
HAL Id: hal-04180577
https://hal.sorbonne-universite.fr/hal-04180577

Submitted on 12 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tight Runtime Bounds for Static Unary Unbiased
Evolutionary Algorithms on Linear Functions

Carola Doerr, Duri Andrea Janett, Johannes Lengler

To cite this version:
Carola Doerr, Duri Andrea Janett, Johannes Lengler. Tight Runtime Bounds for Static Unary Unbi-
ased Evolutionary Algorithms on Linear Functions. GECCO ’23: Genetic and Evolutionary Computa-
tion Conference, Jul 2023, Lisbon, Portugal. pp.1565-1574, �10.1145/3583131.3590482�. �hal-04180577�

https://hal.sorbonne-universite.fr/hal-04180577
https://hal.archives-ouvertes.fr

Tight Runtime Bounds for Static Unary Unbiased
Evolutionary Algorithms on Linear Functions

Carola Doerr

Sorbonne Université, CNRS, LIP6

Paris, France

Duri Andrea Janett
∗

Department of Computer Science,

ETH Zürich

Zürich, Switzerland

Johannes Lengler

Department of Computer Science,

ETH Zürich

Zürich, Switzerland

ABSTRACT
In a seminal paper in 2013, Witt showed that the (1+1) Evolutionary

Algorithmwith standard bit mutation needs time (1+𝑜 (1))𝑛 ln𝑛/𝑝1
to find the optimum of any linear function, as long as the probability

𝑝1 to flip exactly one bit is Θ(1). In this paper we investigate how

this result generalizes if standard bit mutation is replaced by an

arbitrary unbiased mutation operator. This situation is notably

different, since the stochastic domination argument used for the

lower bound by Witt no longer holds. In particular, starting closer

to the optimum is not necessarily an advantage, and OneMax is no

longer the easiest function for arbitrary starting positions.

Nevertheless, we show that Witt’s result carries over if 𝑝1 is not

too small, with different constraints for upper and lower bounds,

and if the number of flipped bits has bounded expectation 𝜒 . No-

tably, this includes some of the heavy-tail mutation operators used

in fast genetic algorithms, but not all of them. We also give exam-

ples showing that algorithms with unbounded 𝜒 have qualitatively

different trajectories close to the optimum.

CCS CONCEPTS
• Theory of computation→ Theory of randomized search
heuristics.

KEYWORDS
Runtime analysis, Theory of Evolutionary Computation, Mutation

Operators

1 INTRODUCTION
One of themost crucial ingredients of evolutionary algorithms is the

mutation operator, i.e., the procedure that describes how to generate

offspring from a single parent. On the hypercube {0, 1}𝑛 , for a long
time the undisputed default was to use standard bit mutation, which

flips each bit of the parent independently with the same probability.

However, this convention has been challenged in the last years; for

example via the fast mutation operators [27], for which the number

of flipped bits follows a heavy-tailed distribution. The advantages

of using heavy-tailed distributions are rather impressive [28]. They

are slightly worse for hillclimbing, but the runtime deteriorates

only by a constant factor that can be chosen close to one. However,

they are massively better at escaping local optima. While it takes

𝑒Ω (𝑘 log𝑘)
steps to make a jump of size 𝑘 with standard bit mutation

ofmutation rateΘ(1/𝑛), it only takes𝑘𝑂 (1) steps with fast mutation

operators. Consequently, they are faster on landscapes with local

optima, like the Jump function [3, 27] and its generalizations [5–7],

∗
Also with Sorbonne Université, CNRS, LIP6, Paris, France.

or random MAX-3SAT instances [2].
1
Heavy-tailed distributions

can also help on unimodal landscapes like OneMax. For example,

the (1 + (_, _)) GA [18] was shown to achieve linear expected

runtime [2] when equipped with fast mutation operators, which is

asymptotically best possible.

Other benchmarks on which fast mutation operators or other

unbiased mutation operators than standard bit mutation have been

found to be useful include theoretical benchmarks like Leadin-

gOnes [56] and TwoMax [38], network problems like maximum

cut [37, 38, 50], minimum vertex cover [10, 38], maximum indepen-

dent set [57], maximum flow [45] and SAT [51], landscape classes

like submodular functions [37, 50] and random NK-landscapes [57],

multi-objective settings [22, 29, 32] and other problems like subset

selection [55], the N-queens problem [57], the symmetric mutual

information problem [37, 50] and many more [1, 21, 40, 47, 48, 57].

Such mutation operators are integrated into standard benchmark-

ing tools like the IOHprofiler [35] and Nevergrad [8], and they

have been used as building blocks for more sophisticated algo-

rithms [13, 14, 30, 46, 49].

The large success of non-standard mutation operators raises the

desire to analyze which operators are (provably) optimal for a given

problem setting. Such questions can be answered in the black-box

complexity framework proposed in [36] (see [33] for a survey on the

role of black-box complexity for evolutionary computation). Partic-

ularly interesting for the study of mutation operators is the unary

unbiased black-box complexity model defined in [42]. Unary unbi-

ased black-box algorithms create solution candidates by sampling

uniformly at random (u.a.r.) or by selecting one previously evalu-

ated point 𝑥 and a search radius 𝑟 (both possibly random) and then

sampling the solution candidate u.a.r. among all points at Hamming

distance 𝑟 from 𝑥 . The unary unbiased black-box complexity of a

collection F of functions is then the best (over all unary unbiased

algorithms) worst-case (over all problem instances in F) expected
runtime. The study of unary unbiased black-box complexities has

led to important insights into the limitation of mutation-based al-

gorithms [17, 19, 20, 23, 26, 31, 41, 42], which were exploited for

the design of faster algorithms such as the (1 + (_, _)) GA in [18].

For OneMax, a tight bound for the unary unbiased black-box

complexity was proven in [20]. It was shown there that the drift-

maximizing algorithm that at every step chooses the mutation oper-

ator that maximizes the expected progress achieves asymptotically

optimal expected runtime, up to small lower order terms. Zooming

further into this problem for concrete dimensions, Buskulic and

Doerr [9] showed that slightly better performance can be achieved

1
When the required jump size 𝑘 is known in advance, then choosing the mutation rate

to be 𝑘/𝑛 is optimal, as shown in [27]. The advantage of the fast mutation operator is

that 𝑘 does not need to be known.

https://orcid.org/0000-0002-4981-3227
https://orcid.org/0000-0002-7279-807X
https://orcid.org/0000-0003-0004-7629

Carola Doerr, Duri Andrea Janett, and Johannes Lengler

by increasing the mutation rates, i.e., by implementing a more risky

strategy that, at several stages that are sufficiently far away from

the optimum, flips more bits (in the hope of making more progress

and at the cost of a smaller success probability). The approach de-

veloped by [9] was later extended in [11] to compute the optimal

mutation rates for the (1 + 1)-EA and the (1 + _)-EA optimizing

OneMax. The best static unary unbiased mutation operator for

the (1 + _)-EA for a number of different combinations of 𝑛 and _

was numerically approximated in [12]. In particular, it was shown

there that the optimal mutation operators are none of the standard

choices that are typically used in evolutionary algorithms. These

results demonstrate that even for the optimization of OneMax our

understanding of optimal mutation operators is rather limited, both

in the static and in the dynamic case.

Our Results: We aim to extend in this work the above-

mentioned results to the optimization of a larger class of functions.

The first natural extension of OneMax are linear functions, so

we primarily focus on these. Our particular aim is to derive tight

bounds for the expected runtime of the (1 + 1)-EA equipped with

an arbitrary unary unbiased mutation operator.

To express our main result, we briefly recall from [33] that every

unbiased mutation operator can be described by a sequence of 𝑛 + 1
probabilities 𝑝0, 𝑝1, . . . , 𝑝𝑛 that sum up to one. We thus identify

the mutation operator with the sequence D = (𝑝0, 𝑝1, . . . , 𝑝𝑛) and
write (1 + 1)-EAD for the (1 + 1)-EA that generates its solution

candidates using the mutation operator mutD that first draws an

index 𝑖 ∈ [0, 𝑛] according to the probabilities (i.e., it picks 𝑖 with

probability 𝑝𝑖), and then flips a uniformly random set of exactly 𝑖

bits. Every (1 + 1)-EA equipped with an arbitrary but static unary

unbiased mutation operator can be expressed as a (1+ 1)-EAD . We

show the following.

Theorem 1.1. Consider the (1 + 1)-EAD for a distribution D =

(𝑝0, 𝑝1, . . . , 𝑝𝑛) with mean 𝜒 . If 𝑝1 = Θ(1) and 𝜒 = 𝑂 (1), then the

expected runtime on any linear function on {0, 1}𝑛 with non-zero

weights is

(1 ± 𝑜 (1)) 1
𝑝1
· 𝑛 ln𝑛. (1)

More precise versions of Theorem 1.1 will be presented in Corol-

lary 3.3 and Theorem 4.1. In particular, we will show that the

lower bound holds for any function with unique global optimum

if 𝑝𝑛−1 = 𝑜 (𝑝1). Moreover, the conditions on 𝑝1 and 𝜒 in Theo-

rem 1.1 can be slightly relaxed. We show that the runtime remains

unchanged if 𝜒3𝑝−2
1
(1 − 𝑝0)−1 = 𝑜 (ln𝑛/ln ln𝑛), which is probably

not tight. However, we also show that the condition is not super-

fluous either. If 𝑝1 becomes too small, or 𝜒 becomes too large, then

the behavior of the algorithm starts to change, see Section 3.1.

Theorem 1.1 can be seen as a generalization of Witt’s seminal

work [53] on linear functions, where he showed that the expected

runtime of the the (1+ 1)-EA using standard bit mutation with arbi-

trary mutation rates 𝑐/𝑛 is (1 ± 𝑜 (1)) 𝑒𝑐𝑐 𝑛 ln𝑛 = (1 ± 𝑜 (1)) 1𝑝1𝑛 ln𝑛,
where 𝑝1 is the probability that the mutation flips a single bit. Our

proof of the upper bounds closely follows his, but we need to adapt

his potential function to account for the fact that the probabilities

𝑝𝑖 may follow any distribution.

For the lower bound we follow the proof strategy from [20].

In particular, we use the same symmetrized OneMax potential

𝑋𝑡 = min𝑥 min{Om(𝑥), 𝑛 − Om(𝑥)}, where Om(𝑥) is the number

of one-bits in 𝑥 and the minimum goes over all previously visited

search points 𝑥 . We show that for a wide range of values of 𝑋𝑡 , the

drift is maximized either by single-bit flips or by (𝑛 − 1)-bit flips,
and with a parent that achieves the minimum in 𝑋𝑡 . This allows us

to compute an upper bound on the drift, and to use the variable drift

lower bound from [20]. We obtain a lower bound for any function

with unique local optimum, but then 𝑝1 needs to be replaced by

𝑝1 + 𝑝𝑛−1 in (1). This is not an artifact of our proof, since we give

examples showing that the dependence on 𝑝𝑛−1 is real.
Finally, we also show (Section 4.2) that stochastic domination

no longer applies when standard bit mutation is replaced by other

unary unbiased mutation operators, in the sense that starting closer

to the optimum can increase the runtime asymptotically. This even

holds on OneMax. As a consequence, non-elitist algorithms may

be faster than elitist algorithms on OneMax.

Other Related Work. Apart from black-box complexities, only

few things are known in general about the class of unbiased muta-

tion operators. Antipov and Doerr [4] investigated the mixing time

on plateaus for the (1 + 1)-EA with arbitrary unbiased mutation

operator. Lengler [43] studied the (1 + 1)-EA, the (1 + _)-EA, the
(` + 1)-EA and the (` + 1)-GA with arbitrary unbiased mutation

operators on monotone functions. He found that those algorithms

can optimize all monotone functions if the second moment of the

number of bit flips is small compared to the first moment, but that

they need exponential time on HotTopic functions otherwise. In

particular, all heavy-tail distributions lead to exponential runtimes

on HotTopic.

Full proofs can be found in the arXiv version of the paper [34].

2 ELITIST (1+1) UNARY UNBIASED EAS
We use the following notation. For 𝑎, 𝑏 ∈ N with 𝑎 ≤ 𝑏 we write

[𝑎, 𝑏] = {𝑎, 𝑎 + 1, . . . , 𝑏} and [𝑏] = [1, 𝑏] = {1, . . . , 𝑏}. We write a

vector 𝑥 ∈ {0, 1}𝑛 as 𝑥 = (𝑥1, . . . , 𝑥𝑛). The OneMax value Om(𝑥) :=∑𝑛
𝑖=1 𝑥𝑖 of 𝑥 is the number of one-bits in 𝑥 . We write ®0 and ®1 for

the vectors in {0, 1}𝑛 with Om(®0) = 0 and Om(®1) = 𝑛, respectively.

With high probability (w.h.p.) means with probability 1 − 𝑜 (1) as
𝑛 →∞.

We identify probability distributionsD on [0, 𝑛] with sequences

(𝑝0, 𝑝1, . . . , 𝑝𝑛) such that 𝑝𝑖 ≥ 0 for all 𝑖 ∈ [0, 𝑛] and∑
𝑖∈[0,𝑛] 𝑝𝑖 = 1,

where the probability of obtaining 𝑖 from D is 𝑝𝑖 . We associate to

any such distributionD the mutation operatormutD which draws

𝑘 from D and then applies the flip𝑘 operator which flips a uniform

random set of exactly 𝑘 positions. The probability that mutD flips

the 𝑖-th bit equals 𝜒/𝑛, where 𝜒 is the expected value of D.

For a probability distribution D on [0, 𝑛], we define the (1 + 1)-
EAD as the elitist (1 + 1) algorithm which uses mutD as mutation

operator, see Algorithm 1. Its runtime on a function 𝑓 is the number

of fitness evaluations before it finds a global optimum. Following the

discussion in [20, 33], the class of elitist (1+1) unary unbiased black-

box algorithms with static mutation operators coincides exactly

with the collection of all (1 + 1)-EAD with D as above.

With linear functions we always refer to functions 𝑓 : {0, 1}𝑛 →
R; 𝑓 (𝑥) = ∑𝑛

𝑖=1𝑤𝑖𝑥𝑖 for weights𝑤𝑖 . By unbiasedness of the (1+1)-
EAD , we may assume that the weights are positive and sorted,

0 < 𝑤1 ≤ . . . ≤ 𝑤𝑛 .

Tight Runtime Bounds for Static Unary Unbiased EAs on Linear Functions

Algorithm 1: The (1 + 1)-EAD for a fixed distribution D
and maximizing a function 𝑓 : {0, 1}𝑛 → R.
1 Sample 𝑥 from {0, 1}𝑛 uniformly at random;

2 for 𝑡 = 0, 1, 2, 3, . . . do
3 Sample 𝑘 ∼ D;

4 Create 𝑦 ← flip𝑘 (𝑥);
5 if 𝑓 (𝑦) ≥ 𝑓 (𝑥) then 𝑥 ← 𝑦;

3 UPPER BOUNDS AND TIGHTNESS RESULTS
We first note the following, simpler version of the upper bound

stated in Theorem 1.1 for OneMax, which does not require any

assumption on the distributionD. It straightforwardly follows from

the standard multiplicative drift theorem [25], applied to the lower

bound on the drift obtained by considering only 1-bit flips.

Theorem 3.1. Let D = (𝑝0, 𝑝1, . . . , 𝑝𝑛) be a probability distribu-

tion on [0, 𝑛]. The runtime of the (1 + 1)-EAD on OneMax is at most

(1 ± 𝑜 (1)) 1
𝑝1

𝑛 ln𝑛 (2)

in expectation and with high probability.

The key ingredient for generalizing the bound from OneMax

to all linear functions as in Theorem 1.1 is the following theo-

rem, which generalizes [53, Theorem 4.1] to the (1 + 1)-EAD with

(almost) arbitraryD. Our proof follows [53], with the following dif-

ferences: First, we noted a mistake in the proof of the upper bound

in [53]. Equation (4.2) there does not hold for the events 𝐴𝑖 as de-

fined in [53]. We thank Carsten Witt for providing the following fix

upon our inquiry (personal communication): By conditioning the

events 𝐴𝑖 on the event that the offspring is accepted, equation (4.2)

holds as in that case, the expectation is zero if none of the 𝐴𝑖 occur.

Furthermore, the inequality (4.3) in [53] still holds, which can be

shown by applying Bayes’ theorem and linearity of expectation.

Details can be found in the arXiv version of this paper [34].

Apart from this issue, the biggest challenge was to adapt the

potential function used in [53], since we need to deal with arbitrary

unbiased mutation operators. In particular, our potential involves

the quantities 𝜒 and 𝑝1. With the modified potential, we can show

the following generalization of [53, Theorem 4.1].

Theorem 3.2. Let D = (𝑝0, 𝑝1, . . . , 𝑝𝑛) be a probability distribu-

tion on [0, 𝑛] with expectation 𝜒 and with 𝑝1 > 0. Then the runtime

of the (1 + 1)-EAD on any linear function on 𝑛 variables is at most

𝑏 (𝑟) B 𝑛

𝑝1
· 𝛼

𝛼 − 1 ·
(

𝛼𝑛𝜒3

(𝑛 − 1)𝑝2
1

+ ln
(
(𝑛 − 1)𝑝2

1

𝜒3

)
+ 𝑟

)
(3)

with probability at least 1 − 𝑒−𝑟 for any 𝑟 > 0, and it is at most 𝑏 (1)
in expectation, where 𝛼 > 1 can be chosen arbitrarily.

Proof Sketch for Theorem 3.2. The proof works by applying

the multiplicative drift theorem to a carefully chosen potential. To

this end, following [53], we define a new (linear) function 𝑔, and

consider the stochastic process 𝑋𝑡 = 𝑔(𝑥 (𝑡)), where 𝑥 (𝑡) is the
current search point of the (1 + 1)-EAD at time 𝑡 . The weights 𝑔𝑖

of the function 𝑔 are as follows. For all 1 ≤ 𝑖 ≤ 𝑛, we let

𝛾𝑖 B

(
1 + 𝛼𝜒3

(𝑛 − 1)𝑝2
1

)𝑖−1
, (4)

put 𝑔1 B 𝛾1 = 1, and for 2 ≤ 𝑖 ≤ 𝑛, we set

𝑔𝑖 B min

{
𝛾𝑖 , 𝑔𝑖−1

𝑤𝑖

𝑤𝑖−1

}
≥ 1. (5)

We show a lower bound on the expected change in the potential of

E [𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 = 𝑠] ≥ 𝑠 · 𝑝1
𝑛
· 𝛼 − 1

𝛼
, (6)

following the strategy of [53], i.e., by defining suitable events 𝐴𝑖 ,

showing that (4.2) and (4.3) from [53] hold, and using the definition

of𝛾𝑖 . The result then follows by themultiplicative drift theorem. □

From Theorem 3.2 we obtain the following upper bound, which

relaxes the conditions on 𝑝1 and 𝜒 in Theorem 1.1 and shows that

the bound holds not only in expectation but also w.h.p.

Corollary 3.3. Let D = (𝑝0, 𝑝1, . . . , 𝑝𝑛) be a probability dis-

tribution on [0, 𝑛] with expectation 𝜒 . Assume that 𝑝1 > 0 and

𝜒3𝑝−2
1
(1 − 𝑝0)−1 = 𝑜 (ln𝑛/ln ln𝑛). Then the runtime of the (1 + 1)-

EAD on any linear function is at most

(1 + 𝑜 (1)) 1
𝑝1
· 𝑛 ln𝑛 (7)

in expectation and with high probability.

Note that since 1 − 𝑝0 ≥ 𝑝1, we could replace the requirement

𝜒3𝑝−2
1
(1 − 𝑝0)−1 = 𝑜 (ln𝑛/ln ln𝑛) by the stronger requirement

𝜒3/𝑝3
1
= 𝑜 (ln𝑛/ln ln𝑛). In particular, this is trivially satisfied if

𝑝1 = Θ(1) and 𝜒 = 𝑂 (1), as required in Theorem 1.1.

Proof Sketch for Corollary 3.3. We first treat the case 𝑝0 =

0, which implies 𝜒 ≥ 1. Let 𝛼 B ln ln𝑛. As in [53], 𝛼/(𝛼 − 1) = 1 +
𝑂 (1/ln ln𝑛), and 𝛼2/(𝛼 −1) = 𝑂 (ln ln𝑛). Thus 𝑏 (𝑟) in Theorem 3.2

is at most

𝑛

𝑝1

(
𝑜 (ln𝑛) + (1 + 𝑜 (1)) (ln𝑛 + 𝑟)

)
(8)

Taking 𝑟 B ln ln𝑛 and 𝑟 B 1, the corollary follows for 𝑝0 = 0.

For 𝑝0 > 0, we define an auxiliary distributionD′ = (𝑝′
0
, . . . , 𝑝′𝑛)

with 𝑝′
0
= 0, which is essentially D conditioned on not choosing 0.

Then we show that the already proven case of Corollary 3.3 is

applicable toD′. Thus, the runtime of the (1+ 1) −𝐸𝐴D′ is at most

(1 + 𝑜 (1)) 1
𝑝′
1

· 𝑛 ln𝑛 = (1 + 𝑜 (1)) 1 − 𝑝0
𝑝1

· 𝑛 ln𝑛, (9)

in expectation and with high probability. Since no-bit flips are just

idle steps of the (1+1)-EAD , the (1+1)-EAD and the (1+1)-EAD′
follow the same trajectory through the search space, except that

the (1 + 1)-EAD needs to wait for 1/(1 − 𝑝0) in expectation for a

non-idle step. Hence, the (1 + 1)-EAD is by a factor of 1/(1 − 𝑝0)
slower than the (1 + 1)-EAD′ , and the claim follows from (9). We

omit the details. □

Under some less restrictive conditions, we can give a polynomial

upper bound on the runtime.

Carola Doerr, Duri Andrea Janett, and Johannes Lengler

Corollary 3.4. Let D = (𝑝0, 𝑝1, . . . , 𝑝𝑛) be a probability distri-

bution on [0, 𝑛] with expectation 𝜒 . The runtime of the (1 + 1)-EAD
on any linear function is 𝑂 (𝑛4/𝑝3

1
) in expectation and with high

probability. In particular, it is polynomial if 1/𝑝1 is polynomial in 𝑛.

Proof. We take 𝛼 B 2, and apply Theorem 3.2. Noting that

𝜒 ≥ 𝑝1 and thus (𝑛 − 1)𝑝2
1
/𝜒3 ≤ 𝑛/𝑝1, by (3) we can bound the

runtime of the (1 + 1)-EAD on any linear function by

2𝑛

𝑝1

(
2𝑛𝜒3

(𝑛 − 1)𝑝2
1

+ ln
(
𝑛

𝑝1

)
+ 𝑟

)
= 𝑂

(
𝑛4

𝑝3
1

)
, (10)

where we use 𝜒 ≤ 𝑛 and pick 𝑟 = ln𝑛 or 𝑟 = 1 for the last step. □

3.1 Tightness
We now discuss that some requirements on 𝑝1 and 𝜒 are necessary.

Requirement on 𝑝1.We start with a proposition saying that the

leading constant can change if 𝑝1 = 𝑛−𝑐 for any 𝑐 > 0. In fact, this

is already the case for OneMax, as the following example shows.

Proposition 3.5. Let 0 < 𝑐 < 1 be constant. Consider the (1 + 1)-
EAD with distributionD = (𝑝0, 𝑝1, . . . , 𝑝𝑛) defined by 𝑝1 = 𝑛−𝑐 and
𝑝2 = 1 − 𝑝1. Then there is Y > 0 such that for sufficiently large 𝑛 the

expected runtime on OneMax is at most

(1 − Y) · 1
𝑝1
· 𝑛 ln𝑛.

Hence we have a strictly smaller leading constant than in Corol-

lary 3.3. The reason for this effect is that if 𝑝1 = 𝑛−Ω (1) , for Ham-

ming distances in the range [𝑛1−𝑐/2, 𝑛] from the optimum, two-bit

flips are more effective than single-bit flips. This range is thus tra-

versed more quickly. With single-bit flips, the algorithmwould need

time Ω(𝑛 ln𝑛/𝑝1) to traverse this region, but it can be traversed

in time 𝑜 (𝑛 ln𝑛/𝑝1) by two-bit flips. Hence, the time spent in this

phase becomes negligible. Even though this region is still far away

from the optimum, it consumes a constant fraction of the total

runtime if the algorithm is restricted to single-bit flips. Hence, the

speed-up from two-bit flips eliminates this constant fraction from

the total runtime, and thus reduces the leading constant of the total

runtime. This shows that the lower bound in Theorem 1.1 can not

hold if 𝑝1 = 𝑛−Ω (1) . On the other hand, we will show that it does

hold for all 𝑝1 = 𝑛−𝑜 (1) , which is tight by the above discussion.

Requirement on 𝜒 . Other than for 𝑝1, we could not derive a

statement about the runtime, but the following proposition shows

that, close to the optimum, the behavior of the algorithm changes

substantially if 𝜒 is large. Recall that from any parent at distance

one from the optimum, we have a probability of 𝑝1 ·1/𝑛 to create the

optimum as offspring. Hence, one would naively expect to wait at

most for 𝑛/𝑝1 rounds in expectation to find the optimum. However,

this is wrong for large values of 𝜒 , as the following proposition

shows.

Proposition 3.6. Let 𝑥 be a search point at Hamming distance

one from the optimum ®1. Let D be any probability distribution on

[0, 𝑛] with mean 𝜒 . For a linear function 𝑓 , let 𝑇𝑥
D (𝑓) be the number

of iterations until the (1 + 1)-EAD with starting position 𝑥 finds the

optimum.

(a) There is a linear function 𝑓 depending on 𝑥 such that E[𝑇𝑥
D (𝑓)] =

Ω(𝑛 ln 𝜒).

(b) If 𝜒 = 𝜔 (1) then there is a linear function 𝑓 depending on 𝑥 such

that 𝑇𝑥
D (𝑓) = 𝜔 (𝑛) with high probability.

(c) If 𝜒 = 𝑂 (1) and 𝑝1 = Θ(1) then E[𝑇𝑥
D (𝑓)] = 𝑂 (𝑛) for every

linear function 𝑓 .

Proof. (a) and (b). It is clear that the number of iterations is

at least Ω(𝑛), so we may assume 𝜒 ≥ 4. Since 𝑥 has Hamming

distance one from ®1, it differs in exactly one position from ®1. We

may assume that this is the first position. Then we define 𝑓 via

𝑓 (𝑥) := 𝑛 ·𝑥1+
∑𝑛
𝑖=2 𝑥𝑖 , i.e, we give weight 𝑛 to the first position and

weight 1 to all other positions. When in 𝑥 , the algorithm will accept

any offspring that flips the first position. Let us call 𝑅 the number

of bits that are flipped in this mutation. Then we may compute the

distribution of 𝑅 via Bayes formula as

Pr[𝑅 = 𝑟] = Pr[𝑅 = 𝑟 and pos. 1 flipped]∑
𝑠∈[𝑛] Pr[𝑅 = 𝑠 and pos. 1 flipped] . (11)

Note that Pr[𝑅 = 𝑠 and pos. 1 flipped] = Pr[𝑅 = 𝑠] ·
Pr[pos 1 flipped | 𝑅 = 𝑠] = 𝑝𝑠 · 𝑠/𝑛, where the conditional proba-
bility is 𝑠/𝑛 since the mutation operator is unbiased. Hence, (11)

simplifies to

Pr[𝑅 = 𝑟] = 𝑝𝑟 · 𝑟/𝑛∑
𝑠∈[𝑛] 𝑝𝑠 · 𝑠/𝑛

=
𝑝𝑟 · 𝑟
𝜒

. (12)

In particular, this implies for every 𝛾 ≤ 1,

Pr[𝑅 ≤ 𝛾 𝜒] =
⌊𝛾 𝜒 ⌋∑︁
𝑟=1

𝑝𝑟 · 𝑟
𝜒
≤

𝛾 𝜒
∑⌊𝛾 𝜒 ⌋
𝑟=1

𝑝𝑟

𝜒
≤ 𝛾 .

Hence, with probability at least 1 − 𝛾 , the (1 + 1)-EAD proceeds

from 𝑥 to a search point in Hamming distance at least 𝛾 𝜒 −1 from ®1.
For claim (a) we set 𝛾 := 1/2 and obtain a search point in Ham-

ming distance at least 𝜒/2 − 1 ≥ 𝜒/4. Once this search point is

reached, the algorithm does not accept any mutation which flips

position 1 again, since this would decrease the fitness. Hence, the

algorithm simply has to solve OneMax on the remaining 𝑛 − 1

bits. In expectation, this takes time Ω(𝑛 ln 𝜒) since the unbiased
black-box complexity for solving OneMax from a starting point in

distance at least 𝜒/4 is Ω(𝑛 ln 𝜒) (implicit in [42]). Since this case

happens with probability at least 1 − 𝛾 = 1/2, we obtain

E[𝑇𝑥
D (𝑓)] ≥

1

2
· Ω(𝑛 ln 𝜒) = Ω(𝑛 ln 𝜒) .

For claim (b), we choose 𝛾 := 𝜒−1/2. Then 1 − 𝛾 = 1 − 𝑜 (1), so
with high probability the (1 + 1)-EAD proceeds from 𝑥 to a search

point in distance at least 𝑑 := 𝛾 𝜒 − 1 = 𝜒1/2 − 1 = 𝜔 (1) from ®1. As
for part (a), from this point onwards the algorithm needs to solve

OneMax on 𝑛 − 1 bits. Thus the algorithm needs to traverse the

interval from 𝑑′ := min{𝑑, 𝑛1/3} to the optimum. We show that

w.h.p. this takes time at least 𝑡0 for some 𝑡0 = Ω(𝑛 ln𝑑′) = 𝜔 (𝑛).
It can be shown that the probability to find an improvement with

𝑟 -bit flips for any 𝑟 ≥ 2 is 𝑂 ((𝑑′/𝑛))2 ≤ 𝑛−4/3. Hence, in time 𝑡0

the expected number of such improvements is 𝑂 (𝑡0𝑛−4/3) = 𝑜 (1),
and by Markov’s inequality no 𝑟 -bit flip finds an improvement for

𝑟 ≥ 2. Hence, we may pessimistically assume that the algorithm

only uses single-bit flips, i.e., that it is random local search (RLS).

By [54, Theorem 1], w.h.p.RLS needs time Ω(𝑛 ln𝑑′) to find the

optimum, which concludes the proof.

Tight Runtime Bounds for Static Unary Unbiased EAs on Linear Functions

Claim (c) follows directly from the proof of Theorem 3.2, using

the parameter 𝛼 = 2. There it was shown that with the potential

𝑔(𝑥) = ∑𝑛
𝑖=1 𝑔𝑖𝑥𝑖 , the drift towards the optimum is at least

𝑝1
2𝑛 ·𝑔(𝑥)

by (6). By design, the minimal positive potential is 1. Since we start

in distance one from the optimum, the initial potential is at most

𝑔init ≤ max{𝑔𝑖 : 𝑖 ∈ [𝑛]} = 𝑔𝑛 ≤ 𝛾𝑛, (13)

where

𝛾𝑛 =

(
1 + 2𝜒3

(𝑛 − 1)𝑝2
1

)𝑛−1
≤ exp

(
2𝜒3

𝑝2
1

)
= 𝑂 (1) (14)

by (4) and (5). Hence, the expected runtime is at most

E[𝑇] ≤ ln(𝑔init) + 1
𝑝1/(2𝑛)

=
𝑂 (𝑛)
𝑝1

= 𝑂 (𝑛) (15)

by the multiplicative drift theorem. □

We did not aim for tightness in Proposition 3.6, but rather want

to demonstrate the different regimes. In particular, consider a dis-

tribution D with 𝑝1 = Θ(1) and with mean 𝜒 . If 𝜒 = 𝑂 (1), then
E[𝑇𝑥
D (𝑓)] = 𝑂 (𝑛) by (c), but for 𝜒 = 𝜔 (1) we have E[𝑇𝑥

D (𝑓)] =
𝜔 (𝑛) by (a). This shows that the size of 𝜒 is truly relevant for the

runtime, at least if the algorithms starts in an adversarial point.

Moreover, (b) shows that the high expectation in the case 𝜒 = 𝜔 (1)
is not just due to low-probability events, but that it comes from

typical runs.

The most interesting and common unbiased mutation operators,

except for standard-bit mutation, are mutation operators where the

number of bit flips has a heavy tail. Usually a power law is used, i.e,

the probability to flip 𝑘 bits scales like 𝑘−𝛼 for some constant 𝛼 > 1.

There are two different regimes for the parameter 𝛼 . For 𝛼 > 2, the

expected number of bit flips satisfies 𝜒 = 𝑂 (1). For 𝛼 ∈ (1, 2), the
expected number of bit flips is unbounded and large, 𝜒 = 𝑛Ω (1) .2

In either case, such power-law distributions satisfy 𝑝1 = Θ(1).
Notably, our main Theorem 1.1 applies to power-law distributions

with 𝛼 > 2, but not to power-law distributions with 𝛼 ∈ (1, 2).
We believe that this reflects a real difference between those two

cases. As indication, note that in the situation of Proposition 3.6,

we have E[𝑇𝑥
D (𝑓)] = 𝑂 (𝑛) for 𝛼 > 2, but E[𝑇𝑥

D (𝑓)] = Ω(𝑛 ln𝑛)
for 𝛼 ∈ (1, 2). This does not rule out that Theorem 1.1 still might be

true for 𝛼 ∈ (1, 2) due to the random starting point, but it suggests

that trajectories of the algorithm can be substantially different.

4 LOWER BOUND
The following theorem is the main result shown in this section.

Theorem 4.1. Let D = (𝑝0, 𝑝1, . . . , 𝑝𝑛) be a probability distribu-

tion on [0, 𝑛] with 𝑝1 + 𝑝𝑛−1 = 𝑛−𝑜 (1) . Let 𝑓 : {0, 1}𝑛 → R be a

function with a unique global optimum. Then the expected runtime

of the (1 + 1)-EAD on 𝑓 is bounded from below by

(1 − 𝑜 (1)) 1

𝑝1 + 𝑝𝑛−1
𝑛 ln𝑛. (16)

Note thatmost commonmutation operators satisfy 𝑝𝑛−1 = 𝑜 (𝑝1),
in which case (16) simplifies to (1−𝑜 (1)) 1𝑝1𝑛 ln𝑛. We remark that a

2
For 𝛼 = 2 the expected number of bit flips is also unbounded, but grows only as

𝜒 = 𝑂 (ln𝑛) . We will neglect this case here.

coarser lower bound of Ω(𝑛 ln𝑛) follows from [42] and [20]. How-

ever, in contrast to [42], we are interested in understanding the

leading constant, and in contrast to [20], we are interested in the ex-

pected runtime for static unary unbiased distributions. A common

technique to prove lower bounds that apply to any function from

some problem collection is to bound the expected runtime of the

algorithm on OneMax and to show that OneMax is the “easiest”

among all functions from the collection, in the sense that the ex-

pected runtime of the algorithm optimizing a given function from

the set cannot be smaller than its expected runtime on OneMax. In

many cases, e.g., when considering the (1+ 1)-EA with standard bit

mutation, OneMax can even be shown to be the easiest among all

functions with unique global optimum; as was first shown in [25]

for mutation rate 𝑝 = 1/𝑛 and then in [53] more generally for all

(static or dynamic) mutation rates 𝑝 ≤ 1/2. However, in our situa-

tion it is not true that OneMax is the easiest function, as we will

discuss in Section 4.2.

Our proof for Theorem 4.1 follows the strategy used in [20].

In particular, we apply their lower bound theorem for variable

drift [20, Theorem 9] in the same way. We quote their Lemma 13

directly, and the proof of our Theorem 4.8 below differs from the

proof of their Theorem 14 only in the calculations and bounds

used. The key difference between their proof and ours is that we

use a different function ℎ to bound the expected change in the

potential. Most of the work goes into showing that this function ℎ

is indeed applicable, and providing an upper bound on its values that

allows us to translate the result of Theorem 4.8 into the asymptotic

formulation of Theorem 4.1. In this sketch, we give the key steps,

but omit the proofs of the intermediate lemmas.

To implement the proof strategy of [20], we use the same poten-

tial function to measure the progress of the optimization process.

That is, we denote by (𝑥 (0) , 𝑥 (1) , . . . , 𝑥 (𝑡)) the sequence of the first
𝑡 + 1 search points evaluated by the algorithm and we denote by

𝑣𝑡 ∈ {𝑥 (0) , . . . , 𝑥 (𝑡) } the parent chosen by the algorithm in itera-

tion 𝑡 . We define the potential at time 𝑡 as

𝑋𝑡 B min

0≤𝑖≤𝑡
𝑑
(
𝑥 (𝑖)

)
, (17)

where 𝑑 is the distance function

𝑑 (𝑥) B min{𝑛 − Om(𝑥),Om(𝑥)}. (18)

The reason for considering the symmetric distance to the optimum

and its complement is that an optimal unary unbiased black-box

algorithm may first reach ®0, and then flip all bits at once. Further-

more, as we show in Lemma 4.9, it is possible to make progress

towards the optimum in a way that can be measured in terms of 𝑑 ,

while the Hamming-distance to the optimum increases.

Note that the sequence (𝑋𝑡)𝑡≥0 is non-increasing, so we may

apply the variable drift lower bound from [20, Theorem 9] to it.

Next, we define the function
˜ℎ, which gives the precise drift in

the case where the algorithm uses a bitstring at distance 𝑋𝑡 for

generating the offspring in round 𝑡 .

Definition 4.2. We define
˜ℎ : [0, 𝑛] → R≥0 as

˜ℎ(𝑑) =
𝑛−1∑︁
𝑟=1

(𝑝𝑟 + 𝑝𝑛−𝑟)𝐵(𝑛,𝑑, 𝑟), (19)

Carola Doerr, Duri Andrea Janett, and Johannes Lengler

where

𝐵(𝑛,𝑑, 𝑟) =
min{𝑑,𝑟 }∑︁

𝑖=max{ ⌈𝑟/2⌉,𝑟+𝑑−𝑛}
(2𝑖 − 𝑟)

(𝑑
𝑖

) (𝑛−𝑑
𝑟−𝑖

)(𝑛
𝑟

) (20)

is the drift conditioned on flipping 𝑟 bits.

The expression 𝐵(𝑛,𝑑, 𝑟) was already given in [20] as the exact

fitness drift with respect to OneMax when flipping 𝑟 bits.

Lemma 4.3. If a static unary unbiased algorithm with flip distribu-

tion D chooses a bitstring 𝑣𝑡 with potential 𝑋𝑡 for mutation in step 𝑡 ,

then the drift is given by
˜ℎ (𝑋𝑡), i.e.,

E [𝑋𝑡 − 𝑋𝑡+1 | {𝑋𝑡 = 𝑑} ∧ {𝑑 (𝑣𝑡) = 𝑑}] = ˜ℎ(𝑑) . (21)

The proof relies on the fact that flipping 𝑛 − 𝑟 bits is the same as

first flipping 𝑛 bits and then flipping 𝑟 bits to adapt the computation

of 𝐵(𝑛,𝑑, 𝑟) given in [20].

Now, we are ready to define the bound ℎ on the drift that we use

in our application of the variable drift theorem [20, Theorem 9].

Definition 4.4. Let ℎ : [0, 𝑛] → R≥0,

ℎ(𝑑) =
{
˜ℎ(𝑑), for 𝑑 ≤ 𝑑0

𝑛, for 𝑑 > 𝑑0,
(22)

where

𝑑0 B ⌊(𝑝1 + 𝑝𝑛−1)𝑛/ln2 𝑛⌋ . (23)

The following statement is adapted from Lemma 21 in [20].

Lemma 4.5. There is an 𝑛0 ∈ N such that for all 𝑛 ≥ 𝑛0, 𝑑 ≤ 𝑑0,

and 𝑟 ≥ 𝑟0 = 12, it holds

𝐵(𝑛,𝑑, 𝑟) < (𝑑/𝑛)2 . (24)

The next lemma gives an upper bound on ℎ(𝑑) that holds once
𝑑 is small enough.

Lemma 4.6. There is an 𝑛0 ∈ N such that for all 𝑛 ≥ 𝑛0, and all

𝑑 ≤ 𝑑0,

ℎ(𝑑) ≤
(
1 + 1

ln𝑛

)
· (𝑝1 + 𝑝𝑛−1) ·

𝑑

𝑛
. (25)

As we show in the following lemma, the function ℎ is indeed an

upper bound for the change in the potential. We need to show that,

under our assumptions, the expected change in the potential condi-

tioning on 𝑑 (𝑣𝑡) = 𝑑 + Δ is maximal if Δ = 0. The proof relies on a

case distinction to deal with different ranges of 𝑑 and Δ. Depending
on the case, we use an additive Chernoff bound, a multiplicative

Chernoff bound, or Lemma 4.6.

Lemma 4.7. There is an 𝑛0 ∈ N such that for all 𝑛 ≥ 𝑛0, any

static unary unbiased algorithm with flip distribution D such that

𝑝1 + 𝑝𝑛−1 = 𝑛−𝑜 (1) , and all 𝑑 ≤ 𝑑0, it holds

E [𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 = 𝑑] ≤ ℎ(𝑑). (26)

Finally, we show that there is an 𝑛0 ∈ N such that for all 𝑛 ≥ 𝑛0,

the function ℎ is monotonically increasing. With this statement at

hand and Lemma 13 from [20], which bounds the probability to

make large jumps, we can then show the following theorem, using

very similar computations as those that were used in [20].

Theorem 4.8. The expected runtime of any static unary unbiased

algorithm with flip distribution D satisfying 𝑝1 + 𝑝𝑛−1 = 𝑛−𝑜 (1) on
any function 𝑓 : {0, 1}𝑛 → R with unique global optimum is at least

𝑑0∑︁
𝑑=1

1

ℎ(𝑑) − 𝑜 (𝑛) . (27)

With this statement at hand, we can finally prove Theorem 4.1.

Proof of Theorem 4.1. By Lemma 4.6, we have for all 1 ≤ 𝑑 ≤
𝑑0 = 𝑛

𝑝1+𝑝𝑛−1
ln

2 𝑛
,

1

ℎ(𝑑) ≥
𝑛

(𝑝1 + 𝑝𝑛−1)𝑑
−

1

ln𝑛

1 + 1

ln𝑛

𝑛

(𝑝1 + 𝑝𝑛−1)𝑑
(28)

= (1 − 𝑜 (1)) 𝑛

(𝑝1 + 𝑝𝑛−1)𝑑
. (29)

Applying Theorem 4.8 yields

E[𝑇] ≥ ©«(1 − 𝑜 (1)) 𝑛

(𝑝1 + 𝑝𝑛−1)

𝑑0∑︁
𝑑=1

1

𝑑

ª®¬ − 𝑜 (𝑛) (30)

= (1 ± 𝑜 (1)) 1

(𝑝1 + 𝑝𝑛−1)
𝑛 ln𝑛. (31)

□

4.1 On 𝑝𝑛−1
The following lemma shows that the term 𝑝𝑛−1 in Theorem 4.1

is really necessary. In particular, there are (artificial) functions on

which a unary unbiased (1 + 1) algorithm with 𝑝1 = 0 can be as

efficient as random local search (RLS) on OneMax.

Lemma 4.9. Let 𝑛 be even. Let RLS be the (1+ 1)-EAD with 𝑝1 = 1

and 𝑝𝑖 = 0 for 𝑖 ≠ 1, and let A be the (1 + 1)-EAD with 𝑝𝑛−1 = 1

and 𝑝𝑖 = 0 for 𝑖 ≠ 𝑛 − 1. Let 𝑓 : {0, 1}𝑛 → R be defined via

𝑓 (𝑥) :=
{
Om(𝑥), if Om(𝑥) is even,
𝑛 − Om(𝑥), if Om(𝑥) is odd.

Let 𝑇 RLS (Om) be the runtime of RLS on OneMax, and let 𝑇A (𝑓) be
the runtime of A on 𝑓 . Then 𝑇 RLS (Om) and 𝑇A (𝑓) follow the same

distribution, i.e., for all 𝑇 ∈ N,

Pr[𝑇 RLS (Om) = 𝑇] = Pr[𝑇A (𝑓) = 𝑇] . (32)

In particular,𝑇A (𝑓) = (1± 𝑜 (1))𝑛 ln𝑛 in expectation and with high

probability.

Proof. Let 𝑋RLS

𝑡 and 𝑋A𝑡 be the fitness of RLS and A after 𝑡

iterations, respectively. We will show by induction over 𝑡 that those

two random variables follow the same distribution.

Note that 𝑓 is obtained from OneMax by swapping the fitness

levels 𝑘 and 𝑛 − 𝑘 if 𝑘 is odd. In particular, the number of search

points of fitness 𝑘 does not change. Since the initial search point

is chosen uniformly at random, therefore 𝑋RLS

0
and 𝑋A

0
follow the

same distribution.

Now let 𝑡 ≥ 0 and assume that 𝑋RLS

𝑡 and 𝑋A𝑡 follow the same

distribution. We claim that for every 𝑘, 𝑘′ ∈ [0..𝑛], we have

Pr[𝑋RLS

𝑡+1 = 𝑘′ | 𝑋RLS

𝑡 = 𝑘] = Pr[𝑋A𝑡+1 = 𝑘′ | 𝑋A𝑡 = 𝑘] . (33)

Tight Runtime Bounds for Static Unary Unbiased EAs on Linear Functions

Note that this implies that 𝑋RLS

𝑡+1 and 𝑋A
𝑡+1 follow the same distribu-

tion since then

Pr[𝑋RLS

𝑡+1 = 𝑘′] =
∑︁

𝑘∈[0,𝑛]
Pr[𝑋RLS

𝑡 = 𝑘] · Pr[𝑋RLS

𝑡+1 = 𝑘′ | 𝑋RLS

𝑡 = 𝑘]

=
∑︁

𝑘∈[0,𝑛]
Pr[𝑋A𝑡 = 𝑘] · Pr[𝑋A𝑡+1 = 𝑘′ | 𝑋A𝑡 = 𝑘]

= Pr[𝑋A𝑡+1 = 𝑘′] .

Moreover, since this implies that 𝑋RLS

𝑡 and 𝑋A𝑡 follow the same

distribution for all 𝑡 , by

Pr[𝑇RLS (Om) > 𝑇] = Pr[𝑋RLS

𝑇
< 𝑛]

= Pr[𝑋A
𝑇

< 𝑛] = Pr[𝑇A (𝑓) > 𝑇],
it also implies the lemma. So it remains to show (33).

For RLS it is obvious that the left hand side of (33) is zero for all

𝑘′ ∈ [0..𝑛] \ {𝑘, 𝑘 + 1}. Let us assume that A is in a search point 𝑥

such that𝑋A𝑡 = 𝑘 . The algorithmA creates offspring𝑦 by randomly

flipping 𝑛 − 1 positions of 𝑥 . This can be equivalently expressed

by first flipping all 𝑛 positions, and then flipping back a uniformly

random position. Flipping all 𝑛 positions yields the antipodal search

point 𝑥 ′ with Om(𝑥 ′) = 𝑛 − Om(𝑥). Since 𝑦 is obtained from 𝑥 ′ by
flipping exactly one bit, it satisfies Om(𝑦) = 𝑛 −Om(𝑥) ± 1. Since 𝑛
is even, this implies that Om(𝑥 ′) and Om(𝑥) are either both odd or

both even. In either case, 𝑓 (𝑥 ′) = 𝑛− 𝑓 (𝑥) and thus 𝑓 (𝑦) = 𝑓 (𝑥) ±1
by definition of 𝑓 . Since A is elitist, it will reject any offspring of

fitness 𝑓 (𝑥) − 1, so it accepts 𝑦 if and only if 𝑓 (𝑦) = 𝑓 (𝑥) + 1. In
particular, this means that the right hand side of (33) is zero for all

𝑘′ ∈ [0..𝑛] \ {𝑘, 𝑘 + 1}, as required.
For the remaining values 𝑘′ ∈ {𝑘, 𝑘 + 1}, it suffices to show

equality for one of them, since the left and right hand side of (33)

both sum up to one if summed over all 𝑘′. IfOm(𝑥) is even, then the

offspring is fitter if and only if the bit that is not flipped is a zero-bit,

which happens with probability (𝑛 − Om(𝑥))/𝑛 = (𝑛 − 𝑘)/𝑛. If
Om(𝑥) is odd, then the offspring is fitter if and only if the bit that is

not flipped is a one-bit, which happens with probability Om(𝑥)/𝑛 =

(𝑛−𝑘)/𝑛. So in either case, Pr[𝑋A
𝑡+1 = 𝑘 + 1 | 𝑋A𝑡 = 𝑘] = (𝑛−𝑘)/𝑛,

which is the same as the probability for RLS. This concludes the

proof of (33) and of the lemma. □

The following theorem strengthens Theorem 4.1 for the (1 + 1)-
EAD on linear functions. It says that in this case, 𝑝𝑛−1 does not
help to improve the asymptotic runtime.

Theorem 4.10. Consider the (1 + 1)-EAD with distribution D =

(𝑝0, 𝑝1, . . . , 𝑝𝑛) such that 𝑝1 = 𝑛−𝑜 (1) . The expected runtime on any

linear function on {0, 1}𝑛 is at least

(1 − 𝑜 (1)) 1
𝑝1

𝑛 ln𝑛. (34)

Proof. Recall that the weights𝑤𝑖 of 𝑓 are positive and sorted.

Wemay assume that the smallest weight is𝑤1 = 1, since we canmul-

tiply all weights with the same constant factor without changing the

fitness landscape. Moreover, for linear functions it is slightly more

convenient to work with minimization instead of maximization.

Both versions are equivalent, so wemay assume that 𝑓 is minimized.

Finally, if𝑤𝑛 >
∑𝑛−1
𝑖=1 𝑤𝑖 + 1 then replacing𝑤𝑛 by

∑𝑛−1
𝑖=1 𝑤𝑖 + 1 does

not change the fitness landscape since in either case all search

points 𝑥 with 𝑥𝑛 = 1 have higher objective than all search points

with 𝑥𝑛 = 0. Hence we may assume 𝑤𝑛 ≤
∑𝑛−1
𝑖=1 𝑤𝑖 + 1. Writing

𝑊 :=
∑𝑛
𝑖=1𝑤𝑖 for the total weight, this implies 2𝑤𝑛 ≤𝑊 + 1 < 3

2
𝑊 ,

and thus𝑤𝑛 < 3

4
𝑊 .

Fix some 𝑡 , and let 𝑞𝑖,𝑡 := Pr[𝑥 (𝑡)
𝑖

= 1] be the probability that

the 𝑖-th bit is a one-bit in generation 𝑡 . Then a classical result

by Jägersküpper [39] says that 𝑞1,𝑡 ≥ . . . ≥ 𝑞𝑛,𝑡 . Jägersküpper

proved it for the (1+1)-EA with standard bit mutation, but the only

ingredient in the proof was that for all 𝑖, 𝑗 ∈ [𝑛], if we condition on

the set of flips in [𝑛] \ {𝑖, 𝑗} then positions 𝑖 and 𝑗 have the same

probability of being flipped. This is true for all unbiased mutation

operators, so Jägersküpper’s result holds for the (1+1)-EAD as well.

Moreover, the proof shows inductively for all times that for any

substring 𝑥 on the positions [𝑛] \ {𝑖, 𝑗}, the combination “𝑥𝑖 = 0,

𝑥 𝑗 = 1, 𝑥” is more likely than the combination “𝑥𝑖 = 1, 𝑥 𝑗 = 0,

𝑥” if 𝑖 < 𝑗 . Since both options have the same number of one-

bits, and since other options (with 𝑥𝑖 = 𝑥 𝑗) contribute equally to

𝑞𝑖,𝑡 and 𝑞 𝑗,𝑡 , it was already observed in [44] that 𝑞𝑖,𝑡 ≥ 𝑞 𝑗,𝑡 still

holds if we condition on the number of one-bits Om(𝑥 (𝑡)) at time

𝑡 . Moreover, the statement also still holds if we replace 𝑡 by the

hitting time 𝑇 = 𝑇 (𝑑) = min{𝑡 ≥ 0 | Om(𝑥𝑡) ≤ 𝑑}, so we have

𝑞1,𝑇 ≥ . . . ≥ 𝑞𝑛,𝑇 .

We choose 𝑇 = 𝑇 (𝑑) for 𝑑 = 𝑛/ln𝑛. Then we have

∑
𝑖∈[𝑛] 𝑞𝑖,𝑇 =

E[Om(𝑥𝑇)] ≤ 𝑑 by definition of 𝑇 , and hence

E[𝑓 (𝑥 (𝑇))] =
∑︁
𝑖∈[𝑛]

𝑤𝑖 · 𝑞𝑖,𝑇 ≤
(∑

𝑖∈[𝑛] 𝑤𝑖

)
·
(∑

𝑖∈[𝑛] 𝑞𝑖,𝑇
)

𝑛

≤ 𝑊𝑑

𝑛
=

𝑊

ln𝑛
,

where the second step is Chebyshev’s sum inequality, since𝑤𝑖 and

𝑞𝑖,𝑇 are sorted opposingly.

By Markov’s inequality, at time𝑇 we have w.h.p.𝑓 (𝑥 (𝑇)) ≤𝑊 /8.
In the following we will condition on this event. We claim that

then after time 𝑇 , any offspring obtained by an (𝑛 − 1)-bit flip
is rejected. To see this, consider any 𝑥 with 𝑓 (𝑥) ≤ 𝑊 /8. Any
offspring𝑦 that is obtained from 𝑥 by an (𝑛−1)-bit flip has objective
𝑓 (𝑦) ≥𝑊 −𝑊 /8−𝑤𝑛 , because the antipodal point of 𝑥 has objective

𝑊 − 𝑓 (𝑥) ≥ 𝑊 −𝑊 /8, and flipping back a bit can decrease the

objective by at most 𝑤𝑛 < 3

4
𝑊 . Hence, 𝑓 (𝑦) ≥𝑊 −𝑊 /8 −𝑤𝑛 >

𝑊 /8. Therefore, the offspring 𝑦 has higher (worse) objective, and is

rejected. Hence, once the algorithm reaches objective at most𝑊 /8,
all offspring obtained from (𝑛 − 1)-bit flips are rejected. In other

words mutations of 𝑛 − 1 bits are idle steps. This means that after

time 𝑇 , the (1 + 1)-EAD behaves as the (1 + 1)-EAD′ , where we
define D′ = (𝑝′

0
, . . . , 𝑝′𝑛) by

𝑝′𝑖 :=

0 if 𝑖 = 𝑛 − 1,
𝑝0 + 𝑝𝑛−1 if 𝑖 = 0,

𝑝𝑖 otherwise.

At time 𝑇 w.h.p. we have Om(𝑥 (𝑇)) ≥ 𝑑 − ln
2 𝑛, which follows

from [20, Lemma 13]. By Theorem 4.1, the (1 + 1)-EAD′ needs in
expectation at least (1 − 𝑜 (1)) 1

𝑝′
1
+𝑝′

𝑛−1
𝑛 ln𝑛 = (1 − 𝑜 (1)) 1𝑝1𝑛 ln𝑛

steps to find the optimum from level 𝑑 − ln2 𝑛, and hence the (1+1)-
EAD needs the same time. Note that we proved the lower bound

Carola Doerr, Duri Andrea Janett, and Johannes Lengler

conditional on w.h.p.events, but this just adds another (1 − 𝑜 (1))
factor for the unconditional expectation. □

4.2 No Stochastic Domination
Earlier work [24, 52, 53] used stochastic domination arguments

(cf. [15]) to prove lower bounds. In particular, Witt proved his

lower bound by showing that OneMax is the easiest function for

the (1 + 1)-EA with standard bit mutation of arbitrary mutation

rate 𝑝 ≤ 1/2 [53]. The key ingredient was Lemma 6.1 in [53],

which considered offspring 𝑦 and 𝑦′ that are created from 𝑥 and

𝑥 ′ respectively by standard bit mutation with mutation rate 𝑝 ≤
1/2. For minimization, if Om(𝑥) ≤ Om(𝑥 ′) then the lemma states

Pr[Om(𝑦) ≤ 𝑘] ≥ Pr[Om(𝑦′) ≤ 𝑘] for all 𝑘 ∈ [0, 𝑛]. So it is easier

to reach Om-level at most 𝑘 when starting with a parent of smaller

Om-value. This lemma implies on the one hand that OneMax is

the easiest function for standard bit mutation, but also that elitist

selection is optimal in this situation: the (1 + 1)-EA with mutation

rate 𝑝 ≤ 1/2 is the fastest algorithm on OneMax among all unary

algorithms using standard bit mutation with mutation rate 𝑝 ≤ 1/2.
However, Witt’s lemma does not hold for general unbiased

mutation operators. In particular, being closer to the optimum

does not mean that we have a higher chance of finding the opti-

mum in the next step. Consider the case where the algorithm flips

one bit with probability 𝑝1 = 𝑛−2 and two bits with probability

𝑝2 = 1 − 𝑝1 = 1 − 𝑛−2. The probability of finding the optimum

from a search point in Hamming distance one from the optimum

is 𝑝1/𝑛 = 𝑛−3, whereas the probability of finding the optimum

from a search point in Hamming distance two from the optimum is

𝑝2/
(𝑛
2

)
= Θ(𝑛−2), which is much larger.

Even worse, let us consider the time 𝑇𝑑 to find the optimum

on OneMax if we start in Hamming distance 𝑑 . For 𝑑 = 1 we

have E[𝑇1] = 𝑛/𝑝1 = Θ(𝑛3). For 𝑑 = 2, the probability of making

an improvement is 𝑝imp = 𝑝1 · 2/𝑛 + 𝑝2/
(𝑛
2

)
= Θ(𝑛−2). Hence,

conditional on making an improvement, the algorithm improves by

one with probability (𝑝1 · 2/𝑛)/𝑝imp = Θ(𝑛−1). Therefore, we need
to wait in expectation 1/𝑝imp = Θ(𝑛2) rounds for an improvement,

and with probability Θ(𝑛−1) we improve only by one and need to

wait another 𝑇1 rounds for reaching the optimum. Hence,

E[𝑇2] = Θ(𝑛2) + Θ(𝑛−1) · E[𝑇1] = Θ(𝑛2),

which is asymptotically smaller than E[𝑇1] = Θ(𝑛3). So the ex-

pected time E[𝑇𝑑] is not monotone in 𝑑 , and can be asymptotically

smaller if we start further away from the optimum.

Turning this example around, we can construct a situation where

OneMax is not the easiest function. Consider an algorithm with

𝑝1 = 𝑛−3, 𝑝2 = 𝑛−1 and 𝑝3 = 1 − 𝑝1 − 𝑝2 = 1 − 𝑜 (1), starting in

the string 𝑥 = (01 . . . 1) where all but the first bit are optimized.

On OneMax, it needs to wait for a one-bit flip, which takes time

𝑛/𝑝1 = Θ(𝑛4). But if the fitness function is 𝑓 (𝑥) := 3𝑥1 +
∑𝑛
𝑖=2 𝑥𝑖 ,

then the algorithm accepts any mutation flipping two or three bits

if it involves 𝑥1. Conditional on flipping 𝑥1, a two-bit flip has only

probability 𝑂 (𝑛−1) since 𝑝3/𝑝2 = Θ(𝑛). In that case (an improving

two-bit flip) the algorithm jumps to another neighbour of the opti-

mum and needs to wait 𝑛/𝑝1 = 𝑂 (𝑛4) rounds for the right one-bit
flip. This contributes𝑂 (𝑛−1 · 𝑛4) = 𝑂 (𝑛3) to the expectation. How-

ever, in the more likely case of a three-bit flip, the algorithm jumps

to a search point in distance two from the optimum. By a similar

calculation as before, it now needs time𝑂 (𝑛3) to find the optimum,

so the expected runtime on 𝑓 is 𝑂 (𝑛3), which is asymptotically

faster than on OneMax.

Finally, the same example can be used to show that a non-elitist

(1 + 1) algorithm may be faster than the (1 + 1)-EAD if both use

the same unbiased mutation operator. Hence, Witt’s lemma and all

its consequences fail for general unbiased mutation operators. This

is similar to the situation for the compact genetic algorithm cGA,

for which this form of domination also does not hold [16].

5 CONCLUSIONS
We have extended Witt’s result bounding the runtime of the (1+ 1)-
EA on linear functions to arbitrary elitist (1+1) unary unbiased EAs

and we have discussed various ways in which the requirements

made in Corollary 3.3 and Theorem 4.1 are tight. In particular, we

have seen that for 𝑝1 = 𝑛−Ω (1) , the expected runtime can be smaller

than
1

𝑝1
𝑛 ln𝑛 by a constant factor. When interpreted in the light of

black-box complexity, our results can be seen as extensions of [20]

to linear functions. However, we have focused in this work on

static mutation operators. An extension of our result to dynamic

parameter settings would hence be a natural continuation of our

work.

Another direction in which we aim to extend our results are

combinatorial optimization problems where we suspect to see a

tangible advantage of unusual unary mutation operators. For ex-

ample, the optimal mutation operator for the minimum spanning

tree problem (MST) is likely to satisfy 𝑝1 > 0 and 𝑝2 > 0. Similarly,

there are functions like LeadingOnes where the optimal number

of flipped bits depends on the phase of the algorithm, and none

of the phases is asymptotically negligible for the runtime. In such

cases, it may be interesting to see what the optimal distribution is.

Similarly, we also expect advantages of the (1 + 1)-EAD over

standard (1 + 1)-EAs when optimizing for average performance for

problem collections with instances having different landscapes.

ACKNOWLEDGMENTS
Our work is financially supported by ANR-22-ERCS-0003-01 project

VARIATION. Duri Andrea Janett was supported by the Swiss-

European Mobility Programme.

REFERENCES
[1] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. 2021. Lazy parameter

tuning and control: choosing all parameters randomly from a power-law distri-

bution. In Proceedings of the Genetic and Evolutionary Computation Conference.

1115–1123.

[2] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. 2022. Fast mutation in

crossover-based algorithms. Algorithmica 84 (2022), 1724–1761.

[3] Denis Antipov and Benjamin Doerr. 2020. Runtime analysis of a heavy-tailed

(1 + (_, _)) genetic algorithm on jump functions. In Parallel Problem Solving

from Nature–PPSN XVI: 16th International Conference, PPSN 2020, Leiden, The

Netherlands, September 5-9, 2020, Proceedings, Part II. Springer, 545–559.

[4] Denis Antipov and Benjamin Doerr. 2021. Precise runtime analysis for plateau

functions. ACM Transactions on Evolutionary Learning and Optimization 1, 4

(2021), 1–28.

[5] Denis Antipov and Semen Naumov. 2021. The effect of non-symmetric fitness:

The analysis of crossover-based algorithms on RealJump functions. In Proceedings

of the 16th ACM/SIGEVO Conference on Foundations of Genetic Algorithms. 1–15.

[6] Henry Bambury, Antoine Bultel, and Benjamin Doerr. 2021. Generalized jump

functions. In Proceedings of the Genetic and Evolutionary Computation Conference.

1124–1132.

Tight Runtime Bounds for Static Unary Unbiased EAs on Linear Functions

[7] Henry Bambury, Antoine Bultel, and Benjamin Doerr. 2022. An Extended Jump

Functions Benchmark for the Analysis of Randomized Search Heuristics. Algo-

rithmica (2022), 1–32.

[8] Pauline Bennet, Carola Doerr, Antoine Moreau, Jeremy Rapin, Fabien Teytaud,

and Olivier Teytaud. 2021. Nevergrad: black-box optimization platform. ACM

SIGEVOlution 14, 1 (2021), 8–15.

[9] Nathan Buskulic and Carola Doerr. 2021. Maximizing Drift Is Not Optimal for

Solving OneMax. Evol. Comput. 29, 4 (2021), 521–541.

[10] Maxim Buzdalov. 2022. The (1+(lambda,lambda)) Genetic Algorithm on the

Vertex Cover Problem: Crossover Helps Leaving Plateaus. In 2022 IEEE Congress

on Evolutionary Computation (CEC). IEEE, 1–10.

[11] Maxim Buzdalov and Carola Doerr. 2020. Optimal Mutation Rates for the (1+_)

EA on OneMax. In Proc. of Parallel Problem Solving from Nature (PPSN) (Lecture

Notes in Computer Science, Vol. 12270). Springer, 574–587.

[12] Maxim Buzdalov and Carola Doerr. 2021. Optimal static mutation strength

distributions for the (1+ _) evolutionary algorithm on OneMax. In Proceedings of

the Genetic and Evolutionary Computation Conference. 660–668.

[13] Dogan Corus, Pietro S Oliveto, and Donya Yazdani. 2021. Automatic adaptation

of hypermutation rates for multimodal optimisation. In Proceedings of the 16th

ACM/SIGEVO Conference on Foundations of Genetic Algorithms. 1–12.

[14] Dogan Corus, Pietro S Oliveto, and Donya Yazdani. 2021. Fast immune system-

inspired hypermutation operators for combinatorial optimization. IEEE Transac-

tions on Evolutionary Computation 25, 5 (2021), 956–970.

[15] Benjamin Doerr. 2019. Analyzing randomized search heuristics via stochastic

domination. Theoretical Computer Science 773 (2019), 115–137.

[16] Benjamin Doerr. 2021. The Runtime of the Compact Genetic Algorithm on Jump

Functions. Algorithmica 83 (10 2021), 1–49.

[17] Benjamin Doerr and Carola Doerr. 2014. Reducing the arity in unbiased black-box

complexity. Theoretical Computer Science 545 (2014), 108–121.

[18] Benjamin Doerr, Carola Doerr, and Franziska Ebel. 2015. From black-box com-

plexity to designing new genetic algorithms. Theoretical Computer Science 567

(2015), 87 – 104.

[19] Benjamin Doerr, Carola Doerr, and Timo Kötzing. 2015. Unbiased black-box

complexities of jump functions. Evolutionary Computation 23, 4 (2015), 641–670.

[20] Benjamin Doerr, Carola Doerr, and Jing Yang. 2020. Optimal parameter choices

via precise black-box analysis. Theoretical Computer Science 801 (2020), 1–34.

[21] Benjamin Doerr, Yassine Ghannane, and Marouane Ibn Brahim. 2022. Run-

time Analysis for Permutation-based Evolutionary Algorithms. arXiv preprint

arXiv:2207.04045 (2022).

[22] Benjamin Doerr, Omar El Hadri, and Adrien Pinard. 2022. The (1+(_, _)) global

SEMO algorithm. In Proceedings of the Genetic and Evolutionary Computation

Conference. 520–528.

[23] Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Per Kristian Lehre, Markus

Wagner, and Carola Winzen. 2011. Faster black-box algorithms through higher

arity operators. In Proceedings of the 11th workshop proceedings on Foundations

of genetic algorithms. 163–172.

[24] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. 2010. Drift analysis and

linear functions revisited. In IEEE Congress on Evolutionary Computation. 1–8.

[25] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. 2012. Multiplicative

Drift Analysis. Algorithmica 64 (2012), 673–697.

[26] Benjamin Doerr, Timo Kötzing, Johannes Lengler, and Carola Winzen. 2013.

Black-box complexities of combinatorial problems. Theoretical Computer Science

471 (2013), 84–106.

[27] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. 2017.

Fast genetic algorithms. In Genetic and Evolutionary Computation Conference

(GECCO).

[28] Benjamin Doerr and Frank Neumann. 2021. A Survey on Recent Progress in the

Theory of Evolutionary Algorithms for Discrete Optimization. ACM Trans. Evol.

Learn. Optim. 1, 4 (2021), 16:1–16:43.

[29] Benjamin Doerr and Zhongdi Qu. 2022. A first runtime analysis of the NSGA-II

on a multimodal problem. In Parallel Problem Solving from Nature–PPSN XVII:

17th International Conference, PPSN 2022, Dortmund, Germany, September 10–14,

2022, Proceedings, Part II. Springer, 399–412.

[30] Benjamin Doerr and Amirhossein Rajabi. 2022. Stagnation detection meets fast

mutation. Theoretical Computer Science (2022).

[31] Benjamin Doerr and Carola Winzen. 2012. Black-box complexity: Breaking the

O (n log n) barrier of LeadingOnes. In Artificial Evolution: 10th International

Conference, Evolution Artificielle, EA 2011, Angers, France, October 24-26, 2011,

Revised Selected Papers 10. Springer, 205–216.

[32] Benjamin Doerr andWeijie Zheng. 2021. Theoretical Analyses of Multi-Objective

Evolutionary Algorithms on Multi-Modal Objectives. In Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 35. 12293–12301.

[33] Carola Doerr. 2020. Complexity theory for discrete black-box optimization

heuristics. Theory of Evolutionary Computation: Recent Developments in Discrete

Optimization (2020), 133–212.

[34] Carola Doerr, Duri Andrea Janett, and Johannes Lengler. 2023. Tight Runtime

Bounds for Static Unary Unbiased Evolutionary Algorithms on Linear Func-

tions. CoRR abs/2302.12338 (2023). https://doi.org/10.48550/arXiv.2302.12338

arXiv:2302.12338

[35] Carola Doerr, Hao Wang, Furong Ye, Sander Van Rijn, and Thomas Bäck. 2018.

IOHprofiler: A benchmarking and profiling tool for iterative optimization heuris-

tics. arXiv preprint arXiv:1810.05281 (2018).

[36] Stefan Droste, Thomas Jansen, and Ingo Wegener. 2006. Upper and Lower

Bounds for Randomized Search Heuristics in Black-box Optimization. Theory of

Computing Systems 39 (2006), 525–544.

[37] Tobias Friedrich, Andreas Göbel, Francesco Quinzan, and Markus Wagner. 2018.

Heavy-tailed mutation operators in single-objective combinatorial optimization.

In Parallel Problem Solving from Nature–PPSN XV: 15th International Conference,

Coimbra, Portugal, September 8–12, 2018, Proceedings, Part I 15. Springer, 134–145.

[38] Tobias Friedrich, Francesco Quinzan, and Markus Wagner. 2018. Escaping large

deceptive basins of attraction with heavy-tailed mutation operators. In Proceed-

ings of the Genetic and Evolutionary Computation Conference. 293–300.

[39] Jens Jägersküpper. 2008. A blend of Markov-chain and drift analysis. In Parallel

Problem Solving from Nature–PPSN X: 10th International Conference, Dortmund,

Germany, September 13-17, 2008. Proceedings 10. Springer, 41–51.

[40] Jaroslav Klapálek, Antonín Novák, Michal Sojka, and Zdeněk Hanzálek. 2021.

Car Racing Line Optimization with Genetic Algorithm using Approximate Home-

omorphism. In 2021 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, 601–607.

[41] Per Kristian Lehre and Dirk Sudholt. 2019. Parallel black-box complexity with tail

bounds. IEEE Transactions on Evolutionary Computation 24, 6 (2019), 1010–1024.

[42] Per Kristian Lehre and Carsten Witt. 2012. Black-Box Search by Unbiased

Variation. Algorithmica 64 (2012), 623–642.

[43] Johannes Lengler. 2019. A general dichotomy of evolutionary algorithms on

monotone functions. IEEE Transactions on Evolutionary Computation 24, 6 (2019),

995–1009.

[44] Johannes Lengler and Nicholas Spooner. 2015. Fixed budget performance of

the (1+ 1) EA on linear functions. In Proceedings of the 2015 ACM Conference on

Foundations of Genetic Algorithms XIII. 52–61.

[45] Vladimir Mironovich and Maxim Buzdalov. 2017. Evaluation of heavy-tailed

mutation operator on maximum flow test generation problem. In Proceedings of

the Genetic and Evolutionary Computation Conference Companion. 1423–1426.

[46] Aneta Neumann, Denis Antipov, and Frank Neumann. 2022. Coevolutionary

Pareto diversity optimization. In Proceedings of the Genetic and Evolutionary

Computation Conference. 832–839.

[47] Aneta Neumann, Yue Xie, and Frank Neumann. 2022. Evolutionary algorithms

for limiting the effect of uncertainty for the knapsack problem with stochastic

profits. In Parallel Problem Solving from Nature–PPSN XVII: 17th International

Conference, PPSN 2022, Dortmund, Germany, September 10–14, 2022, Proceedings,

Part I. Springer, 294–307.

[48] Antonin Novak, Premysl Sucha, Matej Novotny, Richard Stec, and Zdenek Hanza-

lek. 2022. Scheduling jobs with normally distributed processing times on parallel

machines. European Journal of Operational Research 297, 2 (2022), 422–441.

[49] Artem Pavlenko, Daniil Chivilikhin, and Alexander Semenov. 2022. Asynchro-

nous Evolutionary Algorithm for Finding Backdoors in Boolean Satisfiability. In

2022 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1–8.

[50] Francesco Quinzan, Andreas Göbel, Markus Wagner, and Tobias Friedrich. 2021.

Evolutionary algorithms and submodular functions: benefits of heavy-tailed

mutations. Natural Computing (2021), 1–15.

[51] Alexander Semenov, Daniil Chivilikhin, Artem Pavlenko, Ilya Otpuschennikov,

Vladimir Ulyantsev, and Alexey Ignatiev. 2021. Evaluating the hardness of

SAT instances using evolutionary optimization algorithms. In 27th International

Conference on Principles and Practice of Constraint Programming (CP 2021). Schloss

Dagstuhl-Leibniz-Zentrum für Informatik.

[52] Dirk Sudholt. 2013. A New Method for Lower Bounds on the Running Time of

Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 17, 3

(2013), 418–435.

[53] Carsten Witt. 2013. Tight bounds on the optimization time of a randomized

search heuristic on linear functions. Combinatorics, Probability and Computing

22, 2 (2013), 294–318.

[54] Carsten Witt. 2014. Fitness levels with tail bounds for the analysis of randomized

search heuristics. Inform. Process. Lett. 114, 1-2 (2014), 38–41.

[55] Mengxi Wu, Chao Qian, and Ke Tang. 2018. Dynamic mutation based Pareto

optimization for subset selection. In Intelligent Computing Methodologies: 14th

International Conference, ICIC 2018,Wuhan, China, August 15-18, 2018, Proceedings,

Part III 14. Springer, 25–35.

[56] Furong Ye, Carola Doerr, and Thomas Bäck. 2019. Interpolating Local and Global

Search by Controlling the Variance of Standard Bit Mutation. In Proc. of IEEE

Congress on Evolutionary Computation (CEC). IEEE, 2292–2299.

[57] Furong Ye, Hao Wang, Carola Doerr, and Thomas Bäck. 2020. Benchmarking a

genetic algorithm with configurable crossover probability. In Parallel Problem

Solving from Nature–PPSN XVI: 16th International Conference, PPSN 2020, Leiden,

The Netherlands, September 5-9, 2020, Proceedings, Part II. Springer, 699–713.

https://doi.org/10.48550/arXiv.2302.12338
https://arxiv.org/abs/2302.12338

	Abstract
	1 Introduction
	2 Elitist (1+1) Unary Unbiased EAs
	3 Upper Bounds and Tightness Results
	3.1 Tightness

	4 Lower Bound
	4.1 On pn-1
	4.2 No Stochastic Domination

	5 Conclusions
	Acknowledgments
	References

