥ Sym(HF−1)∥2 + µk+1

2λ1µk
tr
(
(CBi)

k+1
)

in Lagrangian form and

d̂int(h, σp) = 2ηs∥d∥2 +
1

2λ1µk
tr
(
σk+1
p

)
in Eulerian form.

Proof. Many terms are the same as before, we only focus on the one that is
different, namely

µ

2
C :

( µk

λ1µk
Bi(CBi)

k
)
=

µk+1

2λ1µk
tr
(
(CBi)

k+1
)
.

To translate this into Eulerian terms, we notice that

tr
(
(CBi)

k+1
)
= tr

(
(FBiF

T )k+1
)

hence the result since σp = µFBiF
T .

Proposition 8.16. For k odd, the model satisfies the second principle uncon-
ditionally, i.e., in the sense of Coleman-Noll, as long as the internal variables
exist.

Proof. Indeed, k+1 is then even, therefore tr(σk+1
p ) ≥ 0 for any σp ∈ Sym3.

The quadratic case k = 1 is thus unconditional. We have just noticed that
positive semi-definiteness of the initial condition is nonetheless necessary and
sufficient for the global existence of the internal variable in the homogeneous
case.

Remark 8.17. For k ≥ 2 even, we do not have an explicit formula for Bi to
work with as in the case k = 0. For the conditional second principle to hold,
the initial dissipation must still be positive for all C(0) = C ∈ Sym+

3 ∩SL(3).
Since Bi(0) is symmetric, it is orthogonally diagonalizable with Bi(0) = QT∆Q,
∆ = diag(vj).

tr
(
(CBi(0))

k+1
)
= tr

(
(CQT∆Q)k+1

)
= tr

(
Q(CQT∆Q)k+1QT

)
= tr

(
(QCQT∆)k+1

)
.

Now, as in the proof of Proposition 7.5, QTCQ can in fact be any matrix in
Sym+

3 , not just those in SL(3), in particular C = diag(cj), cj > 0. It follows
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that we must have
∑3

j=1 c
k+1
j vk+1

j ≥ 0, hence vk+1
j ≥ 0 for all j. Since k + 1 is

odd, it is necessary that vj ≥ 0, so that Bi(0) must be positive semi-definite.
Conversely, for any C ∈ Sym+

3 , tr
(
(CBi(0))

k+1
)
=

(
(CBi(0))

kC
)
: Bi(0).

Since k is even, it is clear that for all B ∈ Sym3, (CB)kC ∈ Sym+
3 . Therefore,

if Bi(0) is positive semi-definite, then tr
(
(CBi(0))

k+1
)
≥ 0.

If Bi(0) is positive definite, then it will remain so at least for some time, and
the dissipation is initially strictly positive. It is not clear that the dissipation
stays nonnegative for as long as Bi exists.

8.3 The Zaremba-Jaumann and Oldroyd A fluids
We finally consider complex fluid models based on two other objective deriva-
tives, the Zaremba-Jaumann fluid, see for instance [3], and the Oldroyd A fluid,
[7]-[9]-[10], both models being considerably less prominent in the literature than
the Oldroyd B fluid.

Expressed in terms of the polymer stress, they simply read

σp + λ1
□
σp = 2ηpd, (57)

for Zaremba-Jaumann and

σp + λ1
△
σp = 2ηpd, (58)

for Oldroyd A, together with a Newtonian solvent stress.
We can derive both models from our Lagrangian formulation by adapting

the flow rule while retaining (20), (22) and the incompressibility condition. It
is to be expected that they are slightly less natural than the Oldroyd B model,
due to Proposition 3.3.

We thus use the same ingredients as for the Oldroyd B model, except for the
flow rule, with

K̂ZJ(F,H,Bi) = − 1

λ1
Bi +

2ηp
µλ1

F−1 Sym(HF−1)F−T

− F−1 Sym(HF−1)FBi −BiF
T Sym(HF−1)F−T , (59)

for Zaremba-Jaumann, and

K̂A(F,H,Bi) = − 1

λ1
Bi +

2ηp
µλ1

F−1 Sym(HF−1)F−T

− 2F−1 Sym(HF−1)FBi − 2BiF
T Sym(HF−1)F−T . (60)

for Oldroyd A. Note that the resulting ordinary differential equations for Bi

are still linear, but with variable coefficients. Therefore, there is no explicit
Duhamel formula expressing their solutions, as opposed to the Oldroyd B case.
This also explains why we resort below to numerical simulations in order to
investigate the properties of these models with respect the second principle.

It is a simple computation to check that

Proposition 8.18. The Lagrangian models produced by the above choices are
the Zaremba-Jaumann fluid and Oldroyd A fluid models respectively.
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Note that the correction applied to Oldroyd B in order to obtain Oldroyd A
is twice that applied to obtain Zaremba-Jaumann. Indeed,

□
σp = 1

2

(▽
σp+

△
σp

)
, see

Section 3. We can also compute their internal dissipations. For the Zaremba-
Jaumann fluid, we obtain

Proposition 8.19. The internal dissipation of the Zaremba-Jaumann model is
given by

D̂int(F,H,Bi) = 2ηs∥Sym(HF−1)∥2 + µ

2
Bi :

( 1

λ1
C + C ′

)
(61)

in the Lagrangian formulation, using C ′ as shorthand for 2FT Sym(HF−1)F ,
and

d̂int(h, ξ) = 2ηs∥d∥2 +
1

2λ1
tr ξ + ξ : d (62)

in the Eulerian formulation, with ξ = σp as before.

Proof. Let us just compute the part D̂int,p of the dissipation stemming from the
internal variable. We still have ∂Âm

∂Bi
= µ

2C. Therefore

D̂int,p(F,H,Bi) =
µ

2
C :

( 1

λ1
Bi −

2ηp
µλ1

F−1 Sym(HF−1)F−T

+ F−1 Sym(HF−1)FBi +BiF
T Sym(HF−1)F−T

)
=

µ

2

(
C :

1

λ1
Bi + 2FT Sym(HF−1)F : Bi

)
since tr

(
Sym(HF−1)

)
= tr(d) = 0 as before. The translation in Eulerian terms

is straightforward using (36) and since ξ = σp = µFBiF
T still.

It is still necessary that Bi(0) be positive semi-definite for the conditional
second principle to hold. However, we have d̂int(h, ξ) = σ : d + 1

2λ1
tr ξ, where

σ : d is the naive dissipation. In [8], we showed numerically that the naive
dissipation also changes sign for the Zaremba-Jaumann fluid, even with positive
semi-definite initial conditions. It is not too difficult to see that tr ξ is in this
case a decreasing exponential in time, so that d̂int(h, ξ) is going to change sign
as well for the same evolutions, see Figure 1 below.

Also in [8], we showed that the choice âm(ξ) = λ1

4ηp
∥ξ∥2 as free energy makes

the Zaremba-Jaumann fluid satisfy the second principle unconditionally, using
the corresponding dissipation. Unfortunately, it does not seem to be possible to
recover this Eulerian free energy from a Lagrangian free energy based on some
adequate nonlinearly elastic stored energy function, thus giving it some physical
grounding. The present approach seems to require the use of the neo-Hookean
energy to work.

The situation is the same for the Oldroyd A fluid, based on the remark above
on the corrections applied to Oldroyd B.

Proposition 8.20. The internal dissipation of the Oldroyd A model is given by

D̂int(F,H,Bi) = 2ηs∥ Sym(HF−1)∥2 + µ

2
Bi :

( 1

λ1
C + 2C ′

)
(63)
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in the Lagrangian formulation and

d̂int(h, ξ) = 2ηs∥d∥2 +
1

2λ1
tr ξ + 2ξ : d (64)

in the Eulerian formulation, still with ξ = σp.

The same negative considerations concerning the second principle also hold,
except for that on the trace of ξ. In conclusion, for both Zaremba-Jaumann
and Oldroyd A models, positive semi-definiteness of the initial condition is a
necessary condition for the conditional second principle. It does not seem to
be sufficient however, based on numerical evidence, see Figure 1. This does
not rule out a potentially smaller set of adequate initial values that was not
empty and not numerically tested on the one hand, and on the other hand,
other physically motivated choices of free energies for which the second principle
could be satisfied by these models.

In Figure 1 below, we show the results of a numerical simulation for both Ol-
droyd models and for the Zaremba-Jaumann model, with the same data, already
described in [8]. Namely, an Eulerian computation with h(x, t) = cos(ωt)m,
where m is a randomly chosen 3× 3 traceless matrix with coefficients between
−1 and 1, and ω = 0.75. The material constants are λ1 = 10, ηs = .1 and
ηp = 1.9. The initial value for σp = ξ is ξ(0) = .1I3, a positive definite ma-
trix. We plot the internal dissipation dint(t) with a solid line, 1

2λ1
tr ξ(t) with

a dashed line and ξ(t) : d(t) with a dotted line, except in the Oldroyd B case
where the latter is irrelevant, for t from 0 to 40 (with different vertical scales for
each model). We see that the Oldroyd B dissipation (33) remains nonnegative
as expected, whereas both Zaremba-Jaumann dissipation (62) and Oldroyd A
dissipation (64) take strictly negative values in finite time, thus violating the
conditional second principle.

Figure 1: Left: Oldroyd B, center: Zaremba-Jaumann, right: Oldroyd A.

In Figure 2, we plot the smallest eigenvalue of σp vs. time in the above
Oldroyd B case. We see that this smallest eigenvalue becomes strictly nega-
tive, hence neither σp nor Bi remain positive semi-definite for all times in this
particular example either, cf. Proposition 7.6.
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