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Abstract: Myocardial injury causes death to cardiomyocytes and leads to heart failure. The adult
mammalian heart has very limited regenerative capacity. However, the heart from early postnatal
mammals and from adult lower vertebrates can fully regenerate after apical resection or myocardial
infarction. Thus, it is of particular interest to decipher the mechanism underlying cardiac regen-
eration that preserves heart structure and function. RNA-binding proteins, as key regulators of
post-transcriptional gene expression to coordinate cell differentiation and maintain tissue homeosta-
sis, display dynamic expression in fetal and adult hearts. Accumulating evidence has demonstrated
their importance for the survival and proliferation of cardiomyocytes following neonatal and postna-
tal cardiac injury. Functional studies suggest that RNA-binding proteins relay damage-stimulated
cell extrinsic or intrinsic signals to regulate heart regenerative capacity by reprogramming multiple
molecular and cellular processes, such as global protein synthesis, metabolic changes, hypertrophic
growth, and cellular plasticity. Since manipulating the activity of RNA-binding proteins can improve
the formation of new cardiomyocytes and extend the window of the cardiac regenerative capacity
in mammals, they are potential targets of therapeutic interventions for cardiovascular disease. This
review discusses our evolving understanding of RNA-binding proteins in regulating cardiac repair
and regeneration, with the aim to identify important open questions that merit further investigations.

Keywords: myocardial injury; cardiac regeneration; post-transcriptional regulation; RNA-binding
protein; cardiac RBPome; cardiomyocyte proliferation

1. Introduction

Cardiovascular disease is the leading cause of death worldwide [1]. Myocardial infarc-
tion (MI), also commonly known as heart attack, due to the lack of oxygen supply, causes
the necrosis of cardiomyocytes (CMs) and consequently leads to scar formation, reduced
cardiac contractility, and heart failure [2]. The early and fast restoration of blood flow to
the ischemic myocardium can limit the infarct size but also has the adverse outcomes of in-
ducing serious damage, causing myocardial ischemia/reperfusion (I/R) injury [3]. Cardiac
damage can be caused directly by ischemia due to atherosclerotic plaque disruption that
induces coronary thrombosis (type I), secondarily to ischemia because of a supply–demand
imbalance in oxygen in the myocardium (type II), or as a consequence of elevated troponin
concentrations without myocardial ischemia [4,5]. The adult mammalian heart has no or a
very limited regenerative capacity because CMs irreversibly exit the cell cycle shortly after
birth. However, the heart from early postnatal mammals and from adult lower vertebrates
(zebrafish and newt) can fully regenerate after ventricular resection or MI-induced injury
through the proliferation of existing CMs [6–8]. Signals derived from multiple other cell
types, such as cardiac fibroblasts and myofibroblasts, also contribute to the cardiac repair
and regeneration processes [9–11]. Therefore, understanding the mechanisms governing
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cardiac regenerative capacity after heart injury could help to define strategies and tech-
nologies for inducing the formation of new CMs and promoting cardiac regeneration in
mammals [12–14].

RNA-binding proteins (RBPs) are critically involved in the regulation of muscle cell
proliferation and differentiation during development and disease [15]. They control gene
expression at the post-transcriptional level, from pre-mRNA alternative splicing to mRNA
transport, localization, stability, polyadenylation, and translation [15]. Moreover, in cooper-
ation with other proteins, aggregation-prone RBPs can prevent the translation of toxic mR-
NAs and promote the degradation of misfolded proteins through the ubiquitin-proteasome
or autophagy pathway by sequestering them into stress granules [16]. Thus RBPs make an
important contribution to protein quality control. An analysis of the cardiac RBPome indi-
cates that a large number of RBPs not only show extensive expression differences between
fetal and adult hearts, but also become reactivated or repressed following heart failure,
suggesting a possible contribution of these proteins in heart disease [17,18]. Indeed, at least
in different animal models, RBPs are clearly involved in regulating ischemia-dependent and
ischemia-independent myocardial injury. In addition, RBPs display dynamic changes in
binding activity with target mRNAs between homeostatic and pathological conditions [18].
Functional studies have demonstrated that RBPs mediate injury-stimulated signals to
regulate translational reprogramming, metabolic changes, and cellular plasticity, thereby
contributing to the survival, growth, and differentiation of CMs in the damaged postnatal
and adult mammalian hearts [19]. Due to their essential roles in heart development and
disease [20–22], RBPs are emerging therapeutic targets for interventions in cardiovascular
dysfunction [23]. In recent years, evidence is rapidly accumulating that manipulating
the activity of RBPs has the strong potential to improve new CM formation and cardiac
function after myocardial injury. This review discusses our evolving understanding of the
mechanisms underlying RBP-regulated molecular and cellular events during cardiac repair
and regeneration. It also proposes future perspectives to promote research in this field.

2. RNA-Binding Proteins in Cardiac Repair and Regeneration

RBPs not only display dynamic expression in fetal and adult hearts under homeostatic
conditions, but also show differential activation following heart injury. Therefore, it can
be expected that they have distinct functions during heart development and cardiac re-
generation. Indeed, RBPs are effectors of cardiac injury stimuli and subsequently trigger a
range of molecular and cellular events that influence CM proliferation with strong impacts
on heart repair and function (Figure 1). In recent years, there is accumulating evidence
that RBPs function as important post-transcriptional regulators of cardiac regeneration in
neonatal and adult animals. The following sections discuss the known functions of RBPs in
cardiac repair and regeneration in the mammalian hearts.

2.1. LIN28A Regulates Metabolic Reprogramming to Promote Cardiac Regeneration

LIN28A is a highly conserved small cytoplasmic RBP with functions in promoting
pluripotency and regulating the transition from self-renewal to a differentiated cell fate [24].
In mice, its expression progressively decreases during postnatal heart development but
is rapidly induced after heart damage [25,26]. Several studies have demonstrated that
it acts as a multifaceted regulator in stimulating CM growth and protecting the heart
function after cardiac injury (Figure 2). In diabetic mice with I/R-induced cardiac injury,
the overexpression of LIN28A can reduce mitochondrial cristae destruction, CM apopto-
sis, and the myocardial infarct size likely through regulation of the insulin-PI3K–mTOR
pathway [27,28]. In MI-induced cardiac injury, LIN28A can induce autophagy and inhibit
apoptosis in CMs by activating Sirt1, a NAD(+)-dependent deacetylase that mediates the
cellular response to inflammatory, metabolic, and oxidative stresses [29]. Beside these
protective effects, LIN28A also functions to promote CM proliferation. Mouse cardiac
tissue derived stem-like cells expressing LIN28A exhibit metabolic flexibility and redox
regulation with increased expression of glycolytic genes; they show enhanced survival
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and proliferation after transplantation to the ischemic heart tissue and thus an increased
ability to repair the heart [30]. Furthermore, a recent study revealed that LIN28A is in-
volved in the control of cell cycle activity to define CM numbers in postnatal and adult
hearts subjected to MI-induced injury [26]. In the adult heart, mononuclear diploid CMs
are capable of division, which may contribute to CM turnover and cardiac regeneration,
whereas binucleation or polyploidization prevents CM proliferation [31–33]. Interestingly,
the overexpression of LIN28A increases the proportion of mononuclear diploid CMs and
extends their cell cycle activity in the MI-injured mouse heart, thus promoting cardiac
regeneration [26]. Mechanistically, LIN28A interacts with and increases the expression of
IncRNA H19, which plays a role in stem cell proliferation by regulating glycolysis [34] and
alleviates cardiac hypertrophy-induced heart failure [35], to reprogram CM metabolism
toward glycolysis and promote the formation of mononuclear diploid CMs [26]. These
observations thus demonstrate a critical role of LIN28A in metabolic reprogramming for
cardiac growth. However, there is also evidence showing that LIN28A promotes pathologi-
cal cardiac hypertrophy through the same mechanism. In the adult mouse heart subjected
to transverse aortic constriction, LIN28A post-transcriptionally regulates the expression
of mitochondrial Pck2 (phosphoenolpyruvate carboxykinase 2), which in turn promotes
cardiac glycolysis and biosynthesis to induce pathological cardiac hypertrophic growth [25].
Thus, LIN28A functions as an important regulator that promotes cardiac regeneration and
pathological hypertrophy. Further investigations will be necessary to provide insights
into the mechanisms underlying its function in these processes. It is possible that LIN28A
regulates cellular metabolism depending on the biological contexts and on the functional
interaction with its targets or partners.

The function of LIN28A in different regeneration processes is often, if not always,
dependent on its interaction with let-7 miRNA. It is well established that LIN28A and
let-7 mutually suppress the post-transcriptional expression of each other in regulating
cellular metabolism, as well as cell fate and growth [36,37]. In mouse cardiac tissue-derived
stem-like cells, LIN28A regulates metabolic flexibility to promote survival and proliferation
by suppressing let-7 expression and activating the PKD1 (pyruvate dehydrogenase kinase 1)
signaling pathway [30]. Therefore, the beneficial effects of LIN28A on cardiac regeneration
are linked to the activation of let7-repressed genes. Indeed, the inhibition of let-7 function
promotes cardiac regeneration and prevents cardiac remodeling, thereby improving cardiac
function after MI in mice [38–40]. Nevertheless, it should be mentioned that the role of
let-7 in cardiac regeneration is more complex. Although the suppression of let-7 activity by
hypoxia-induced LIN28A expression is beneficial for CM survival because this promotes
glucose uptake and glycolysis, the loss of let-7 activity during hypoxia–reoxygenation may
increase CM death due to inhibition of AKT (protein kinase B) signaling [41]. Consequently,
the timing of the LIN28A/let-7 switch needs to be tightly regulated to balance CM survival
and apoptosis for cardiac regeneration.

2.2. RNA-Binding Proteins Associated with mRNA Modifications in Cardiac Regeneration

N6-methyladenosine (m6A) represents the most abundant modification of eukaryotic
mRNAs, which has important effects on gene expression in a wide variety of physiological
and pathological processes by affecting multiple steps of mRNA metabolism, such as
pre-mRNA alternative splicing and mRNA subcellular localization, translation, and stabil-
ity [42,43]. It is well established that m6A modification is a dynamic and reversible process
regulated by methyltransferases or writers (METTL3/14/16, WTAP, RBM15/15B, ZC3H3,
and KIAA1429) and demethylases or erasers (FTO and ALKBH5). Moreover, the modi-
fication is recognized by several RBPs or readers, including YTHDC1/2, YTHDF1/2/3,
IGF2BP1/2/3, and hnRNP A2B1/C, which function to regulate the post-transcriptional
expression of their target mRNAs [42]. Evidence is emerging that m6A modification plays
an important role in cardiac homeostasis and disease, making it a potential target in the
therapeutic intervention for the treatment of heart failure [44–46]. By mediating the func-
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tion of writers or erasers, several RBP readers are either positively or negatively involved
in CM proliferation.

Figure 1. RBP-mediated post-transcriptional regulation of cardiac regeneration. (A) RBPs regu-
late pre-mRNA alternative splicing in the nucleus and control mRNA polyadenylation, export,
localization, stability/degradation, and translation in the cytoplasm. Several RBPs with known
post-transcriptional regulatory functions in cardiac regeneration are indicated in blue. (B) Functions
of RBPs in cardiac regeneration. RBPs are either activated or repressed following cardiac injury. They
coordinate regeneration-associated post-transcriptional events to modulate the formation of new
CMs in injured neonatal and adult hearts.

Figure 2. LIN28A expression and function during cardiac regeneration. (A) LIN28A expression during
postnatal development and heart damage. (B) Regulatory roles of LIN28A in cardiac regeneration.

2.2.1. YTHDF1 Is a Target of ALKBH5 in Promoting Cardiac Regeneration

The demethylase ALKBH5 (AlkB homolog 5) removes m6A modification from mR-
NAs and functions to promote cardiac regeneration. The cardiac expression of ALKBH5
progressively decreases during postnatal development but increases after apical resection
injury in neonatal mice [47]. The overexpression of ALKBH5 increases CM proliferation
and promotes cardiac regeneration after MI-induced injury in postnatal and adult hearts,
whereas the deletion of ALKBH5 produces the opposite effects after apical resection in-
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jury [47]. Interestingly, ALKBH5 demethylates YTHDF1 mRNA in neonatal CMs, resulting
in its increased stability and translation [47]. YTHDF1 is an m6A reader that recognizes
and promotes the translation of m6A-methylated mRNAs [48]. Accordingly, its increased
expression triggers CMs to re-enter the cell cycle at least by promoting the accumulation
of YAP1 (Yes-associated protein 1), a transcriptional cofactor regulating cardiac regenera-
tion by activating embryonic and proliferative gene programs in CMs [47,49]. Therefore,
YTHDF1 promotes cardiac regeneration through enhanced translation of its target mR-
NAs, but the translation and activity of itself are also post-transcriptionally regulated by
ALKBH5-mediated demethylation (Figure 3A).

Figure 3. Regulation and function of m6A readers in CM proliferation. (A) YTHDF1 promotes the
re-entry of CMs into the cell cycle. (B) YTHDF2 functions downstream of METTL3 to prevent CM
proliferation. (C) IGF2BP3 promotes CM proliferation by regulating MMP3 expression.

2.2.2. YTHDF2 Mediates the Activity of METTL3 to Prevent Excessive Cardiomyocyte
Proliferation

METTL3 is a pivotal catalytic subunit in the methyltransferase complex. Its expression
increases in the postnatal mouse heart and following neonatal heart injury but does not
change after MI-induced injury in the adult heart [50]. The overexpression of METTL3 sup-
presses the proliferation of primary CMs isolated from neonatal mice and inhibits cardiac
regeneration in vivo, whereas the knockdown of METTL3 increases CM proliferation and
promotes cardiac regeneration after MI-induced heart injury in neonatal, postnatal, and
adult mice [50,51]. In the injured heart, METTL3 has been shown to trigger the methylation
of FGF16 mRNA and induce its degradation in a YTHDF2-dependent manner [50]. Conse-
quently, YTHDF2 regulates CM growth and cardiac function through interactions with its
methylated mRNA targets (Figure 3B). YTHDF2 protein shows increased expression in hu-
man heart failure tissues, as well as in hypertrophic mouse hearts [52]. The overexpression
of YTHDF2 attenuates cardiac hypertrophy by inhibiting the translation of Eef2 (eucaryotic
elongation factor 2) and Myh7 (myosin heavy chain 7) mRNAs in an m6A-dependent man-
ner [52,53]. These observations suggest that YTHDF2 can prevent excessive CM growth
in pathological hypertrophy. Since YTHDF2 recognizes m6A modification and reduces
mRNA stability [54], it may function downstream of METLL3 to modulate the potential of
CM proliferation and cardiac regenerative capacity.

2.2.3. IGF2BP3 Promotes Neonatal and Adult Cardiac Regeneration

IGF2BP3 (insulin-like growth factor 2 mRNA-binding protein 3) is highly expressed in
all cell types of the neonatal mouse heart, including CMs and cardiac fibroblasts, but it is
progressively downregulated during postnatal development and becomes undetectable in
the adult heart [55,56]. This is associated with decreased H3K27ac signals and increased
H3K27me3 signals at the IGF2BP3 locus during postnatal development, suggesting that
epigenetic modifications regulate the temporal cardiac expression of IGF2BP3 [56]. The



Int. J. Mol. Sci. 2023, 24, 12004 6 of 16

overexpression of IGF2BP3 promotes CM proliferation and cardiac regeneration in MI-
injured neonatal and adult hearts [55,56], while the knockdown of IGF2BP3 prevents CM
proliferation and survival in the neonatal heart [55]. The post-transcriptional mechanism
by which IGF2BP3 promotes cardiac regeneration remains largely elusive. Since IGF2
plays a role in promoting CM proliferation during heart development [57,58], there is a
possibility that IGF2BP3 may enhance IGF2 signaling by stabilizing IGF2 mRNA, but this
needs to be verified through further investigation. RNA-seq analysis after the knockdown
of IGF2BP3 in neonatal CMs indicates that MMP3 (matrix metalloproteinase 3) mRNA
may be a potential target of IGF2BP3 regulation (Figure 3C). As with IGF2BP3, the cardiac
expression of MMP3 decreases in the postnatal heart. However, IGF2BP3 stabilizes MMP3
mRNA in an m6A-dependent manner. Moreover, the overexpression of MMP3 enhances
CM proliferation, whereas the knockdown of MMP3 produces the opposite effect [55].
MMP3 is a member of the MMP family that functions to degrade components of the
extracellular matrix (ECM) for tissue remodeling [59], and it is closely associated with MI
and heart failure in humans and animal models [60–62]. Nevertheless, MMPs may also
beneficially influence cardiac repair because they can facilitate the removal of necrotic CMs
after MI by degrading the ECM and recruiting inflammatory cells [63]. In addition, there is
evidence that MMPs can exert protective effects against hypertrophic cardiac growth [64],
and it is known that the activity of MMPs may be modulated by the presence of their
endogenous regulators, such as tissue inhibitors of metalloproteinases [65]. Thus, it will
be of interest to examine how MMP3 functions downstream of IGF2BP3 to modulate CM
proliferation. Another question concerns the reactivation of IGF2BP3 following cardiac
injury. In contrast to the unchanged transcript level [56], the expression of IGF2BP3 protein
seems to be potently induced at the border zone of the MI-injured neonatal heart [55]. Thus,
whether injury signals trigger the enhanced translation of IGF2BP3 mRNA in the neonatal
heart merits further investigation.

2.3. Translational Reprogramming Mediated by PABPC and CPEB in Cardiac
Hypertrophic Growth

Cytoplasmic polyadenylation regulates poly(A) tail elongation and the translation
of nuclear-exported mRNAs. PABPC (cytoplasmic poly(A)-binding protein) and CPEB
(cytoplasmic polyadenylation element-binding protein) are key components of the cytoplas-
mic polyadenylation complex [66]. PABPC protects the poly(A) tail from degradation and
stimulates translation by cooperating with mRNA 5′-cap interaction factors [67]. The adult
mammalian heart displays low rates of protein synthesis, which increases substantially in
response to hypertrophic signals. It has been shown that this is regulated, at least partly,
by poly(A) tail length changes in PABPC1 mRNA [68]. In mice, the expression of PABPC1
protein shows progressive downregulation specifically in the heart during postnatal de-
velopment. In adult human and mouse hearts, PABPC1 protein is absent because the
translation of its mRNA is suppressed due to a shortened poly(A) tail length but without
degradation of the transcript [68]. Intriguingly, the poly(A) tail length and translation of
PABPC1 mRNA are partially recovered in mice under physiologic and pathologic hypertro-
phy triggered by endurance exercise training and thoracic aortic constriction, respectively;
subsequently, PABPC1 interacts with eIF4G (eukaryotic translation initiation factor 4 G)
to stimulate global protein synthesis [68]. Cardiac hypertrophy may be a physiological
adaptation to maintain the function or a pathological process that can lead to heart fail-
ure [69]. Importantly, the forced expression of PABPC1 can induce the physiologic growth
of adult CMs in the absence of pathological hypertrophy and cardiac dysfunction [68]. This
observation suggests that the dynamic regulation of PABPC1 activity and, as a result, the
rates of global protein synthesis, may contribute to the beneficial CM growth in the failing
heart. It also raises the interesting question of how cardiac injury triggers the cytoplasmic
polyadenylation of PABPC1 mRNA to increase global protein synthesis.
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CPEB4 can act as a translational repressor by sequestering mRNAs but becomes an ac-
tivator upon phosphorylation by ERK2/Cdk1 [70]. It exhibits dynamic post-transcriptional
regulatory functions during the pathological growth of CMs, although its expression shows
no change between normal and injured hearts [18]. Mechanistically, unphosphorylated
CPEB4 binds to and sequesters Zeb1 mRNA to inhibit its translation under homeostasis.
However, CPEB4 is released from Zeb1 mRNA during pathological growth, leading to
the expression of Zeb1 protein [18]. Since Zeb1 is a transcription factor regulating the
expression of cell cycle genes and promoting CM proliferation [71], the dysregulation of its
activity can lead to pathological hypertrophy and decreased cardiac function. Thus, the
dynamic interaction between CPEB4 and Zeb1 mRNA should play an important role in con-
trolling CM growth stimulated by pathological signals. At present, it is unclear how CPEB4
activity is regulated to coordinate the translation of target mRNAs in response to patholog-
ical signals. Interestingly, CPEB1, another member of the CPEB family, shows increased
phosphorylation during the quiescence exit of skeletal muscle stem cells (satellite cells).
This post-translational modification allows CPEB1 to promote the synthesis of myogenic
factors, such as MyoD1, thus reprogramming satellite cell activation and proliferation [72].
There is also evidence that Zeb1 protects skeletal muscle from injury-induced damage and
is required for the proper progression of regeneration [73]. Thus, it is possible that the
dynamic regulation of CPEB RNA-binding activity may also be involved in reprogramming
the translational landscape for activating CM proliferation during cardiac regeneration.

2.4. MBNL1 Functions as a Regulator of Cellular Plasticity during Cardiac Regeneration

It is well established that dysfunctions of the splicing regulator MBNL1 (muscle
blind-like 1) due to its disrupted subcellular localization prevent the postnatal switch of
adult muscle protein isoforms and are associated with skeletal muscle diseases, such as
myotonic dystrophy [15]. Cardiac fibroblasts are responsible for fibrosis by depositing ECM
in the heart. Myocardial damage can transform cardiac fibroblasts into myofibroblasts,
which further produce cytokines and ECM, with initial benefits for heart repair but long-
term detrimental effects on cardiac function [9,10]. The expression of MBNL1 increases
progressively during postnatal heart development, and it promotes cellular differentiation
by regulating the fetal-to-adult transition of muscle-specific alternative splicing events [74].
It is also upregulated in mouse myofibroblasts induced by MI and in fibroblasts from
failing human hearts [75]. The overexpression of MBNL1 in MI-injured hearts induces
the differentiation of fibroblasts into myofibroblasts and promotes the fibrotic phase of
wound healing by regulating the expression of protein networks involved in cellular
differentiation and cytoskeletal/matrix assembly through alternative splicing or alternative
polyadenylation [76]. Therefore, MBNL1 functions as a post-transcriptional regulator of
cellular plasticity during the process of heart repair (Figure 4). Furthermore, MBNL1
blocks MI-induced fibroblast proliferation and is required for maintaining the mature
myofibroblast state in part by stabilizing Sox9 mRNA [75]. Consistently, increased MBNL1
activity prevents CM proliferation, whereas MBNL1 deficiency prolongs the period for CM
proliferation, thus extending the window of cardiac repair and regeneration [77]. These
observations indicate that MBNL1 regulates the fate changes of multiple cell types. They
also raise the possibility that manipulation of MBNL1 activity can be used for therapeutic
intervention to improve wound healing and cardiac regeneration.

Figure 4. MBNL1 regulates cellular plasticity in cardiac regeneration.
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2.5. hnRNP U Prevents Cardiomyocyte Binucleation

The expression levels of hnRNP U (heterogeneous nuclear ribonucleoprotein U) pro-
gressively decrease during postnatal development. It regulates the cardiac-specific splicing
of pre-mRNAs, such as Titin and Camk2d (calcium/calmodulin-dependent protein kinase II
delta), and therefore is required for postnatal heart development and function [78]. There is
evidence that the long non-coding RNA Malat1 is highly expressed in CMs from neonatal
mice and interacts with hnRNP U in cardiac regeneration [79]. The conditional deletion of
Malat1 increases CM binucleation and reduces the window of MI-injured neonatal cardiac
regeneration. The overexpression of hnRNP U in the HL-1 cardiac muscle cell line can
rescue the inhibitory effect of Malat1 deficiency on cell proliferation, raising the possibility
that Malat1 can regulate CM proliferation through hnRNP U [79]. Since the deletion of
hnRNP U or Malat1 leads to CM binucleation, there is a possibility that their interaction is re-
quired for cytokinesis, which may be important for controlling the regeneration window of
injured adult hearts. However, it is not clear how Malat1 regulates the post-transcriptional
activity of hnRNP U to stimulate CM proliferation in the neonatal heart and whether the
Malat1/hnRNP U axis modulates cardiac regeneration of the adult heart.

2.6. RHAU in Postnatal Heart Function and Neonatal Cardiac Regeneration

RHAU (RNA helicase associated with AU-rich element), also known as DHX36 or
G4R1, possesses RNA-binding and resolvase activity to unwind the G-quadruplex (G4)
structures [80]. It plays important roles during muscle development and regeneration [81].
The expression level of RHAU protein in the mouse cardiac mesoderm shows a gradual
decrease after birth and becomes very low in the adult. The cardiac-specific knockout of
RHAU impairs CM proliferation and causes severe heart defects, suggesting an essential
role in heart development [82]. Moreover, the conditional deletion of RHAU in CMs not
only leads to heart failure but also blocks neonatal cardiac regeneration after MI-induced
injury, indicating that RHAU plays a role in maintaining postnatal heart function under
homeostatic conditions and is required for cardiac regeneration upon heart injury [83].
As an RNA helicase that unwinds G-quadruplexes, RHAU binds to the G4 structures in
the 5′-UTR (untranslated region) of Nkx2-5, YAP1, and Hexim1 mRNAs to promote their
translation [82,83]. Since Nkx2-5, YAP1, and Hexim1 are important regulators of heart
development, they may function downstream of RHAU to promote CM proliferation and
cardiac regeneration.

2.7. RBM3 and Quaking Protect Cardiomyocytes from Myocardial Apoptosis

The expression of RBM3 (RNA-binding motif 3), also known as cold-inducible RBP, is
upregulated in I/R conditions; the knockdown of RBM3 in H9C2 rat CMs leads to increased
apoptosis, suggesting that RBM3 should normally function to protect CM survival [84].
It is possible that RBM3 inhibits I/R injury-induced apoptosis by activating autophagy
through an interaction with Raptor, a regulatory-associated protein of mTOR [84]. Although
autophagy can reduce cardiac injury and preserve cardiac function under ischemia, its
over-activation may produce deleterious effects for the heart under reperfusion [85]. Thus,
the proper function of RBM3 may be important for autophagy activity in heart homeostasis
and injury.

Quaking (QKI or QK) proteins are a family of RBPs with a STAR (signal transduction
and activation of RNA) domain. QKI-5 is potentially involved in cardiovascular develop-
ment and cardiac physiopathology [86]. Its expression is strongly inhibited in neonatal and
H9C2 rat CMs subjected to I/R injury [87]. The overexpression of QKI-5 in I/R-injured
neonatal rat CMs can prevent apoptosis by reducing the stability of FoxO1 mRNA, which
encodes a proapoptotic transcription factor [87,88]. Similarly, different QKI isoforms (QKI-5,
QKI-6, and QKI-7) are downregulated in the doxorubicin-treated mouse myocardium, but
their overexpression can protect hearts from doxorubicin-induced cardiotoxic effects [89].
Mechanistically, QKI-5 prevents doxorubicin-induced CM apoptosis by regulating the
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expression of several cardiac-specific circular RNAs [89]. Thus, QKI-5 may exert protective
effects on heart failure induced by chemotherapy using doxorubicin.

2.8. Possible Implication of RBM24 in Cardiac Repair and Hypertrophy

RBM24 (RNA-binding motif 24) is an evolutionarily conserved RBP with restricted
expression and an important function during muscle development [90]. It displays dynamic
cytoplasm-to-nucleus translocation during skeletal myogenesis [91], but whether this also
occurs during CM differentiation remains unclear. At present, its implication in cardiac re-
generation after MI or I/R injury remains unclear. However, there is evidence that it may be
involved in cardiac repair and hypertrophy (Figure 5). AAV9-mediated overexpression of
RBM24 in the adult mouse heart causes cardiac fibrosis, which is correlated with increased
activation of cardiac fibroblasts, as well as upregulation of the ECM and immune response
genes [92]. This suggests that RBM24 may function to regulate wound healing following
cardiac injury. It has also been shown that RBM24 can inhibit the function of p53 by repress-
ing the translation of its mRNA and that mice deficient in RBM24 show aberrant activation
of p53-dependent apoptosis in embryonic heart tissues [93]. Nevertheless, whether RBM24
protects the survival of CMs in injured hearts is not clear. Another regeneration-related
activity of RBM24 is its possible function in preventing cardiac hypertrophy through the
regulation of Enh (Enigma homolog) splicing [94]. The long Enh1 isoform containing three
LIM domains promotes hypertrophy, whereas the short Enh3 and Enh4 isoforms lacking
these LIM domains have an inhibitory role [95]. RBM24 interacts with RBM20 to promote
the alternative splicing of Enh3 and Enh4 variants, thereby repressing the hypertrophic
growth of in vitro cultured rat CMs [94]. This observation indicates that RBM24 may ex-
ert a cardioprotective role. It will be interesting to understand how RBM24 functions in
hypertrophy-induced heart failure.

Figure 5. Potential functions of RBM24 in cardiac repair and homeostasis.

2.9. PTBP1 Regulates the Reprogramming of Cardiac Fibroblasts into Induced Cardiomyocytes

The direct conversion of cardiac fibroblasts into induced CMs represents an attractive
strategy for cardiac repair and regeneration, with promising potential for clinical applica-
tions [96–99]. PTBP1 (polypyrimidine tract-binding protein 1), also known as hnRNP I, is
one of the most characterized repressors of cardiac-specific alternative splicing events [100].
It is highly expressed in mouse and rat embryonic hearts but is rapidly downregulated
during postnatal development to become undetectable in adult hearts [101]. The overex-
pression of PTBP1 can induce cardiac hypertrophy and exacerbate cardiac fibrosis, either
by disrupting alternative splicing or by reducing mRNA stability [102,103], while the
knockdown of PTBP1 improves cardiac fibrosis in the MI-injured mouse heart, indicating
a potential role in cardiac repair [102]. Importantly, PTBP1 also plays an essential role in
reprogramming the cardiac cell fate. It has been shown that the expression of PTBP1 in
cardiac fibroblasts prevents their conversion to induced CMs by repressing CM-specific al-
ternative splicing patterns; conversely, the deletion of PTBP1 increases the reprogramming
efficiency of induced CMs [104]. Therefore, the manipulation of PTBP1 activity in resident
cardiac fibroblasts may provide an opportunity for inducing CM differentiation.
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3. Discussion

Emerging evidence has clearly demonstrated critical roles of RBP-mediated post-
transcriptional regulation in CM survival and proliferation during heart homeostasis and
following cardiac injury. While many RBPs function to promote CM proliferation, others
exert opposite effects or maintain cellular plasticity (Table 1). Obviously, RBPs are imme-
diate effectors of extrinsic or intrinsic injury stimulus and subsequently function as key
regulators of cardiac regenerative capacity or hypertrophic growth. As effectors, it will be
intriguing to understand how cardiac injury-stimulated signals regulate the expression of
various RBPs, at transcriptional, post-transcriptional, translational, and post-translational
levels, because it seems that all of these mechanisms should be involved in coordinating
the expression or activity of RBPs under homeostatic and pathological conditions. Several
signaling pathways, such as Wnt/ß-catenin, are important in heart regeneration [105].
How they regulate RBPs or control the outcome of RBP-mediated cardiac regeneration
merits future investigation. In addition, cardiac stem cells have the potential to regenerate
injured CMs [106]. It is therefore of interest to understand the interplay between stem cell
factors and RBPs in CM proliferation and differentiation. As regulators, several aspects
have appealed increasing interest. First, RBP-mediated translational activation/repression
appears to be an important mechanism triggering cardiac growth and regeneration because
the adult heart shows surprisingly low rates of protein synthesis. Indeed, key components
of the cytoplasmic polyadenylation complex, such as PABPC1 and CPEB4, are involved
in cardiac hypertrophy [18,68]. Interestingly, RBM24 also has the potential to repress the
hypertrophic growth of CMs [94], and it can function in regulating mRNA translation
during cellular differentiation [107]. Thus, the role of cytoplasmic polyadenylation in re-
programming the translational landscape after cardiac injury merits further investigations.
Second, the interaction of RBPs with non-coding RNAs adds another layer of regulation for
repairing the injured heart. Indeed, accumulating evidence suggests that non-coding RNAs
also function as important post-transcriptional regulators of CM proliferation and present
strong potential as therapeutic targets [108–110]. It is of note that RBPs and non-coding
RNAs mutually regulate the biogenesis and function of each other, thereby ensuring CM
survival and proliferation following cardiac injury. Third, an important question in study-
ing cardiac regeneration is to provide evolutionary insights into the differential regenerative
capacity among vertebrate species. It is well established that adult mammalian hearts show
no or very limited regeneration after injury. This is at least partly to the lack of sufficient
mononuclear diploid CMs, which represent a relatively small subpopulation in the adult
heart and are responsible for the differential regenerative capacity between zebrafish and
mammals [32,33,111–113]. Consistently, the induction of polyploidization in zebrafish and
mouse neonatal hearts prevents cardiac regeneration, whereas a reduction in polyploidiza-
tion delays cell cycle exit and promotes CM proliferation, thereby retaining the regenerative
potential of adult hearts [114–117]. Interestingly, several RBPs are implicated in CM bin-
ucleation either during cardiac regeneration, such as LIN28A and hnRNP U [26,79], or
during heart development, such as RBPMS, which is not discussed here [118]. Thus, it will
of interest to further understand the post-transcriptional regulatory mechanism by which
they dictate CM ploidy during heart development in different vertebrates. Last but not
least, the dynamic expression of RBPs in different cardiac cell types is also essential for the
regulation of cellular plasticity. In this regard, the activity of MBNL1 is clearly involved in
the transformation of fibroblasts into myofibroblasts and in the proliferative capacity of
CMs [74–77]. Furthermore, manipulating the repressive activity of PTBP1 on CM-specific
alternative splicing can increase the reprogramming efficiency of cardiac fibroblasts into
induced CMs [104]. Together, many lines of evidence have unequivocally identified RBPs
as important effectors and regulators of cardiac development and regeneration. However,
given the key roles of RBP-mediated post-transcriptional regulation in lineage differen-
tiation and tissue homeostasis, the implications, as well as biochemical and functional
interactions, of many other cardiac-specific RBPs in cardiac repair and regeneration merit
further investigations.



Int. J. Mol. Sci. 2023, 24, 12004 11 of 16

Table 1. Roles of RBPs in cardiac regeneration.

RBPs Expression Functions Targets References

LIN28A
Decreases in postnatal heart;
rapidly induced after
heart injury

Metabolic changes,
autophagy, anti-oxidant
activity, mononucleation,
CM proliferation

Insulin–PI3K–mTOR
pathway, Pck2 and Sirt1
mRNAs, H19 lncRNA,
let-7 miRNA

[25–30,34]

YTHDF1
Decreases in postnatal heart;
increases in injured
neonatal heart

Triggers CMs to re-enter cell
cycle and promotes
cardiac regeneration

YAP1 mRNA [47]

YTHDF2 Increases in heart failure
Mediates the effects of
METTL3 to prevent
CM proliferation

FGF16, Myh7, and
Eef2 mRNAs [50–53]

IGF2BP3
Decreases in postnatal heart;
increases in injured
neonatal heart

Promotes CM proliferation
and cardiac regeneration MMP3 mRNA [55,56]

PABPC1
Protein absent in the adult
heart but rapidly accumulates
after injury

Promotes CM growth during
cardiac hypertrophy

Interacts with eIF4G to
induce global
protein synthesis

[68]

CPEB4 Unchanged between normal
and injured hearts

Prevents pathological
cardiac hypertrophy Zeb1 mRNA [18]

MBNL1 Increases in postnatal and
injured hearts

Prevents CM proliferation;
maintains a mature
myofibroblast state

Sox9 mRNA [75–77]

hnRNP U Decreases in postnatal and
adult hearts Promotes CM proliferation Interacts with

Malat1 lncRNA [78,79]

RHAU Decreases in postnatal hearts Promotes CM proliferation Nkx2-5, YAP1, and
Hexim1 mRNAs [82,83]

RBM3 Increases after heart injury Promotes CM survival Interacts with Raptor [84]

QKI-5 Inhibited after heart injury Protects CMs from apoptosis
FoxO1 mRNA,
cardiac-specific
circular RNAs

[87–89]

RBM24 Highly expressed in
embryonic and adult hearts

Promotes cardiac fibrosis and
represses CM
hypertrophic growth

ECM and immune
response genes, p53
mRNA, Enh splicing

[92–94]

PTBP1 Decreases in postnatal heart;
undetectable in adult heart

Induces cardiac hypertrophy
and fibrosis; regulates
reprogramming of cardiac
fibroblasts into induced CMs

CM-specific
alternative splicing [101–104]

4. Conclusions

There is a growing interest in understanding the post-transcriptional regulation of
cardiovascular disease. It is clear that RBPs are important effectors that relay extrinsic
or intrinsic signals to reprogram cellular activity and cell fates after cardiac injury. The
interplay between various RBPs contributes to maintaining cardiac homeostasis and mod-
ulating cardiac regenerative capacity. Several RBPs, such as LIN28A, MBNL1, PTBP1,
and m6A readers, are important regulators of cardiac growth and plasticity, representing
promising therapeutic targets for modulating CM proliferation and differentiation during
regeneration. Therefore, the identification of cardiac-specific RBPomes, as well as dynamic
changes in the binding activity of RBPs between homeostatic and injured conditions, will
be important for uncovering regeneration-associated post-transcriptional events. A com-
prehensive analysis of the interplay between different RBPs in CM proliferation should
provide further mechanistic insights into adult mammalian cardiac regeneration.
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