
HAL Id: hal-04180576
https://hal.sorbonne-universite.fr/hal-04180576

Submitted on 12 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IOHexperimenter: Benchmarking Platform for Iterative
Optimization Heuristics

Jacob de Nobel, Furong Ye, Diederick Vermetten, Hao Wang, Carola Doerr,
Thomas Bäck

To cite this version:
Jacob de Nobel, Furong Ye, Diederick Vermetten, Hao Wang, Carola Doerr, et al.. IOHexperimenter:
Benchmarking Platform for Iterative Optimization Heuristics. Evolutionary Computation, In press,
pp.1-6. �10.1162/evco_a_00342�. �hal-04180576�

https://hal.sorbonne-universite.fr/hal-04180576
https://hal.archives-ouvertes.fr


IOHexperimenter: Benchmarking Platform for
Iterative Optimization Heuristics

Jacob de Nobel∗ j.p.de.nobel@liacs.leidenuniv.nl
Furong Ye∗ f.ye@liacs.leidenuniv.nl
Diederick Vermetten d.l.vermetten@liacs.leidenuniv.nl
Hao Wang h.wang@liacs.leidenuniv.nl
LIACS, Leiden University, the Netherlands
Carola Doerr Carola.Doerr@lip6.fr
Sorbonne Université, CNRS, LIP6, Paris, France
Thomas Bäck t.h.w.baeck@liacs.leidenuniv.nl
LIACS, Leiden University, the Netherlands

Abstract
We present IOHexperimenter, the experimentation module of the IOHprofiler project.
IOHexperimenter aims at providing an easy-to-use and customizable toolbox for bench-
marking iterative optimization heuristics such as local search, evolutionary and genetic
algorithms, and Bayesian optimization techniques. IOHexperimenter can be used as a
stand-alone tool or as part of a benchmarking pipeline that uses other modules of the
IOHprofiler environment.
IOHexperimenter provides an efficient interface between optimization problems and
their solvers while allowing for granular logging of the optimization process. Its logs
are fully compatible with existing tools for interactive data analysis, which significantly
speeds up the deployment of a benchmarking pipeline. The main components of
IOHexperimenter are the environment to build customized problem suites and the
various logging options that allow users to steer the granularity of the data records.

Keywords
Iterative Optimization Heuristics, Benchmarking, Algorithm Comparison

1 Introduction

In order to compare and to improve upon state-of-the-art optimization algorithms, it is
important to gain insights into their search behavior on a wide range of problems. To do
so systematically, a robust benchmarking setup has to be created that allows for rigorous
testing of algorithms. Numerous benchmark problems have been proposed within the
evolutionary computation community, and these are often implemented many times
over, without an overarching structure or proper maintenance (Li et al., 2013; Liang
et al., 2013; Suganthan et al., 2020). The importance of using overarching frameworks
to facilitate the benchmarking process has been gaining increasing traction within the
community in the last decade when seminal works (Hansen et al., 2010) showed the
benefits that these kinds of tools can provide. Since then, two of the most popular
benchmarking tools have been COCO (Hansen et al., 2021) and Nevergrad (Rapin and
Teytaud, 2018). While these tools enable users to benchmark their algorithms with
relative ease, their overall design has some drawbacks.

∗ These authors contributed equally to this work.



Figure 1: Workflow of IOHexperimenter

In the case of COCO, the enforced design of a suite-based structure allows for very
robust benchmarking on problems made available by the developers. However, this
simultaneously restricts users to using only that set of available problems and adds
a complexity barrier for benchmarking algorithms on other problems. In addition,
the logging of performance data follows a fixed framework, and extending it, e.g. to
keep track of dynamic algorithm parameters is not straightforward. Nevergrad, in
contrast, offers great flexibility with respect to adding new benchmark problems but is
severely limited in terms of the information that is tracked about algorithm performance
and behavior. It essentially only stores the final solution quality after exhausting a
user-defined optimization budget.
With IOHexperimenter, we offer a benchmarking module that emphasizes extendability
and customizability, allowing users to easily add new problems while providing a
comprehensive set of built-in defaults. The logging of performance data is flexible and
allows users to customize the content and frequency of the data collected. To improve
ease of use, several out-of-the-box storage structures are made available, one of which
can be used to collect the same type of data as COCO.
IOHexperimenter is a part of the overarching IOHprofiler project (Doerr et al., 2018),
which connects algorithm frameworks, problem suites, interactive data analysis, and
performance repositories in an extendable benchmarking pipeline. Within this pipeline,
IOHexperimenter can be considered the interface between algorithms and problems,
allowing consistent collection of performance data and algorithmic data such as the
evolution of control parameters that change during the optimization process. To perform
the benchmarking, three components interact with each other: problems, loggers, and
algorithms. Within IOHexperimenter, an interface is provided to ensure that any of these
components can be modified without impacting the behavior of the others, in the sense
that any changes to their setup will be compatible with the other components of the
benchmarking pipeline.

2 Functionality

At its core, IOHexperimenter provides a standard interface towards expandable bench-
mark problems and several loggers to track the performance and the behavior (internal
parameters and states) of algorithms during the optimization process. The logger is
integrated into a wide range of existing tools for benchmarking, including problem
suites such as PBO (Doerr et al., 2020) and the W-model (Weise et al., 2020) for discrete
optimization, COCO’s noiseless real-valued single-objective BBOB problems (Hansen
et al., 2021) for the continuous case, and submodular problems for constraint opti-

2



mization (Neumann et al., 2021). On the algorithms side, IOHexperimenter has been
connected to several algorithm frameworks, including ParadisEO (Aziz-Alaoui et al.,
2021), a modular genetic algorithm (Ye et al., 2021), a modular CMA-ES (de Nobel et al.,
2021), and the optimizers in Nevergrad (Rapin and Teytaud, 2018). The output gener-
ated by the included loggers is compatible with the IOHanalyzer module (Wang et al.,
2022) for interactive performance analysis. In (Long et al., 2022; Kostovska et al., 2022),
the flexibility of IOHexperimenter was demonstrated by generating interfaces between
two aforementioned benchmarking tools to execute algorithms from the Nevergrad
framework on the BBOB problems from COCO.
Figure 1 shows the way IOHexperimenter can be placed in a typical benchmarking
workflow. The key factor here is the flexibility of its design. IOHexperimenter can be
used with any user-provided solvers and problems given a minimal overhead. It also en-
sures that the output of experimental results follows conventional standards. Because of
this, the data produced by IOHexperimenter is compatible with post-processing frame-
works like IOHanalyzer (Wang et al., 2022), enabling an efficient path from algorithm
design to performance analysis. In addition to the built-in interfaces to existing software,
IOHexperimenter aims at providing a user-friendly, easily accessible way to customize
the benchmarking setup. IOHexperimenter is built in C++, with an interface to Python.
In this paper, we describe the functionality of the package on a high level, without
going into implementation details. 1 In the following, we introduce the typical usage
of IOHexperimenter, as well as how it can be customized to fit different benchmarking
scenarios.

2.1 Problems

Single-Objective Optimization. IOHexperimenter is developed with a focus on
single-objective optimization problems, i.e., instances defined as F = Ty ◦ f ◦ Tx, in
which f : X → R is a benchmark problem (e.g., for ONEMAX X = {0, 1}n and the
sphere function X = Rn), and Tx and Ty are automorphisms supported on X and R,
respectively, representing transformations in the problem’s domain and range (e.g.,
translations and rotations for X = Rn). To generate a problem instance, one needs to
specify a tuple of a problem f , an instance identifier i ∈ N>0, and the dimension n of
the problem. Any problem instances that reconcile with this definition of F , can easily
be integrated into IOHexperimenter, using the C++ core or the Python interface.
The transformation methods are particularly important for robust benchmarking, as
they allow for the creation of multiple problem instances from the same base function.
They also allow the user to check algorithm invariance to transformations in search and
objective space. Built-in transformations are available for pseudo-Boolean functions (Do-
err et al., 2018) and for continuous optimization, implementing the transformations used
by (Hansen et al., 2021). Problems can be combined in a suite, which allows the user to
easily run solvers on collections of selected problem instances.

Constrained Optimization. Similar to benchmark problems, constraints are defined
as free functions that compute a value on an evaluated solution, i.e.; C : X → R, that
is non-zero in the case the constraint is violated. IOHexperimenter supports both hard
constraints Ch and soft constraints Cs, of which multiple can be added to any given
problem. The single-objective constrained problems are defined by Fc = F ◦ Ch ◦ Cs,
which evaluates to ∞ when one of the hard constraints Ch is violated. Otherwise,

1Technical documentation, a getting-started, and several use-cases are available for both C++ and Python
on the IOHexperimenter docs at https://iohprofiler.github.io/IOHexperimenter/.

3

https://iohprofiler.github.io/IOHexperimenter/


Fc = F +
∑k
i=0 wi(C

i
s)
αi , where k is the number of soft constraints. The weight wi and

exponent αi of a constraint Cis can be used by the user to customize a penalty for a
constraint violation. In this fashion, arbitrary functions can be added as constraints
to the benchmark problems in IOHexperimenter, allowing the conversion of existing
unconstrained problems into constrained problems.

2.2 Data Logging

IOHexperimenter provides loggers to track the performance of algorithms during the
optimization process. These loggers can be tightly coupled with the problems: when
evaluating a solution, the attached loggers will be triggered to store relevant information.
Information about solution quality is always recorded, while the algorithm’s control
parameters are included only if specified by the user. The events that trigger a data
record are customized by the user; e.g., via specifying a frequency at which information
is stored, or by choosing quality thresholds that trigger a data record when met for the
first time.
A default logger makes use of a two-part data format: meta-information such as function
id, instance, and dimension, written to .json-files, and the performance data that gets
written to space-separated .dat-files. A full specification of this format can be found
in Wang et al. (2022). Additional loggers to store the data in memory or use different file
structures are available. In addition to the built-in loggers, users can also create their own
custom logging functionalities. For example, a logger storing only the final calculated
performance measure was created for algorithm configuration tasks (Aziz-Alaoui et al.,
2021).

3 Conclusions and Future Work

IOHexperimenter is a tool for benchmarking iterative optimization heuristics. It aims at
making rigorous benchmarking more approachable by providing a structured bench-
marking pipeline that can be adapted to fit a comprehensive range of scenarios. The
combination of a clear output format and common interface across both Python and C++
makes IOHexperimenter a useful component for reproducible algorithm comparison.
IOHexperimenter can be slotted into a benchmarking pipeline by generating output
data for the IOHanalyzer module, which provides an interactive analysis of algorithms
performance. New benchmark problems can be easily integrated with IOHexperimenter,
which makes the tool suitable for teaching and hosting competitions. IOHexperimenter
currently supports single-objective, noiseless optimization, with support for arbitrary
constraints. The focus on flexibility makes the extension to other types of problems,
such as noisy, multi-objective, and mixed-integer problems, natural next steps.
Contributing to IOHexperimenter: The IOHprofiler project welcomes contributions of
problems from various domains with different perspectives. We appreciate feedback
and comments through GitHub2 or via iohprofiler@liacs.leidenuniv.nl.
Acknowledgments: We acknowledge financial support through CNRS INS2I project
RandSearch and through ANR T-ERC project VARIATION (ANR-22-ERCS-0003-01).

References

Aziz-Alaoui, A., Doerr, C., and Dréo, J. (2021). Towards large scale automated algorithm
design by integrating modular benchmarking frameworks. In Proc. of GECCO’21,
pages 1365–1374. ACM. Full version: https://arxiv.org/abs/2102.06435.

2https://github.com/IOHprofiler/IOHexperimenter/issues

4

mailto: iohprofiler@liacs.leidenuniv.nl
https://arxiv.org/abs/2102.06435
https://github.com/IOHprofiler/IOHexperimenter/issues


de Nobel, J., Vermetten, D., Wang, H., Doerr, C., and Bäck, T. (2021). Tuning as a means
of assessing the benefits of new ideas in interplay with existing algorithmic modules.
In Proc. of GECCO’21, pages 1375–1384. ACM.

Doerr, C., Wang, H., Ye, F., van Rijn, S., and Bäck, T. (2018). IOHprofiler: A benchmarking
and profiling tool for iterative optimization heuristics. CoRR, abs/1810.05281.

Doerr, C., Ye, F., Horesh, N., Wang, H., Shir, O. M., and Bäck, T. (2020). Benchmarking
discrete optimization heuristics with IOHprofiler. Applied Soft Computing, 88:106027.

Hansen, N., Auger, A., Ros, R., Finck, S., and Pošı́k, P. (2010). Comparing results of 31
algorithms from the black-box optimization benchmarking bbob-2009. In Proceedings
of the 12th annual conference companion on Genetic and evolutionary computation, pages
1689–1696.

Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., and Brockhoff, D. (2021). COCO:
A platform for comparing continuous optimizers in a black-box setting. Optimization
Methods and Software, 36(1):114–144.

Kostovska, A., Jankovic, A., Vermetten, D., de Nobel, J., Wang, H., Eftimov, T., and Doerr,
C. (2022). Per-run algorithm selection with warm-starting using trajectory-based
features. In Rudolph, G., Kononova, A. V., Aguirre, H. E., Kerschke, P., Ochoa, G., and
Tusar, T., editors, Parallel Problem Solving from Nature - PPSN XVII - 17th International
Conference, PPSN 2022, Dortmund, Germany, September 10-14, 2022, Proceedings, Part I,
volume 13398 of Lecture Notes in Computer Science, pages 46–60. Springer.

Li, X., Tang, K., Omidvar, M. N., Yang, Z., Qin, K., and China, H. (2013). Benchmark
functions for the cec 2013 special session and competition on large-scale global opti-
mization. gene, 7(33):8.

Liang, J. J., Qu, B. Y., and Suganthan, P. N. (2013). Problem definitions and evaluation
criteria for the cec 2014 special session and competition on single objective real-
parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou
University, Zhengzhou China and Technical Report, Nanyang Technological University,
Singapore, 635:490.

Long, F. X., Vermetten, D., van Stein, B., and Kononova, A. V. (2022). BBOB instance
analysis: Landscape properties and algorithm performance across problem instances.
CoRR, abs/2211.16318.

Neumann, A., Neumann, F., and Qian, C. (2021). Evolutionary submodular optimisation.
In Proc. of the Genetic and Evolutionary Computation Conference (GECCO’21, Companion),
pages 918–940.

Rapin, J. and Teytaud, O. (2018). Nevergrad - A gradient-free optimization platform.
https://GitHub.com/FacebookResearch/Nevergrad.

Suganthan, P. N., Ali, M., Liang, J. J., Qu, B. Y., Yue, C. T., and
Price, K. (2020). Competition on single objective bound constrained
numerical optimization. https://github.com/P-N-Suganthan/
2020-Bound-Constrained-Opt-Benchmark.

5

https://GitHub.com/FacebookResearch/Nevergrad
https://github.com/P-N-Suganthan/2020-Bound-Constrained-Opt-Benchmark
https://github.com/P-N-Suganthan/2020-Bound-Constrained-Opt-Benchmark


Wang, H., Vermetten, D., Ye, F., Doerr, C., and Bäck, T. (2022). IOHanalyzer: Detailed
performance analyses for iterative optimization heuristics. ACM Transactions on
Evolutionary Learning and Optimization.

Weise, T., Chen, Y., Li, X., and Wu, Z. (2020). Selecting a diverse set of benchmark in-
stances from a tunable model problem for black-box discrete optimization algorithms.
Applied Soft Computing, 92:106269.

Ye, F., Doerr, C., Wang, H., and Bäck, T. (2021). Automated configuration of genetic
algorithms by tuning for anytime performance. CoRR, abs/2106.06304.

6


	Introduction
	Functionality
	Problems
	Data Logging

	Conclusions and Future Work

