Jacob De Nobel
email: j.p.de.nobel@liacs.leidenuniv.nl

Diederick Vermetten
email: d.l.vermetten@liacs.leidenuniv.nl

Hao Wang
email: h.wang@liacs.leidenuniv.nl

Carola Doerr
email: carola.doerr@lip6.fr

Thomas Bäck

IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics

Keywords: Iterative Optimization Heuristics, Benchmarking, Algorithm Comparison

We present IOHexperimenter, the experimentation module of the IOHprofiler project. IOHexperimenter aims at providing an easy-to-use and customizable toolbox for benchmarking iterative optimization heuristics such as local search, evolutionary and genetic algorithms, and Bayesian optimization techniques. IOHexperimenter can be used as a stand-alone tool or as part of a benchmarking pipeline that uses other modules of the IOHprofiler environment. IOHexperimenter provides an efficient interface between optimization problems and their solvers while allowing for granular logging of the optimization process. Its logs are fully compatible with existing tools for interactive data analysis, which significantly speeds up the deployment of a benchmarking pipeline. The main components of IOHexperimenter are the environment to build customized problem suites and the various logging options that allow users to steer the granularity of the data records.

Introduction

In order to compare and to improve upon state-of-the-art optimization algorithms, it is important to gain insights into their search behavior on a wide range of problems. To do so systematically, a robust benchmarking setup has to be created that allows for rigorous testing of algorithms. Numerous benchmark problems have been proposed within the evolutionary computation community, and these are often implemented many times over, without an overarching structure or proper maintenance [START_REF] Li | Benchmark functions for the cec 2013 special session and competition on large-scale global optimization[END_REF][START_REF] Liang | Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective realparameter numerical optimization[END_REF][START_REF] Suganthan | Competition on single objective bound constrained numerical optimization[END_REF]. The importance of using overarching frameworks to facilitate the benchmarking process has been gaining increasing traction within the community in the last decade when seminal works [START_REF] Hansen | Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009[END_REF] showed the benefits that these kinds of tools can provide. Since then, two of the most popular benchmarking tools have been COCO [START_REF] Hansen | COCO: A platform for comparing continuous optimizers in a black-box setting[END_REF] and Nevergrad [START_REF] Rapin | Nevergrad -A gradient-free optimization platform[END_REF]. While these tools enable users to benchmark their algorithms with relative ease, their overall design has some drawbacks. In the case of COCO, the enforced design of a suite-based structure allows for very robust benchmarking on problems made available by the developers. However, this simultaneously restricts users to using only that set of available problems and adds a complexity barrier for benchmarking algorithms on other problems. In addition, the logging of performance data follows a fixed framework, and extending it, e.g. to keep track of dynamic algorithm parameters is not straightforward. Nevergrad, in contrast, offers great flexibility with respect to adding new benchmark problems but is severely limited in terms of the information that is tracked about algorithm performance and behavior. It essentially only stores the final solution quality after exhausting a user-defined optimization budget. With IOHexperimenter, we offer a benchmarking module that emphasizes extendability and customizability, allowing users to easily add new problems while providing a comprehensive set of built-in defaults. The logging of performance data is flexible and allows users to customize the content and frequency of the data collected. To improve ease of use, several out-of-the-box storage structures are made available, one of which can be used to collect the same type of data as COCO.

IOHexperimenter is a part of the overarching IOHprofiler project [START_REF] Doerr | IOHprofiler: A benchmarking and profiling tool for iterative optimization heuristics[END_REF], which connects algorithm frameworks, problem suites, interactive data analysis, and performance repositories in an extendable benchmarking pipeline. Within this pipeline, IOHexperimenter can be considered the interface between algorithms and problems, allowing consistent collection of performance data and algorithmic data such as the evolution of control parameters that change during the optimization process. To perform the benchmarking, three components interact with each other: problems, loggers, and algorithms. Within IOHexperimenter, an interface is provided to ensure that any of these components can be modified without impacting the behavior of the others, in the sense that any changes to their setup will be compatible with the other components of the benchmarking pipeline. mization [START_REF] Neumann | Evolutionary submodular optimisation[END_REF]. On the algorithms side, IOHexperimenter has been connected to several algorithm frameworks, including ParadisEO (Aziz-Alaoui et al., 2021), a modular genetic algorithm [START_REF] Ye | Automated configuration of genetic algorithms by tuning for anytime performance[END_REF], a modular CMA-ES [START_REF] De Nobel | Tuning as a means of assessing the benefits of new ideas in interplay with existing algorithmic modules[END_REF], and the optimizers in Nevergrad [START_REF] Rapin | Nevergrad -A gradient-free optimization platform[END_REF]. The output generated by the included loggers is compatible with the IOHanalyzer module [START_REF] Wang | IOHanalyzer: Detailed performance analyses for iterative optimization heuristics[END_REF] for interactive performance analysis. In [START_REF] Long | BBOB instance analysis: Landscape properties and algorithm performance across problem instances[END_REF][START_REF] Kostovska | Per-run algorithm selection with warm-starting using trajectory-based features[END_REF], the flexibility of IOHexperimenter was demonstrated by generating interfaces between two aforementioned benchmarking tools to execute algorithms from the Nevergrad framework on the BBOB problems from COCO. Figure 1 shows the way IOHexperimenter can be placed in a typical benchmarking workflow. The key factor here is the flexibility of its design. IOHexperimenter can be used with any user-provided solvers and problems given a minimal overhead. It also ensures that the output of experimental results follows conventional standards. Because of this, the data produced by IOHexperimenter is compatible with post-processing frameworks like IOHanalyzer [START_REF] Wang | IOHanalyzer: Detailed performance analyses for iterative optimization heuristics[END_REF], enabling an efficient path from algorithm design to performance analysis. In addition to the built-in interfaces to existing software, IOHexperimenter aims at providing a user-friendly, easily accessible way to customize the benchmarking setup. IOHexperimenter is built in C++, with an interface to Python. In this paper, we describe the functionality of the package on a high level, without going into implementation details. 1 In the following, we introduce the typical usage of IOHexperimenter, as well as how it can be customized to fit different benchmarking scenarios.

Problems

Single-Objective Optimization. IOHexperimenter is developed with a focus on single-objective optimization problems, i.e., instances defined as F = T y • f • T x , in which f : X → R is a benchmark problem (e.g., for ONEMAX X = {0, 1} n and the sphere function X = R n), and T x and T y are automorphisms supported on X and R, respectively, representing transformations in the problem's domain and range (e.g., translations and rotations for X = R n). To generate a problem instance, one needs to specify a tuple of a problem f , an instance identifier i ∈ N >0 , and the dimension n of the problem. Any problem instances that reconcile with this definition of F , can easily be integrated into IOHexperimenter, using the C++ core or the Python interface. The transformation methods are particularly important for robust benchmarking, as they allow for the creation of multiple problem instances from the same base function. They also allow the user to check algorithm invariance to transformations in search and objective space. Built-in transformations are available for pseudo-Boolean functions [START_REF] Doerr | IOHprofiler: A benchmarking and profiling tool for iterative optimization heuristics[END_REF] and for continuous optimization, implementing the transformations used by [START_REF] Hansen | COCO: A platform for comparing continuous optimizers in a black-box setting[END_REF]. Problems can be combined in a suite, which allows the user to easily run solvers on collections of selected problem instances.

Constrained Optimization. Similar to benchmark problems, constraints are defined as free functions that compute a value on an evaluated solution, i.e.; C : X → R, that is non-zero in the case the constraint is violated. IOHexperimenter supports both hard constraints C h and soft constraints C s , of which multiple can be added to any given problem. The single-objective constrained problems are defined by

F c = F • C h • C s ,
which evaluates to ∞ when one of the hard constraints C h is violated. Otherwise,

F c = F + k i=0 w i (C i s) αi ,
where k is the number of soft constraints. The weight w i and exponent α i of a constraint C i s can be used by the user to customize a penalty for a constraint violation. In this fashion, arbitrary functions can be added as constraints to the benchmark problems in IOHexperimenter, allowing the conversion of existing unconstrained problems into constrained problems.

Data Logging

IOHexperimenter provides loggers to track the performance of algorithms during the optimization process. These loggers can be tightly coupled with the problems: when evaluating a solution, the attached loggers will be triggered to store relevant information. Information about solution quality is always recorded, while the algorithm's control parameters are included only if specified by the user. The events that trigger a data record are customized by the user; e.g., via specifying a frequency at which information is stored, or by choosing quality thresholds that trigger a data record when met for the first time. A default logger makes use of a two-part data format: meta-information such as function id, instance, and dimension, written to .json-files, and the performance data that gets written to space-separated .dat-files. A full specification of this format can be found in [START_REF] Wang | IOHanalyzer: Detailed performance analyses for iterative optimization heuristics[END_REF]. Additional loggers to store the data in memory or use different file structures are available. In addition to the built-in loggers, users can also create their own custom logging functionalities. For example, a logger storing only the final calculated performance measure was created for algorithm configuration tasks [START_REF] Aziz-Alaoui | Towards large scale automated algorithm design by integrating modular benchmarking frameworks[END_REF].

Conclusions and Future Work

IOHexperimenter is a tool for benchmarking iterative optimization heuristics. It aims at making rigorous benchmarking more approachable by providing a structured benchmarking pipeline that can be adapted to fit a comprehensive range of scenarios. The combination of a clear output format and common interface across both Python and C++ makes IOHexperimenter a useful component for reproducible algorithm comparison. IOHexperimenter can be slotted into a benchmarking pipeline by generating output data for the IOHanalyzer module, which provides an interactive analysis of algorithms performance. New benchmark problems can be easily integrated with IOHexperimenter, which makes the tool suitable for teaching and hosting competitions. IOHexperimenter currently supports single-objective, noiseless optimization, with support for arbitrary constraints. The focus on flexibility makes the extension to other types of problems, such as noisy, multi-objective, and mixed-integer problems, natural next steps. Contributing to IOHexperimenter: The IOHprofiler project welcomes contributions of problems from various domains with different perspectives. We appreciate feedback and comments through GitHub2 or via iohprofiler@liacs.leidenuniv.nl.

Figure 1 :

 1 Figure 1: Workflow of IOHexperimenter

FunctionalityAt its core, IOHexperimenter provides a standard interface towards expandable benchmark problems and several loggers to track the performance and the behavior (internal parameters and states) of algorithms during the optimization process. The logger is integrated into a wide range of existing tools for benchmarking, including problem suites such as PBO[START_REF] Doerr | Benchmarking discrete optimization heuristics with IOHprofiler[END_REF] and the W-model[START_REF] Weise | Selecting a diverse set of benchmark instances from a tunable model problem for black-box discrete optimization algorithms[END_REF] for discrete optimization, COCO's noiseless real-valued single-objective BBOB problems[START_REF] Hansen | COCO: A platform for comparing continuous optimizers in a black-box setting[END_REF] for the continuous case, and submodular problems for constraint opti-

Technical documentation, a getting-started, and several use-cases are available for both C++ and Python on the IOHexperimenter docs at https://iohprofiler.github.io/IOHexperimenter/.

https://github.com/IOHprofiler/IOHexperimenter/issues

Acknowledgments: We acknowledge financial support through CNRS INS2I project RandSearch and through ANR T-ERC project VARIATION (ANR-22-ERCS-0003-01).