
HAL Id: hal-04180579
https://hal.sorbonne-universite.fr/hal-04180579

Submitted on 12 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Affine Combinations of BBOB Problems for
Performance Assessment

Diederick Vermetten, Furong Ye, Carola Doerr

To cite this version:
Diederick Vermetten, Furong Ye, Carola Doerr. Using Affine Combinations of BBOB Problems for
Performance Assessment. GECCO ’23: Genetic and Evolutionary Computation Conference, Jul 2023,
Lisbon, Portugal. pp.873-881, �10.1145/3583131.3590412�. �hal-04180579�

https://hal.sorbonne-universite.fr/hal-04180579
https://hal.archives-ouvertes.fr


Using Affine Combinations of BBOB Problems for Performance
Assessment

Diederick Vermetten
Leiden Institute for Advanced

Computer Science
Leiden, The Netherlands

Furong Ye
Leiden Institute for Advanced

Computer Science
Leiden, The Netherlands

Carola Doerr
Sorbonne Université, CNRS, LIP6

Paris, France

ABSTRACT
Benchmarking plays a major role in the development and analysis
of optimization algorithms. As such, the way in which the used
benchmark problems are defined significantly affects the insights
that can be gained from any given benchmark study. One way
to easily extend the range of available benchmark functions is
through affine combinations between pairs of functions. From the
perspective of landscape analysis, these function combinations
smoothly transition between the two base functions.

In this work, we show how these affine function combinations
can be used to analyze the behavior of optimization algorithms. In
particular, we highlight that by varying the weighting between the
combined problems, we can gain insights into the effects of added
global structure on the performance of optimization algorithms. By
analyzing performance trajectories on more function combinations,
we also show that aspects such as the scaling of objective functions
and placement of the optimum can greatly impact how these results
are interpreted.

CCS CONCEPTS
• Computing methodologies→ Randomized search.

KEYWORDS
Black-box Optimization, Benchmarking, Performance Analysis

1 INTRODUCTION
Benchmarking is a key aspect in the development of optimization
algorithms. Not only are benchmark problems used to compare the
effectiveness of different optimizers with regard to a standardized
set of problems, the analysis of algorithm behavior on these prob-
lems is often used to gain insight into the characteristics of the
algorithm. Because of this, the design of benchmark problems has
a major impact on the field of optimization as a whole [1].

One of the most common benchmark suites in single-objective,
continuous, noiseless optimization is fittingly called Black Box Op-
timization Benchmark (BBOB) [7]. This suite is part of the COCO
framework [6], which has seen significant adoption in the last
decade. This suite consists of 24 problems, each defined to repre-
sent a set of global landscape properties. For each of these problems,
many different instances can be created through a set of transfor-
mations, allowing researchers to test different invariances of their
algorithm. Because of its popularity, studies into the specifics of
the BBOB suite are numerous [13, 16, 17].

One particularly popular method to investigate continuous opti-
mization problems is Exploratory Landscape Analysis (ELA) [15].
This technique aims to characterize the low-level landscape proper-
ties through a large set of features. Applying this to the BBOB suite

shows that instances of the 24 functions generally group together,
with separation between functions being relatively robust [20].
This observation raised the question of how the spaces between
problems could be explored.

In a recent study, affine combinations between pairs of BBOB
problems were proposed and analyzed using ELA [4]. The resulting
analysis shows that varying the weight of these combinations has a
relatively smooth impact on the landscape features. As such, these
new functions could potentially be used to study the transition
between different landscapes, which opens up a more in-depth
analysis of the relation between landscapes and algorithm behavior.

To investigate to what extent the affine function combinations
can be used to study algorithmic behavior, we perform a bench-
marking study through which we investigate the effect of the affine
combinations on the performance of five numerical black-box opti-
mization algorithms. We make use of function combinations which
include a sphere model to show the impact of added global structure
on the relative ranking between algorithms. Additionally, we show
that by combining functions with different global properties we
don’t always obtain smooth transitions in performance. We pro-
vide examples where the combination of two functions can either
be significantly more challenging or slightly easier than the base
functions it consists of.

2 RELATEDWORK
2.1 BBOB Problem Suite
Within continuous optimization benchmarking, one of the most
popular suites of benchmarks is the BBOB family, which has been
designed as part of the COCO framework. The noiseless, single-
objective suite consists of 24 problems, each of which can be in-
stantiated with a set of different transformations. These function
instances aim to preserve the global function properties while vary-
ing factors such as the location of the global optimum, such that an
optimizer can not directly exploit these aspects. However, the exact
influence these transformations have on the low-level landscape
properties is not as straightforward, which can lead to noticeable
differences in algorithm behavior on different instances of the same
function [13].

2.2 Affine Function Combinations
While using function instances allows the BBOB suite to cover a
wider range of problem landscapes than the raw functions alone,
there are limits to the types of landscapes which can be created in
this way. Recently, it has been proposed to use affine combinations
between pairs of BBOB functions to generate new benchmark func-
tions [4]. These combinations have been shown to smoothly fill the
space of low-level landscape properties, as measured through a set

https://orcid.org/0000-0003-3040-7162
https://orcid.org/0000-0002-8707-4189
https://orcid.org/0000-0002-4981-3227


Diederick Vermetten, Furong Ye, and Carola Doerr

of ELA features. These results have shown that even a relatively
simple function creation procedure has the potential to give us new
insights into the way function landscapes work.

3 EXPERIMENTAL SETUP
In this work, we make use of a slightly modified version of the
affine function combinations from [4]. In particular, we define the
combination between two functions from the BBOB suite as follows:

𝐶 (𝐹1, 𝐼1, 𝐹2, 𝐼2, 𝛼) (𝑥) =

exp
(
𝛼 log

(
𝐹1,𝐼1 (𝑥) − 𝐹1,𝐼1 (𝑂1,𝐼1 )

)
+

(1 − 𝛼) log
(
𝐹2,𝐼2 (𝑥 −𝑂1,𝐼1 +𝑂2,𝐼2 ) − 𝐹2,𝐼2 (𝑂2,𝐼2 )

) )
Where 𝐹1, 𝐼1, 𝐹2, 𝐼2 are the two base functions and their instance
number, as defined in BBOB [7]. 𝑂1,𝐼1 and 𝑂2,𝐼2 represent the loca-
tion of the optimum of functions 𝐹1,𝐼1 and 𝐹2,𝐼2 respectively. The
transformation to 𝑥 when evaluating 𝐹2,𝐼2 is performed to make
sure the location of the optimum is at𝑂1,𝐼1 . As opposed to the orig-
inal definition, we subtract the optimal values before aggregating
and take a logarithmic mean between the problems. This way, we
can use consistent values for 𝛼 across problems, without having to
perform the entropy-based selection performed in [4]. It has the
additional benefit of ensuring the objective value of the optimal
solution is always 0, so the comparison of performance across in-
stances and across problems is simplified. In Figure 1, we illustrate
the change in the landscape for the combination of F21 and F1, for
different values of 𝛼 .

In order to implement these function combinations, we make
use of the IOHexperimenter [3] framework. We access the BBOB
problems, combine them together as described, and wrap them into
a new problem. This enables us to use any of the built-in logging
and tracking options of IOHexperimenter. In particular, it allows
us to store the performance data into a file format which can be
directly processed into IOHanalyzer [25] for post-processing.

For our algorithm portfolio, we make use of the Nevergrad tool-
box, which provides a common interface to a wide range of opti-
mization algorithms [19]. In this study, we benchmark the following
algorithms:

• Particle Swarm Optimization (PSO) [10]
• Constrained Optimization BY Linear Approximation

(Cobyla) [18]
• Differential Evolution (DE) [21]
• Estimation of Multivariate Normal Algorithm (EMNA) [12]
• Diagonal Covariance Matrix Adaptation Evolution Strategy

(dCMA-ES) [8]

For each of these algorithms, we make use of the default parameters
as chosen in Nevergrad. Each run of the algorithm has a budget
of 2 000𝐷 , where 𝐷 is the dimension of the problem. We perform
5 independent runs per instance. In the remainder of this paper,
we set 𝐼2 = 1. As such, when discussing the instance of an affine
function combination 𝐶 (𝐹1, 𝐼1, 𝐹2, 𝐼2, 𝛼), we are referring to 𝐼1.

Reproducibility. To ensure reproducibility, we make all code
used in the creation of this paper available in a Zenodo reposi-
tory [24]. This repository contains the data generation code, raw

data generated, and post-processing scripts used to create the re-
sults discussed in the following sections, following the recommen-
dations proposed in [14]. In addition to this, we also make available
a Figshare repository containing additional figures and animations
which could not be included in this paper [24].

4 PERFORMANCE COMPARISON FOR AFFINE
COMBINATIONS WITH SPHERE MODEL

For a first set of experiments, we make use of affine combinations
where we combine each function with F1: the sphere model (as the
𝐹2 function in the combination). As can be seen in Figure 1, adding a
sphere model to another function creates an additional global struc-
ture that can guide the optimization toward the global optimum.
As such, these kinds of combinations might allow us to investigate
the influence of an added global structure on the performance of
optimization algorithms. While to some extent this can already be
investigated by comparing results on the function groups of the
original BBOB with different levels of global structure, the affine
function combinations allow for a much more fine-grained investi-
gation. Since the landscape features of these combined functions
seem to shift smoothly when varying 𝛼 , we might assume similar
behavior on algorithmic performance.

In Figure 2, we show the performance of diagonal CMA-ES,
measured as the area under the Empirical Cumulative Distribution
Function (ECDF) [5], for varying function combinations and 𝛼

values. As is widely accepted for BBOB functions, we make use of 51
targets logarithmically spaced between 102 and 10−8 to compute the
ECDF. The resulting Area Under the Curve (AUC) is normalized, so
an algorithm which reaches all targets in the first evaluation would
have an AUC of 1. The top of this figure, with 𝛼 = 0, shows the
performance on the sphere function, on which CMA-ES performs
very well. There are however differences between the columns,
since the location of the affine function combination is set to the
optimum of the second function.

In Figure 2, we can see that the performance of CMA-ES does
indeed seem to move smoothly between the sphere and the function
with which it is combined. It is however interesting to note the
differences in speed at which this transition occurs. While the final
performance on e.g. functions 3 and 11 seems similar, the transition
speed differs significantly. This seems to indicate that for F11, the
addition of some global structure has a relatively weak influence on
the challenges of this landscape from the perspective of the CMA-ES,
while even small amounts of global structure significantly simplify
the landscape of F3.

We can perform a similar analysis on other optimization algo-
rithms. In Figure 3 and Figure 4, we show the same heatmap as
Figure 2, but for Differential Evolution and Cobyla respectively. It
is clear from these heatmaps that the performance of DE is more
variable than that of CMA-ES, while Cobyla’s performance drops
off much more quickly. The overall trendlines for DE do seem to be
somewhat similar to those seen for diagonal CMA-ES: the transition
points between high and low AUC in Figure 3 are comparable to
those seen in Figure 2. There are however still some differences in
behavior, especially relative to Cobyla. These differences then lead
to the question of whether there exist transition points in ranking
between algorithms as well. Specifically, if one algorithm performs



Using Affine Combinations of BBOB Problems for Performance Assessment

−4 −2 0 2 4
0

−4

−2

0

2

4

−4 −2 0 2 4
0.25

−4 −2 0 2 4
0.5

−4 −2 0 2 4
0.75

−4 −2 0 2 4
1

−9.6

−8.0

−6.4

−4.8

−3.2

−1.6

0.0

1.6

3.2

Figure 1: Evolution of the landscape (log-scaled function-values) of the affine combination between F21 (𝛼 = 1) and F1 (𝛼 = 0),
instance 1 for both functions, for varying 𝛼 . The red circle highlights the location of the global optimum.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Al
ph

a

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Normalized area under the ECDF curve of Diagonal
CMA-ES for each combination of the BBOB-function (x-axis)
with a sphere model, for given values of 𝛼 (y-axis). AUC is
calculated after 10 000 function evaluations, based on 50 runs
on 10 instances.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Al
ph

a

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Normalized area under the ECDF curve of Differen-
tial Evolution for each combination of the BBOB-function
(x-axis) with a sphere model, for given values of 𝛼 (y-axis).
AUC is calculated after 10 000 function evaluations, based on
50 runs on 10 instances.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Al
ph

a

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Normalized area under the ECDF curve of Cobyla
for each combination of the BBOB-function (x-axis) with a
spheremodel, for given values of 𝛼 (y-axis). AUC is calculated
after 10 000 function evaluations, based on 50 runs on 10
instances.

well for 𝛼 = 0 but gets overtaken as 𝛼 → 1, exploring this change
in ranking would give further insight into the relative strengths
and weaknesses of the considered algorithms.

In order to answer this question about the relative ranking of
algorithms, we make use of the portfolio of 5 algorithms and rank
them based on AUC on each affine function combination. We then
visualize the top ranking algorithm on each setting in Figure 5.
Important to note is that both PSO and EMNA never ranked first
for the selected budget, and are thus not visible on the figure.

From Figure 5, we can clearly see that Cobyla deals well with
the sphere model, managing to outperform the other algorithm
when the weighting of the sphere is relatively high. Then, after a
certain threshold, the CMA-ES consistently outperforms the rest
of the portfolio. However, as 𝛼 increases further, and the influence
of the sphere model diminishes, an interesting pattern seems to
occur. For several problems, there is a second transition point, to
either DE or Cobyla. For some functions, e.g. F3 and F4, one factor
which might explain this phenomenon is the strength of the local
optima increasing, making it harder for CMA-ES to explore the full



Diederick Vermetten, Furong Ye, and Carola Doerr

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Al
ph

a

Di
ag

on
al

CM
A

DE
RC

ob
yl

a

Figure 5: Algorithm with the highest area under the ECDF-
curve for each combination of the BBOB-function (x-axis)
with a sphere model, for given values of 𝛼 (y-axis). AUC is
calculated after 10 000 function evaluations, based on 50 runs
on 10 instances. PSO and EMNA are not shown since they
never ranked first.

landscape, while the uniform initialization of DE causes it to be
slightly less impacted.

In order to better understand what the transitions in algorithm
ranking look like, we can zoom in on one of the functions and
plot the expected running time (ERT) for several values of 𝛼 . This
is done in Figure 6, where we look at the combination between
F10 and the sphere model. we clearly see that Cobyla is very ef-
fective at optimizing the sphere model, solving it almost an order
of magnitude faster than the second-ranked algorithm, which is
DiagonalCMA. However, when 𝛼 increases, Cobyla quickly starts
to fail, while DiagonalCMA still manages to solve most instances
at 𝛼 = 0.25 within similar amounts of evaluations. However, it is
clear from the bifurcation in the plot that on some instances, the
DiagonalCMA is no longer able to find the optimum within the
allocated budget. When 𝛼 increases further, none of the instances
are able to be solved anymore by any of the three algorithms. When
𝛼 ≥ 0.75, we see that DE overtakes the other two, which explains
the better ranking seen in Figure 5.

5 COMBINATIONS BETWEEN DIFFERENT
FUNCTION GROUPS

While combining functions with a sphere model can be viewed
as adding global structure to a problem, combinations between
other functions can provide interesting insights into the transition
points between different types of problems. To illustrate the kinds
of insights that can be gained from these combinations, we select
a subset of 5 functions and collect performance data on each com-
bination with the same 21 𝛼 values (with both orderings of the
function). We show the performance in terms of normalized AUC
of diagonal CMA-ES on these function combinations in Figure 7.
Note that for 𝛼 = 1, we are using the function specified in the
column label, while for 𝛼 = 0 we have the function specified in the
row label, but with the optimum of the column function.

From Figure 7, we can see that the transition of performance
between the two extreme 𝛼 values is mostly smooth. While there

are some rather quick changes, e.g. for the transition between
F2 and F11, these seem to be the exception rather than the rule.
Particularly interesting are the settings where the performance of
affine combinations between two functions proves to bemuch easier
or harder than the functions which are being combined. This is the
case e.g. for the combinations of F21 and F9. Of note in this function
combination is the fact that its mirrored combination around the
diagonal does not display similar behavior. In fact, Figure 7 in
general is not fully symmetric around the diagonal.

We might expect (𝐹1, 𝐹2, 𝛼) to be similar to (𝐹2, 𝐹1, 1 − 𝛼). How-
ever, the combination between F9 and F21 shows that this is not al-
ways the case. Specifically, the AUC for the combination (𝐹21, 𝐹9, 1)
is significantly worse than that of (𝐹9, 𝐹21, 0), even though F21 does
not contribute directly to the function value of the affine combi-
nation. The only way in which these two problems differ is in the
location of the optima. For F21, the default location of the optimum
is hard-coded to be at distance 1 from the optimum [13], which
is not the case for F9. Since the CMA-ES initializes its center of
mass in the origin of the space and uses a default initial stepsize
of 0.3 [19], it is able to find the optimum in the default setting,
while the translated version of the function becomes much more
challenging. This highlights a potential issue with the traditional
analysis of performance on BBOB problems: if we don’t take into
account the built-in limitations on e.g. the location of the optimum
in our analysis, there is a risk of misinterpreting the results of a
structurally biased algorithm [23] and viewing it as optimal on this
type of multimodal problem, while it is unable to solve a translated
version of the same function.

To see how much this initialization really impacts the differences
in performance, we perform an additional experiment with a dif-
ferent version of CMA-ES. We opt to use the modular CMA-ES [2]
and set the initial stepsize to 0.2 times the range of the domain, so
2 in our case. The resulting performance is visualized in Figure 8.
In this figure, it is clear that the overall performance of this set-
ting of CMA-ES performs better overall, but of particular note is
that the asymmetries have been somewhat reduced, although not
disappeared entirely.

Additionally, Figure 8 shows several interesting trends in per-
formance which were not present for the Diagonal CMA-ES. For
example, the combinations between F2 and F9 show a large dip
in AUC near the center, even though both functions separately
seem relatively easy to solve for this version of CMA-ES. While the
differences between the two versions of CMA-ES are noticeable,
many of the trends, e.g. decreased performance for combinations
between F11 and F16, are present to some extent in Figure 7 as well.

As a final algorithm, we run DE on the same set of function
combinations. The results are visualized in Figure 9. In this figure,
we see that the overall performance of DE is indeed worse than
the two versions of CMA-ES. It is worth noting that the amount of
asymmetry along the diagonal is lower than for the diagonal CMA-
ES. This could be caused by the change in initialization (Gaussian
for CMA-ES, uniform for DE) reducing the initial bias to the cen-
ter of the space. Another factor to consider is the variance of the
performance. For CMA-ES, performance can vary significantly as
𝛼 changes, while the changes in AUC seem to be much smaller for
DE.



Using Affine Combinations of BBOB Problems for Performance Assessment

106 102 10−2 10−6
0

100

101

102

103

104

105

ER
T

Algorithm
dCMA
DE
Cobyla

106 102 10−2 10−6
0.25

Algorithm
dCMA
DE
Cobyla

106 102 10−2 10−6
0.5

Algorithm
dCMA
DE
Cobyla

106 102 10−2 10−6
0.75

Algorithm
dCMA
DE
Cobyla

106 102 10−2 10−6
1

Algorithm
dCMA
DE
Cobyla

Figure 6: ERT per instance for three algorithms on the affine combinations between F10 (𝛼 = 1) and F1 (𝛼 = 0), for selected
values of 𝛼 . Each dot corresponds to the ERT calculated based on 5 runs on 1 instance, for a total of 10 instances.

0.1

0.5

0.9

F2

0.1

0.5

0.9

F9

0.1

0.5

0.9

F1
1

0.1

0.5

0.9

F1
6

0 0.5 1
F2

0.1

0.5

0.9

F2
1

0 0.5 1
F9

0 0.5 1
F11

0 0.5 1
F16

0 0.5 1
F21

Figure 7: Area under the ECDF-curve for Diagonal CMA-
ES on each of the affine combinations between the selected
BBOB problems. Each facet corresponds to the combination
of the row and column function, with the x-axis indicating
the used 𝛼 . AUC values are calculated based on 50 runs on 5
instances, with a budget of 10 000 function evaluations.

6 ZOOMING INTO ONE FUNCTION
COMBINATION

To further analyze the impact of changing the weighting of the
function combinations, we can zoom in on one particular combi-
nation and study it in more detail. First, we gauge the impact of
using different instances to measure performance. This is done by
considering the distribution of AUC values for a specific function
combination, F2 to F16, in Figure 10, on a per-instance basis. From
this figure, we see that in general, the distribution of AUC values
is rather stable. However, at the transition point for the CMA-ES
variants, around 𝛼 ≈ 0.8, we see a clear increase in variance. To
check whether this behavior also occurs for other function com-
binations, we create the same visualization for the combination
of F21 and F9 in Figure 11. In this figure, we see a similar pattern

0.1

0.5

0.9

F2
0.1

0.5

0.9

F9

0.1

0.5

0.9

F1
1

0.1

0.5

0.9

F1
6

0 0.5 1
F2

0.1

0.5

0.9

F2
1

0 0.5 1
F9

0 0.5 1
F11

0 0.5 1
F16

0 0.5 1
F21

Figure 8: Area under the ECDF-curve formodular CMA-ES on
each of the affine combinations between the selected BBOB
problems. Each facet corresponds to the combination of the
row and column function, with the x-axis indicating the used
𝛼 . AUC values are calculated based on 50 runs on 5 instances,
with a budget of 10 000 function evaluations.

for the diagonal CMA-ES, where the distribution of AUC at high 𝛼

ranges from almost 0 to almost 1.
The variance observed in Figure 10 might indicate that, in order

to get a stable view of the exact behavior at this transition point,
a wider variety of instances should be used to get a more robust
performance estimate. However, when considering the extreme
differences in AUC observed in Figure 11, this variance invites
a more detailed study into the interaction between the instance
generation process (e.g., the placement of the optimal solution) and
the search behavior of the used algorithm.

Next to the instance generation process, another important fac-
tor to consider when analyzing the performance of optimization
algorithms on these affine function combinations is the scaling of
the objective values. While it is common practice to ignore the



Diederick Vermetten, Furong Ye, and Carola Doerr

0.1

0.5

0.9

F2

0.1

0.5

0.9

F9

0.1

0.5

0.9

F1
1

0.1

0.5

0.9

F1
6

0 0.5 1
F2

0.1

0.5

0.9

F2
1

0 0.5 1
F9

0 0.5 1
F11

0 0.5 1
F16

0 0.5 1
F21

Figure 9: Area under the ECDF-curve for Differential Evolu-
tion on each of the affine combinations between the selected
BBOB problems. Each facet corresponds to the combination
of the row and column function, with the x-axis indicating
the used 𝛼 . AUC values are calculated based on 50 runs on 5
instances, with a budget of 10 000 function evaluations.

0.0 0.2 0.4 0.6 0.8 1.0
alpha

0.0

0.2

0.4

0.6

0.8

au
c

Algorithm
dCMA
DE
modCMA

Figure 10: Distribution of per-instance normalized AUC val-
ues for the selected algorithm on the affine combination
between F2 and F16. AUC values are calculated based on 50
runs on 5 instances, with a budget of 10 000 function evalua-
tions.

scaling, so the same target values (precision to the optimum) can
be used, for example, to compute aggregated ECDF curves, the
ways in which different problems scale their objective values does
influence how we should interpret their results. This becomes in-
creasingly obvious when considering the affine combinations of
these problems. In Figure 12, we show the convergence plot of
diagonal CMA-ES on the combination of F16 and F11. We clearly
see from the left part of this curve that the initial values found vary
widely for different combinations, ranging from 107 when 𝛼 = 0
to 102 when 𝛼 = 1. However, the change in scale is not the only

0.0 0.2 0.4 0.6 0.8 1.0
alpha

0.0

0.2

0.4

0.6

0.8

1.0

au
c

Algorithm
dCMA
DE
modCMA

Figure 11: Distribution of per-instance normalized AUC val-
ues for the selected algorithm on the affine combination
between F21 and F9. AUC values are calculated based on 50
runs on 5 instances, with a budget of 10 000 function evalua-
tions.

1 2 5 10 2 5 100 2 5 1e+3 2 5 1e+4

1e−4

0.01

1

100

1e+4

1e+6

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Function Evaluations

B
es

t-s
o-

fa
r f

(x
)

Figure 12: Evolution of geometric mean function value found
by modular CMA-ES for the affine combination of F16 and
F11, instance 1 for both functions. Each line corresponds to
50 runs with the specified 𝛼 .

factor impacting the performance. The shape of the curve changes
noticeably after the initialization, which matches the change in
AUC observed in Figure 7.

To investigate the reason for this change in behavior, we can
study the optimization trajectory of diagonal CMA-ES on these
functions. Since this is not feasible to visualize in the original 5-
dimensional space, we repeat the data collection on the 2-dimensional
version of these functions. In Figure 13, we show the landscapes
of the affine combinations between F11 and F16 for several values
of 𝛼 . We highlight the best point found by the diagonal CMA-ES
in each of its 50 runs on this instance. This plot clearly shows the
differences in scale between the original problems. In addition, we
see that as 𝛼 gets closer to 1, the algorithm gets stuck in the lo-
cal optima less often. The global structure added by F11 is strong
enough to guide the CMA-ES to the area containing the global
optimum. However, when the influence of F11 becomes too large,
the difficulties of finding the correct search direction have a strong
impact on the convergence behavior. As such, values of 𝛼 closer



Using Affine Combinations of BBOB Problems for Performance Assessment

−4 −2 0 2 4
0

−4

−2

0

2

4

−4 −2 0 2 4
0.25

−4 −2 0 2 4
0.5

−4 −2 0 2 4
0.75

−4 −2 0 2 4
1

0

2

4

6

8

10

12

14

16

18

Figure 13: Evolution of the landscape (log-scaled function-values) of the affine combination between F11 (𝛼 = 1) and F16
(𝛼 = 0), instance 1 for both functions, for varying 𝛼 . The red circle highlights the location of the global optimum. The crosses
correspond to the best point found in each of 50 runs of the modular CMA-ES.

−4 −2 0 2 4
0

−4

−2

0

2

4

−4 −2 0 2 4
0.25

−4 −2 0 2 4
0.5

−4 −2 0 2 4
0.75

−4 −2 0 2 4
1

−9.6

−8.0

−6.4

−4.8

−3.2

−1.6

0.0

1.6

3.2

Figure 14: Evolution of the landscape (log-scaled function-values) of the affine combination between F21 (𝛼 = 1) and F9 (𝛼 = 0),
instance 1 for both functions, for varying 𝛼 . The red circle highlights the location of the global optimum. The crosses correspond
to the best point found in each of 50 runs of Diagonal CMA-ES.

to 0.5 seem to provide a mix of the multimodality of F16 and the
challenges of F11, which makes it a challenging problem to solve
for the CMA-ES.

While the combination between F11 and F16 seems to create
functions that are more challenging, Figure 7 shows that there are
function combinations where the opposite is true. The combination
between F9 and F21 displays interesting behavior. While the way
of performing initialization might explain the asymmetry between
(𝐹9, 𝐹21, 0) and (𝐹21, 𝐹9, 1), it does not explain the increase in AUC
for 𝛼 close to 0.5. We visualize the change in landscape, and cor-
responding solutions found by the diagonal CMA-ES, in Figure 14.
In this figure, we see that when 𝛼 = 0, the CMA-ES finds solutions
on the ridge of the function, but most of the runs don’t reach the
optimum within the given budget. This indicates that the character-
istic difficulty of F9, the algorithm having to consistently adapt its
search direction [7], hinders the convergence of the used diagonal
CMA-ES.However, as 𝛼 increases, the structure of F21 gets added,
which increases the ways in which the algorithm can approach the
optimum value. For 𝛼 = 1, the multimodality from F21 completely
takes over, trapping some runs in local optima, thus decreasing the
performance of the algorithm. This showcases that combining these

two functions in this way creates a function where the original
difficulties of both are combined in a way that negates both of them,
which is then exploited by the CMA-ES.

7 CONCLUSIONS AND FUTUREWORK
Affine combinations of BBOB problems offer a new way to inves-
tigate the behavior of optimization algorithms. We have shown
how combinations of arbitrary functions with a sphere model can
be used to identify the impact of added global structure on the
performance of a set of algorithms. In addition, combinations be-
tween functions with different high-level characteristics allowed
us to observe transitions between different optimization challenges.
While this investigation is not exhaustive, it highlights the potential
benefit of utilizing these new function combinations for gaining an
understanding of the behavior of optimization algorithms.

However, these benefits in terms of analysis options also come
with several challenges which have to be considered. We identified
the following aspects:

Scaling. As identified when these combinations were originally
proposed [4], the differences in scale between two problems can be
significant. While we aimed to reduce this impact by considering a



Diederick Vermetten, Furong Ye, and Carola Doerr

logarithmically scaled weighting, it is clear from our experiments
that the scale still plays a large role in the way we interpret the
performance. Finding ways to combine the landscapes of two func-
tions while maintaining a consistent range of function values is
still an open question.

Instances. The BBOB suite is built on the idea that each func-
tion can be instantiated in many ways. This is achieved through
several transformations, the most common of which is moving
the optimum to a different location in the domain. The results we
present show that the way in which these optimal locations are
chosen can have a large impact on the performance of optimization
algorithms. Since the optima are not distributed uniformly in the
domain, some functions have different kinds of bias, which can
be exploited by an algorithm. The question on how to fairly con-
sider different instance generation mechanisms when making use
of function combination is thus highly interlinked with questions
about how well performance observed on a set of BBOB instances
generalizes.

Even with these challenges in mind, there are many potential
use cases for these affine function combinations. One aspect in
which they can prove useful is in the training of algorithm selection
models [11], as they can significantly increase the size and variety of
training data, which is an important consideration towards testing
generalizability.

One final aspect in which the benchmark data on these function
combinations can be further utilized is by linking it back to the
exploratory landscape analysis which inspired their creation. Since
the combinations can smoothly fill the landscape feature space,
this can be combined with algorithm performance to get a more
fine-grained view of the way in which the landscape interacts with
different algorithms [9, 22].

ACKNOWLEDGMENTS
Our work is financially supported by ANR-22-ERCS-0003-01 project
VARIATION and by the CNRS INS2I project IOHprofiler. This work
was performed using the ALICE compute resources provided by
Leiden University.

REFERENCES
[1] Thomas Bartz-Beielstein, Carola Doerr, Jakob Bossek, Sowmya Chandrasekaran,

Tome Eftimov, Andreas Fischbach, Pascal Kerschke, Manuel López-Ibáñez,
Katherine M. Malan, Jason H. Moore, Boris Naujoks, Patryk Orzechowski,
Vanessa Volz, Markus Wagner, and Thomas Weise. 2020. Benchmarking in
Optimization: Best Practice and Open Issues. CoRR abs/2007.03488 (2020).
arXiv:2007.03488 https://arxiv.org/abs/2007.03488

[2] Jacob de Nobel, Diederick Vermetten, HaoWang, Carola Doerr, and Thomas Bäck.
2021. Tuning as a means of assessing the benefits of new ideas in interplay with
existing algorithmic modules. In Proc. of Genetic and Evolutionary Computation
Conference (GECCO’21, Companion material), Krzysztof Krawiec (Ed.). ACM,
1375–1384. https://doi.org/10.1145/3449726.3463167

[3] Jacob de Nobel, Furong Ye, Diederick Vermetten, Hao Wang, Carola Doerr, and
Thomas Bäck. 2021. IOHexperimenter: Benchmarking Platform for Iterative
Optimization Heuristics. CoRR abs/2111.04077 (2021). arXiv:2111.04077 https:
//arxiv.org/abs/2111.04077

[4] Konstantin Dietrich and Olaf Mersmann. 2022. Increasing the Diversity of
Benchmark Function Sets Through Affine Recombination. In Parallel Problem
Solving from Nature - PPSN XVII - 17th International Conference, PPSN 2022,
Dortmund, Germany, September 10-14, 2022, Proceedings, Part I (Lecture Notes in
Computer Science, Vol. 13398), Günter Rudolph, Anna V. Kononova, Hernán E.
Aguirre, Pascal Kerschke, Gabriela Ochoa, and Tea Tusar (Eds.). Springer, 590–602.
https://doi.org/10.1007/978-3-031-14714-2_41

[5] Nikolaus Hansen, Anne Auger, Dimo Brockhoff, and Tea Tušar. 2022. Any-
time Performance Assessment in Blackbox Optimization Benchmarking. IEEE

Transactions on Evolutionary Computation 26, 6 (2022), 1293–1305.
[6] Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and

Dimo Brockhoff. 2021. COCO: A platform for comparing continuous optimizers
in a black-box setting. Optimization Methods and Software 36, 1 (2021), 114–144.

[7] Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. 2009. Real-
Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Defi-
nitions. Technical Report RR-6829. INRIA. https://hal.inria.fr/inria-00362633/
document

[8] Nikolaus Hansen and Andreas Ostermeier. 2001. Completely Derandomized
Self-Adaptation in Evolution Strategies. Evolutionary Computation 9, 2 (2001),
159–195. https://doi.org/10.1162/106365601750190398

[9] Anja Jankovic and Carola Doerr. 2020. Landscape-aware fixed-budget perfor-
mance regression and algorithm selection for modular CMA-ES variants. In
Proceedings of the 2020 Genetic and Evolutionary Computation Conference. ACM,
841–849.

[10] James Kennedy and Russell Eberhart. 1995. Particle swarm optimization. In
Proceedings of International Conference on Neural Networks (ICNN’95), Perth, WA,
Australia, November 27 - December 1, 1995. IEEE, 1942–1948. https://doi.org/10.
1109/ICNN.1995.488968

[11] Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. 2019.
Automated Algorithm Selection: Survey and Perspectives. Evolutionary Compu-
tation 27, 1 (2019), 3–45. https://doi.org/10.1162/evco_a_00242

[12] Pedro Larrañaga and Jose A Lozano. 2001. Estimation of distribution algorithms:
A new tool for evolutionary computation. Vol. 2. Springer Science & Business
Media.

[13] Fu Xing Long, Diederick Vermetten, Bas van Stein, and Anna V. Kononova. 2022.
BBOB Instance Analysis: Landscape Properties and Algorithm Performance
across Problem Instances. CoRR abs/2211.16318 (2022). https://doi.org/10.48550/
arXiv.2211.16318 arXiv:2211.16318

[14] Manuel López-Ibáñez, Juergen Branke, and Luís Paquete. 2021. Reproducibility
in evolutionary computation. ACM Transactions on Evolutionary Learning and
Optimization 1, 4 (2021), 1–21.

[15] Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs, and
Günter Rudolph. 2011. Exploratory landscape analysis. In Proc. of Genetic and
Evolutionary Computation (GECCO’11). ACM, 829–836.

[16] Mario Andrés Muñoz, Michael Kirley, and Kate Smith-Miles. 2022. Analyzing
randomness effects on the reliability of exploratory landscape analysis. Natural
Computing 21, 2 (2022), 131–154.

[17] Mario A Muñoz, Yuan Sun, Michael Kirley, and Saman K Halgamuge. 2015.
Algorithm selection for black-box continuous optimization problems: A survey
on methods and challenges. Information Sciences 317 (2015), 224–245.

[18] Michael JD Powell. 1994. A direct search optimization method that models the
objective and constraint functions by linear interpolation. Springer.

[19] Jérémy Rapin and Olivier Teytaud. 2018. Nevergrad: A gradient-free optimization
platform. https://GitHub.com/FacebookResearch/Nevergrad.

[20] Quentin Renau, Johann Dréo, Carola Doerr, and Benjamin Doerr. 2021. To-
wards explainable exploratory landscape analysis: extreme feature selection
for classifying BBOB functions. In Applications of Evolutionary Computation:
24th International Conference, EvoApplications 2021, Held as Part of EvoStar 2021,
Virtual Event, April 7–9, 2021, Proceedings 24. Springer, 17–33.

[21] Rainer Storn and Kenneth Price. 1997. Differential evolution-a simple and efficient
heuristic for global optimization over continuous spaces. Journal of global
optimization 11, 4 (1997), 341.

[22] Risto Trajanov, Stefan Dimeski, Martin Popovski, Peter Korošec, and Tome
Eftimov. 2021. Explainable landscape-aware optimization performance prediction.
In 2021 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 01–08.

[23] Diederick Vermetten, Bas van Stein, Fabio Caraffini, Leandro L. Minku, and
Anna V. Kononova. 2022. BIAS: A Toolbox for Benchmarking Structural Bias
in the Continuous Domain. IEEE Trans. Evol. Comput. 26, 6 (2022), 1380–1393.
https://doi.org/10.1109/TEVC.2022.3189848

[24] Diederick Vermetten, Furong Ye, and Carola Doerr. 2023. Reproducibility files
and additional figures. Code and data repository: https://doi.org/10.5281/zenodo.
7629706 Figure repository: https://doi.org/10.6084/m9.figshare.22070051.

[25] Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, and Thomas Bäck.
2022. IOHanalyzer: Detailed Performance Analysis for Iterative Optimization
Heuristic. ACM Trans. Evol. Learn. Optim. 2, 1 (2022), 3:1–3:29. https://doi.org/
10.1145/3510426 IOHanalyzer is available at CRAN, on GitHub, and as web-based
GUI, see https://iohprofiler.github.io/IOHanalyzer/ for links.

https://arxiv.org/abs/2007.03488
https://arxiv.org/abs/2007.03488
https://doi.org/10.1145/3449726.3463167
https://arxiv.org/abs/2111.04077
https://arxiv.org/abs/2111.04077
https://arxiv.org/abs/2111.04077
https://doi.org/10.1007/978-3-031-14714-2_41
https://hal.inria.fr/inria-00362633/document
https://hal.inria.fr/inria-00362633/document
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.48550/arXiv.2211.16318
https://doi.org/10.48550/arXiv.2211.16318
https://arxiv.org/abs/2211.16318
https://GitHub.com/FacebookResearch/Nevergrad
https://doi.org/10.1109/TEVC.2022.3189848
https://doi.org/10.5281/zenodo.7629706
https://doi.org/10.5281/zenodo.7629706
https://doi.org/10.6084/m9.figshare.22070051
https://doi.org/10.1145/3510426
https://doi.org/10.1145/3510426
https://iohprofiler.github.io/IOHanalyzer/

	Abstract
	1 Introduction
	2 Related Work
	2.1 BBOB Problem Suite
	2.2 Affine Function Combinations

	3 Experimental Setup
	4 Performance Comparison for Affine Combinations With Sphere Model
	5 Combinations between Different Function Groups
	6 Zooming Into One Function Combination
	7 Conclusions and Future Work
	Acknowledgments
	References

