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Guest Editorial
Special Issue on Benchmarking Sampling-Based
Optimization Heuristics: Methodology and Software

Thomas Bick, Fellow, IEEE, Carola Doerr, member, IEEE,
Bernhard Sendhoff, Fellow, IEEE, Thomas Stiitzle, Fellow, IEEE,

Benchmarking provides an essential ground base for ad-
equately assessing and comparing evolutionary computation
methods and other optimization algorithms. It allows us
to gain insights into strengths and weaknesses of different
existing techniques, and consequently design more efficient
optimization approaches. The need for good benchmarking
practices opens up a broad range of complementary research
questions, arising as a byproduct of challenges encountered
when optimization methods are assessed. From the selec-
tion of representative benchmark problem instances, different
algorithms and suitable performance metrics, over efficient
experimentation, to a sound evaluation of the benchmark data,
these research questions lie at the core of establishing a well-
designed and standardized benchmarking procedure.

In recent years, a number of techniques addressing vari-
ous aspects of benchmarking has become available to assist
researchers and users in evolutionary computation. However,
most of them are developed independently from one another,
without the fully modular benchmarking pipeline in mind.
This hinders knowledge transfer between the different research
groups and between academic and industrial practitioners of
evolutionary computation methods.

This special issue on Benchmarking Sampling-Based Op-
timization Heuristics: Methodology and Software (BENCH)
aims to highlight recent advances in benchmarking evolu-
tionary computation methods and to motivate the need for
knowledge exchange in view of standardized benchmarking
practices. With this issue, we provide a snapshot of the
prominent efforts covering different aspects of benchmarking.

Based on a rigorous review process, 14 papers have been
accepted to the BENCH special issue. These works cover a
broad range of ongoing research activities centered around
the benchmarking of evolutionary computation methods. The
topics range from the suggestion of new benchmark prob-
lems over classical benchmarking studies to performance
evaluation and visualization. Five accepted papers consider
meta-algorithmic problems such as algorithm selection and
configuration, demonstrating a continued interest in blend-
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ing evolutionary computation methods with machine learning
approaches. We briefly describe all selected papers in the
following paragraphs.

Benchmark Collections and Applications

A new framework, HAWKS, using evolutionary algorithms
for the generation of synthetic datasets for clustering al-
gorithms, is introduced in the paper by Shand et al [10].
The authors illustrate how HAWKS can be used to evolve
benchmark datasets consistent with predefined properties, and
to evolve datasets that can emphasize performance differences
between pairs of algorithms.

A real-world dataset from automotive engineering, the OSU-
Honda Automobile Hood Dataset CarHoods10k is provided
to the scientific community by Wollstadt et al. [13]. The
authors illustrate the application of geometric deep learning,
use machine learning to predict hood performance from the
latent space representation, and combine this with evolutionary
algorithms for a topology optimization application.

Ligot et al. [4] introduce an experimental protocol for the
optimization-based design of robot swarms, based on a mission
generator for generally applicable benchmark creation. The
protocol is then illustrated by comparing the performance of
two off-line fully automatic design methods.

The design of benchmark suites for multi-objective black-
box optimization is taken up in the work by Yap et al. [14].
Using exploratory landscape analysis, standard benchmark
suites are investigated with respect to their coverage of the
instance space. The authors also demonstrate how to generate
new benchmark problems to fill regions that are not well
covered by the existing collections.

Constrained Optimization
A common challenge faced by evolutionary computation ap-
proaches in real-world problem solving are constraints. With
the objective to support researchers in the analysis of differ-
ent constraint-handling techniques, Sergeyev et al. propose a
generator for constrained optimization problems in small and
medium dimensions. The problems have known optima and
scalable difficulty [9].

Constrained optimization is also the scope of the work by
Kadavy et al. on the impact of boundary control methods
on bound-constrained black-box optimization [3]]. Using an
empirical comparison of three algorithms with six different
boundary control methods on the IEEE CEC competitions
2017 and 2020, it is shown that the control method has a



non-negligible impact on the results and therefore needs to be
clearly specified when empirical results are reported.

Performance Analysis and Visualization

Benchmarking algorithms goes hand in hand with sound
statistical analysis of the obtained experimental results. Rojas-
Delgado et al. propose to switch the focus from classical
null hypothesis tests to those based on Bayesian statistics
when analyzing algorithm performances [7)]. They introduce
a Bayesian-based framework that assumes algorithm perfor-
mances (i.e., rankings) are generated by a probability distri-
bution; this fresh analytical perspective is then applied to study
questions such as probability of an algorithm being ranked first
or having the same relative ranking as another algorithm.

Performance metrics are also the scope of the work by
Hansen et al. [2], which describes the rationales behind the
performance metrics selected for one of the most widely
used benchmarking environments in evolutionary computation,
the COCO (Comparing Continuous Optimizers) platform. The
work summarizes common requirements for solution quality
indicators in single- and multiobjective optimization, with
consideration of possible constraints or the presence of noise.

Performance analysis is always linked to the problems that
the algorithms have been evaluated on. Visualizations of these
problem instances are very handy not only for algorithm anal-
ysis, but also for the selection of problems to be included in a
benchmark collection, as well as for the design of landscape
features. In [8], Schaepermeier et al. compare a number of
visualization techniques for multi-objective optimization prob-
lems. Their newly created moPLOT-dashboard integrates these
tools and makes them available for an interactive analysis.

Meta-Algorithmics

Algorithm selection aims to determine the most suitable
algorithm for an unseen problem out of an algorithm portfolio.
In the paper on benchmarking feature-based algorithm selec-
tion models in numerical black-box optimization [11]], Ryoji
Tanabe compares existing algorithm selectors and outlines
general insights revealed via benchmarking them. Among
other contributions, this work highlights a performance mea-
sure more reliable than the expected runtime, and demonstrates
that the difficulty of outperforming the single-best solver
depends on various factors, such as algorithm portfolios, cross-
validation methods, and dimensionalities.

Designing an automated hyperparameter optimization
(HPO) algorithm is usually still an unsystematic and manual
process, due to the black-box nature of the meta-optimization
problem and the complex search space of hyperparameter
values which make the problem computationally expensive.
Moosbauer et al. in their work [5] introduce a framework
to benchmark-driven automated design and apply it to multi-
fidelity (MF-) HPO. They formalize the search space of MF-
HPO algorithms via a configurable optimization framework
and search for the best candidate in an automatic and sys-
tematic way; their findings show that the benchmark-driven
approach is on par with (and in some cases even outperforms)
widely used HPO techniques.

Van der Blom et al. introduce the Sparkle platform [1] to
facilitate the use of meta-algorithmic techniques for non-expert
users. A key contribution of this work is the support it offers

for best practices that make it easier to correctly and effectively
use algorithm selection and configuration techniques, while
standardized reports help document the process and results.

Search heuristics such as evolutionary algorithms and
surrogate-based optimization techniques can often be conve-
niently parallelized. Determining suitable batch sizes remains,
however, a challenging task, especially for settings in which
individual evaluations are very costly. The work by Rehbach
et al. [6] proposes an automated batch size configuration
technique for surrogate-based optimization algorithms. The
configurator is partially trained on a novel benchmark gener-
ation technique that is based on Gaussian process simulation.

The work by Vermetten et al. introduces BIAS, a tool-
box based on a large ensemble of statistical tests to detect
the existence of structural bias in heuristic optimization al-
gorithms [12]]. The BIAS toolbox can be used during the
algorithm design phase, to benchmark and classify algorithmic
behavior in terms of structural bias, and can thus be used to
improve existing algorithms.

We sincerely thank the Editor-in-Chief, Prof. Carlos A.
Coello Coello, for his constant and prompt support throughout
all phases of this special issue. We also gratefully acknowledge
the help of the Editorial Assistant, Dr. Gregorio Toscano, with
all technical matters. This BENCH special issue would not
have been possible without the help of the numerous reviewers
who assessed the quality of the submitted papers and who
provided constructive feedback and suggestions.

We hope that the readers will enjoy this IEEE TRANSAC-
TIONS ON EVOLUTIONARY COMPUTATION special issue
on benchmarking.
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