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ABSTRACT
In black-box optimization, it is essential to understand why an al-
gorithm instance works on a set of problem instances while failing
on others and provide explanations of its behavior. We propose a
methodology for formulating an algorithm instance footprint that
consists of a set of problem instances that are easy to be solved
and a set of problem instances that are difficult to be solved, for
an algorithm instance. This behavior of the algorithm instance is
further linked to the landscape properties of the problem instances
to provide explanations of which properties make some problem
instances easy or challenging. The proposed methodology uses
meta-representations that embed the landscape properties of the
problem instances and the performance of the algorithm into the
same vector space. These meta-representations are obtained by
training a supervised machine learning regression model for algo-
rithm performance prediction and applying model explainability
techniques to assess the importance of the landscape features to
the performance predictions. Next, deterministic clustering of the
meta-representations demonstrates that using them captures algo-
rithm performance across the space and detects regions of poor
and good algorithm performance, together with an explanation of
which landscape properties are leading to it.

CCS CONCEPTS
• Computing methodologies→Machine learning; Learning
latent representations; Supervised learning; • Theory of com-
putation → Design and analysis of algorithms.

KEYWORDS
algorithm behavior, single-objective optimization, latent represen-
tations, supervised machine learning, explainability

1 INTRODUCTION
Many algorithms for solving continuous single-objective optimiza-
tion (SOO) problems have been created and their effectiveness has
mostly been evaluated through statistical analysis [28]. The com-
monly used approaches of computing average performance across a
set of benchmark problem instances [4] or comparing distributions
for a chosen performance metric [5] have been criticized for a long
time [8]. However, there is still a lack of available methodologies
and tools to address this issue which means that these practices

continue to be used. As a result, the scientific results from such
comparisons often do not generalize to new problem instances hin-
dering the progress toward trustworthy optimization and making
it difficult to understand the behavior of algorithms. This practice
decreases confidence in the use of the algorithms for solving new
optimization problem instances.

The primary issue in the direction of understanding algorithm
behavior is that we have a limited understanding of the behavior
of these algorithms and thus they are treated as black-box systems.
The performance of an algorithm instance can vary significantly
based on the optimization problem instances it is trying to solve. A
deeper understanding of the interaction between the algorithm, the
optimization problem, and the performance would allow us to iden-
tify properties that make a problem instance easy or challenging
for a specific algorithm instance.

Our contribution:We propose a methodology to understand
how problem properties and algorithm performance interact. We
use meta-representations, which integrate problem properties and
algorithm performance into a single vector space, created by train-
ing a machine learning regression model and analyzing feature
importance. Clustering the meta-representations using a determin-
istic approach reveals regions of good and poor algorithm per-
formance that define the algorithm instance footprint. Post-hoc
analysis of the regions identifies the problem properties causing it.
This sheds light on the algorithm’s behavior and provides insights
into its strengths and weaknesses. Note that this methodology is
not for comparing different algorithms but for understanding each
algorithm’s behavior.

Related Work. The most commonly-used practice in analyz-
ing algorithm behavior is performing a performance assessment
which relies on statistical analysis, to compare performance data
of different algorithm instances across a selected set of benchmark
problem instances [4, 5]. The main drawback in such comparisons
is that sometimes algorithm instances can be the best for some
problem instances but worse for another set of problem instances,
which actually affects the final statistical results. Such comparison
results do not provide explanations for which algorithm instance is
suitable for which problem instance and why.

Instance Space Analysis (ISA) [21, 27] has been introduced to un-
derstand the intricate relationships between the algorithm instance
behavior and the problem instance properties. It identifies regions
in the problem space where a specific algorithm performs well and
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solves problems easily, by linking problem landscape features with
a single performance metric. For this purpose, ISA uses a dimension
reduction technique that encourages linear trends to appear both
in the features and algorithm performance distributions to support
visualizations. Then, it uses a supervised classifier to identify the
areas in which the evidence of good performance is the strongest,
defined as whether the instances are solvable or not within some
precision of the global optima. The areas are characterized by their
size, density, and purity, giving metrics of the algorithm’s strength
relative to the diversity of the benchmarks. Therefore, ISA rep-
resents an improvement in comprehending algorithm behavior,
describing complex interactions in a linear manner.

Another way to understand the interactions between algorithm
instances and problem instances is through the application of su-
pervised regression models for algorithm configuration (finding
the best hyper-parameters of an algorithm instance) [1, 3] and al-
gorithm selection (selecting the best algorithm for a given problem
instance) [11, 13, 15]. In this approach, algorithm performance is
predicted based on the features extracted from the problem instance
landscape, which serve as problem-instance meta-representations.
Most studies in this field use meta-learning [31] to train a single re-
gression model to predict the performance of an algorithm instance
on all problem instances. Recent studies [29, 30] have explored
an explainable workflow for automated algorithm performance
prediction. They utilized feature importance analysis to identify
the crucial landscape features that predict an algorithm’s instance
performance on a global scale (i.e., a set of benchmark problem
instances) and a local scale (i.e., a specific problem instance).

2 ALGORITHM INSTANCE FOOTPRINT
Let us assume that we have a set of benchmark problem instances
represented by their landscape features and linked to the perfor-
mance of an algorithm instance achieved on them. The set is further
split into train and test data sets. The term "algorithm instance foot-
print" refers to the regions (i.e., sets of problem instances) where
an algorithm instance performs well or poorly, with accompanying
identification of the problem landscape properties that contribute
to this performance variation. The methodology for generating it
consists of four steps (see Figure 1):
1) Learning a supervised ML model – Train a supervised ML
regression model with the train data, which will predict the perfor-
mance of the algorithm instance for each problem instance based
on its landscape feature representation. Use this model to predict
the algorithm instance’s performance on the test data set.
2) Calculating algorithm behavior meta-representations –
Once the predictions have been made on the test data set, we apply
explainable techniques to assess the importance of the landscape
features that impact the algorithm’s performance prediction for
each problem instance independently. These contributions can be
used as a meta-representation of the algorithm’s behavior on a spe-
cific problem instance. We have opted for the SHAP method [26]
since it offers localized explanations that incorporate both the prob-
lem instance’s landscape features and the algorithm instance’s per-
formance.
3) Clustering the meta-representations – By computing meta-
representations that depict the algorithm instance’s behavior on
each problem instance, we can categorize the problem instances

into two sets: those that are easy for the algorithm instance to solve,
and those that are challenging. We have established a deterministic
approach to accomplish this, resulting in more straightforward find-
ings. The meta-representations are clustered into four groups using
deterministic clustering, based on two factors: i) poor or excellent
optimization algorithm instance performance and ii) poor or ex-
cellent ML prediction. In both situations, apriori set thresholds are
employed to differentiate between poor and excellent performance.
For ground truth performance, this implies that an error of no more
than a predetermined target 𝑡 is required for excellent algorithm
performance. For the ML model, it is determined that excellent
predictive performance is achieved when the error is within 𝑝% of
the predicted true precision. Below are explanations of the clusters.

(Good, Good): This pertains to the depiction of algorithmic be-
havior, which identifies the problem instances where the algorithm
instance’s discovered solution quality is high, and the ML model
accurately predicts the performance with a negligible error. This
situation arises when the optimization algorithm easily solves a
problem instance, and the ML algorithm recognizes this behavior.

(Poor, Good): This involves behavior observed on problem in-
stances where the algorithm instance’s solution quality is low, yet
the ML algorithm correctly predicts it with minimal error. This sce-
nario arises when a problem instance proves to be challenging for
the optimization algorithm instance to solve, and the ML algorithm
identifies this behavior.

(Good, Poor): This identifies the problem instances where the
algorithm instance’s discovered solution quality is high, but the ML
algorithm failed to predict it.

(Poor, Poor): This encompasses problem instances where the
algorithm instance’s solution quality is low and the ML algorithm
failed to predict this behavior.
4) Post-hoc explainable analysis – Once the clusters have been
identified, a post hoc explainable analysis is performed. This analy-
sis clarifies which landscape features make the problem instances
easily solved or challenging to solve for the algorithm instance.
It is delivered by identifying the most important features of each
of the clusters from the previous step, and also by providing 2D
visualization of the meta-representations in which the algorithm
performance and the most important feature values are visualized
across the space.

3 EXPERIMENTAL DESIGN
Problem portfolio. The study uses the BBOB (i.e., COCO) bench-
mark suite [9, 10]. It features 24 noise-free, single-objective opti-
mization problems, which can be altered by scaling and translating
in the objective space to create different instances. This work uses
the first five instances of each problem, totaling 120 benchmark
instances. The problem dimension is set to 10, 𝐷 = 10.
Landscape features.We select the most commonly used landscape
features that are used to describe the properties of single-objective
optimization problems, known as ELA features [19]. Their calcula-
tion has been taken from a previous study [16]. A total of 64 features
were selected, including classical ELA features [19], Dispersion [17],
Information Content [20], Nearest Better Clustering [12], and Prin-
cipal Component Analysis [14].
Algorithm portfolio. Three randomly selected Differential Evo-
lution (DE) configurations have been selected as the algorithm

2



Algorithm Instance Footprint: Separating Easily Solvable and Challenging Problem Instances

Figure 1: Flowchart of the methodology for calculating and analyzing algorithm instance footprint.

portfolio just to present how the proposed methodology works.
The configurations (DE1, DE2, and DE3) are taken from a previous
study [23], where each configuration is presented in more detail
including its strategy, 𝐹 , and 𝐶𝑟 values.
Performance data. The study focuses on the fixed-budget perfor-
mance scenario, where the target precision of the algorithm (i.e.,
the distance between the best solution and the estimated optimal
solution) is used as a performance metric. The logarithm of the
precision is calculated to capture the distance level to the opti-
mum [11]. The budget has been set on 500𝐷 function evaluations.
Each configuration has been run 30 times and the median reached
precision is used as an approximation of its performance.
Predictive models. To find a good-performing supervised regres-
sion model, we evaluate three different regression families: Random
Forest [2], Support Vector Machines (SVM) [24], and K-Nearest
Neighbours (KNN) [25]. Each one has been tested with different
feature portfolios selected by the SHAP method [26]. To select the
feature portfolio, first, a model is trained with all features, then
the SHAP feature importance is calculated, and finally the top
most important features are selected as indicated by the Shapely
scores. The models have been evaluated in stratified five-fold cross-
validation, where one instance from each problem has been left
for testing and the others four remain in the training data. Box
plots depicting model performance on the test data (as measured by
MAE and R2 score) for all regression models and different feature
portfolios across the five folds are shown in Figure 2. The box plots
demonstrate that the RF is robust to the different folds, while the
performance of KNN and SVM appears more variable. The result
is consistent across all feature portfolios. Using the results, we de-
cide to use the RF model with 30 ELA features to show how the
methodology for generating the algorithm footprint works. We
need to highlight here that the footprint is calculated five times, for
each fold separately. This allows us to investigate the robustness of
the algorithm instance performance on the transformations (e.g.,
shifting or scaling) applied to generate different problem instances.
4 RESULTS AND DISCUSSION
To present how the proposed methodology can be used for under-
standing algorithm instance behavior, we select one DE configura-
tion (DE1) for which we show the results and their interpretation

(a) MAE

(b) R2score

Figure 2: Box-plot showing the distribution of model per-
formance over the test portion of the five folds: (a) MAE, (b)
R2 score, for different feature portfolios of most important
features as identified by the SHAP method, when predicting
the performance of DE1.

in detail, while the results for the other two configurations (DE2
and DE3) are available at our GitHub repository [22], due to the
page limits. We fix a target precision, 𝑡 , to the median precision
calculated over the training problem instances, to define if the al-
gorithm instance can solve or not the problem instance within
it, and a percentage of 𝑝 = 15% that defines if an ML predictive
model provides a good prediction within 15% error. We need to
point out here that these values (𝑡 and 𝑝) are chosen as such only
for illustration purposes and should be appropriately set according
to the scenario in which the proposed methodology will be used.
For example, the 𝑡 value should be set according to the acceptable
optimization accuracy for the specific problem instance and the 𝑝
value should be set according to the acceptable model prediction
accuracy. The acceptable model prediction accuracy depends on
the application being solved, which are the tolerance levels for
which a good prediction is acceptable. In this way, the methodology
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Table 1: Distribution of the BBOB problem instances across the deterministic clusters for each fold.

model fold number (good, good) (good, poor) (poor, good) (poor, poor)
RF 1 16, 19, 20, 21, 22 1, 2, 5, 14, 17, 18, 23 3, 4, 6, 7, 8, 9, 10, 11, 12, 15, 24 13
RF 2 19, 20, 21 1, 2, 5, 14, 17, 22, 23 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 24 18
RF 3 19, 20, 21, 22 1, 2, 5, 14, 16, 17, 18, 23 3, 4, 6, 8, 9, 12, 13, 15, 24 7, 10, 11
RF 4 5, 16, 18, 19, 20, 21, 22 1, 2, 7, 14, 17, 23 3, 4, 6, 8, 9, 10, 12, 13, 15, 24 11
RF 5 19, 20, 21 1, 2, 5, 7, 14, 16, 17, 22, 23 6, 8, 9, 11, 12, 13, 15, 24 3, 4, 10, 18

can be used to investigate the algorithm instance’s strengths and
weaknesses as required by the user.
DE1 footprint. Figure 3 presents the 2D visualization of the DE1
footprint, for each fold separately. The footprints consist of four
deterministic clusters that are obtained by pairing the ground truth
algorithm instance performance and the ML performance. The most
interesting are the following two combinations (𝑔𝑜𝑜𝑑, 𝑔𝑜𝑜𝑑) and
(𝑝𝑜𝑜𝑟, 𝑔𝑜𝑜𝑑). For the problem instances that belong to (𝑔𝑜𝑜𝑑,𝑔𝑜𝑜𝑑)
the algorithm instance solves them within the specified target 𝑡 ,
and the ML predicts this behavior with an error of 𝑝 = 15%. In the
case of (𝑝𝑜𝑜𝑟, 𝑔𝑜𝑜𝑑) the algorithm instance cannot solve the prob-
lem instances within the specified target, however, the ML model
predicts its behavior within an error of 15%. For these two combi-
nations, we can provide additional explanations for the algorithm
behavior. For the (𝑔𝑜𝑜𝑑, 𝑔𝑜𝑜𝑑), we can see which landscape features
make those problem instances easily to be solved, while in the case
of (𝑝𝑜𝑜𝑟, 𝑔𝑜𝑜𝑑) which landscape features make those problem in-
stances challenging to be solved. In the case of (𝑔𝑜𝑜𝑑, 𝑝𝑜𝑜𝑟 ) and
(𝑝𝑜𝑜𝑟, 𝑝𝑜𝑜𝑟 ), the ML model cannot predict if the algorithm is able
to solve the problem instances within the specified target (𝑔𝑜𝑜𝑑)
or not (𝑝𝑜𝑜𝑟 ) within an error of 15%. Because of this, for these two
combinations, we are not able to find which landscape features are
relevant to the algorithm behavior.

Table 1 presents the distribution of the BBOB problem instances
across the four clusters for each fold separately. From the results,
we can conclude that DE1 has stable performance on the 19th (i.e.,
Composite Griewank-Rosenbrock Function), 20th (i.e., Schwefel
Function), and 21st (i.e., Gallagher’s Gaussian 101-me Peaks Func-
tion) BBOB problem classes. This comes from the fact that nomatter
the different transformations (e.g., shifting, scaling) that are applied
to generate a problem instance of those problems that are parts of
different folds, the algorithm instance is able the find a solution with
the specified target and the RF model can predict it within an error
of 15%. For the 6th, 8th, 9th, 12th, 15th, and 24th BBOB problem
classes (please find their names in [7]), the algorithm instance is
not able to solve them within the specified target, however, the RF
model can predict this behavior within an error of 15%. This result
indicates that no matter which transformations are applied to the
base problem class to define the problem instances across different
folds, the algorithm instance is not able to solve them. In the case
of the (𝑔𝑜𝑜𝑑, 𝑝𝑜𝑜𝑟 ) cluster, the algorithm instance can solve the
problem instances from the 1st, 2nd, 14th, 17th, and 23rd problem
classes, however, the RF model cannot predict this behavior across
all folds.

There are also some interesting problem classes that depending
on the transformations used to define the problem instances across
different folds, the problem instances change their clusters. For
example, the first, third, and fourth problem instances from the

22nd BBOB problem belong to the (𝑔𝑜𝑜𝑑,𝑔𝑜𝑜𝑑) cluster. However,
the second and the fifth instances of the same problem are presented
in the (𝑔𝑜𝑜𝑑, 𝑝𝑜𝑜𝑟 ) cluster. This result indicates that the algorithm
instances for all problem instances can find a solution within the
specified target. The difference is that the RF model cannot predict
this behavior for the second and the fifth instance within an error
of 15% (the ML errors are 45% and 17% for the 2nd and 5th instances
respectively.). Another example is the 5th BBOB problem class.
Except for the fourth problem instance from this problem class, for
all the remaining the RF error is greater than 15% (for the fourth
one is 8%).

Other examples contain the transition from (𝑝𝑜𝑜𝑟, 𝑔𝑜𝑜𝑑) to (𝑝𝑜𝑜𝑟,
𝑝𝑜𝑜𝑟 ): the 3rd, 10th, 11th, and 13th BBOB problem classes. All these
problems correspond to problem instances that DE configuration
is not able to solve within the specified target. The main differ-
ence is the performance of the RF model. For the 11th problem, the
RF model can predict the behavior for the first, second, and fifth
instances, while for the third and fourth is not able to predict it
(i.e., RF errors above 15%). This means that in the case of the first,
second, and fifth instances we can further provide explanations of
which landscape features make them difficult to be solved, while
we cannot provide explanations for the third and fourth instances.
Further, by performing an explainable post-hoc analysis, if different
features are important between different folds for this problem
class, this indicates that the important features for the third and
fourth problem instances are “wrong" features that are leading to
poor prediction. If there is no difference between the important
features across the folds, it means that the RF predictive model does
not have enough power (i.e., confidence) to provide explanations
for the third and fourth problem instances. Similar explanations
are also present for the 3rd (ML error is 17% for the fifth instance
of this problem), 10th (RF errors are 18% and 44% for the third and
fifth instances of this problem), and 13th (i.e., the RF error for the
first instance of this problem is around 17%) problem.

Some of the transitions from (𝑔𝑜𝑜𝑑,𝑔𝑜𝑜𝑑) to (𝑔𝑜𝑜𝑑, 𝑝𝑜𝑜𝑟 ) and
vice-versa, and also from (𝑝𝑜𝑜𝑟, 𝑔𝑜𝑜𝑑) to (𝑝𝑜𝑜𝑟, 𝑝𝑜𝑜𝑟 ) and vice
versa, are happening only when the RF error is in some close 𝜖-
neighborhood with the selected percentage, 𝑝 = 15%.

The problem instances on the 7th and the 18th problem classes
are distributed across most of the clusters. This result points out
that the algorithm instance does not have stable performance on
them. It is either able to solve or not the problem instance within
the specified target, which further can be a problem for the ML
model to make a prediction.

In general, analyzing the footprints across all folds, we can con-
clude that the footprints make a clear distinction between good vs.
poor algorithm instance performance (i.e., placing (𝑔𝑜𝑜𝑑, 𝑔𝑜𝑜𝑑) to
(𝑔𝑜𝑜𝑑, 𝑝𝑜𝑜𝑟 ) problem instances together vs. (𝑝𝑜𝑜𝑟, 𝑔𝑜𝑜𝑑) to (𝑝𝑜𝑜𝑟,
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(a) First fold. (b) First fold with threshold 5% for RF error.

(c) Second fold. (d) Third fold.

(e) Fourth fold. (f) Fifth fold.

Figure 3: 2D UMAP [18] visualization of the algorithm footprints obtained with the deterministic clustering, on the test portion
of each of the five folds. The tolerance error for the RF model is within 15%. The blue color represents regions of good algorithm
performance, and the yellow to regions of poor algorithm performance. The marker shape corresponds to good (O) and poor (X)
ML model performance as indicated by the legend at the bottom of the plot.

𝑝𝑜𝑜𝑟 ) together). The second dimension, which is the ML model
performance, only guarantees confidence in providing further ex-
planations for problem instances that are predicted in the tolerance
error.
Sensitivity analysis with regard to the tolerance percentage
of the ML model error. To see the influence of the selected per-
centage for the RF model error, in Figure 3b we present the same
footprint as in Figure 3a generated on the data from the first fold

with a difference that the percentage for the RF model error is set
at 𝑝 = 5%. As was expected, the main transitions only happen from
(𝑔𝑜𝑜𝑑, 𝑔𝑜𝑜𝑑) to (𝑔𝑜𝑜𝑑, 𝑝𝑜𝑜𝑟 ), and from (𝑝𝑜𝑜𝑟, 𝑔𝑜𝑜𝑑) to (𝑝𝑜𝑜𝑟, 𝑝𝑜𝑜𝑟 ).
If the target precision for the true algorithm instance increases and
the RF model is fixed, the possible transitions are from (𝑔𝑜𝑜𝑑,𝑔𝑜𝑜𝑑)
to (𝑝𝑜𝑜𝑟, 𝑔𝑜𝑜𝑑), and from (𝑔𝑜𝑜𝑑, 𝑝𝑜𝑜𝑟 ) to (𝑝𝑜𝑜𝑟, 𝑝𝑜𝑜𝑟 ), otherwise,
the transition is in the other direction.
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(a) First fold (good, good). (b) Second fold (good, good).

(c) First fold (poor, good). (d) Second fold (poor, good).

Figure 4: The 10 most important ELA features and their prediction influence for the test instances of the first and second fold
for the (good, good) and (poor, good) clusters. Each point on the plot is a Shapley value for a feature and an instance. Its position
on the y-axis is determined by the feature and on the x-axis by the Shapley value. The color represents the value of the feature
from low to high.

Post-hoc explainable analyses. Next, we provide post-hoc anal-
ysis to estimate the landscape features that make the problem in-
stances easy to be solved (𝑔𝑜𝑜𝑑,𝑔𝑜𝑜𝑑)) and or challenging to be
solved ((𝑝𝑜𝑜𝑟, 𝑔𝑜𝑜𝑑)). Figure 4 presents the 10 most important land-
scape features, for the first and second fold. The plots in this figure
also depict both positive and negative relations with the target pre-
cision that is being predicted. The dots shown in the plots represent
all instances from the selected folds. The ELA features are ordered
based on their importance, with the most important feature being
listed first. The color coding used reflects the magnitude of the
ELA feature value, with higher values represented in red and lower
values in blue. The effect of the ELA feature value on the target
variable prediction can be seen by its horizontal placement. From
the figure, it is obvious that the features for the (𝑔𝑜𝑜𝑑,𝑔𝑜𝑜𝑑) cluster
across both presented folds are overlapping for seven out of 10 ELA
features and the same patterns of influence are presented. In the
case of the (𝑝𝑜𝑜𝑟, 𝑔𝑜𝑜𝑑) cluster, both folds are overlapping in eight
out of 10 ELA features with similar patterns of influence. Compar-
ing the (𝑔𝑜𝑜𝑑, 𝑔𝑜𝑜𝑑) vs. (𝑝𝑜𝑜𝑟, 𝑔𝑜𝑜𝑑) in both folds separately, we
can see that the overlapping is in a few ELA features, however, even
the influence patterns of those which are overlapping are different
(e.g., ic.eps.max, ela_meta.lin_simple.coef.min).

To go into more detail, we randomly selected two ELA features
(ela_level.qda_mda_10 and ela_meta.quad_w_interact.adj_r2) and
present their distributions across the algorithm instance footprint
(see Figure 5). The distributions of the other ELA features are avail-
able in our GitHub repository [link omitted during the review].

In the case of the algorithm footprint generated on the first test
fold, it is obvious that ela_level.qda_mda_10 has higher values for

the problem instances that belong to (𝑔𝑜𝑜𝑑,𝑔𝑜𝑜𝑑) cluster and lower
values for the problem instances that belong to (𝑝𝑜𝑜𝑟, 𝑔𝑜𝑜𝑑) cluster.
The opposite is true for the ela_meta.quad_w_interact.adj_r2, where
lower values are for problem instances that belong to (𝑔𝑜𝑜𝑑,𝑔𝑜𝑜𝑑)
and higher values are related to problem instances that belong to
the (𝑝𝑜𝑜𝑟, 𝑔𝑜𝑜𝑑) cluster.

For the algorithm footprint generated on the second test fold, the
ela_level.qda_mda_10 has higher values for the problem instances
from the (𝑔𝑜𝑜𝑑,𝑔𝑜𝑜𝑑) cluster and lower values for those that belong
to the (𝑝𝑜𝑜𝑟, 𝑔𝑜𝑜𝑑) cluster. In the case of the ela_level.qda_mda_10
feature, lower values are associatedwith the problem instances from
the (𝑔𝑜𝑜𝑑,𝑔𝑜𝑜𝑑) and medium values are related to the instances
from the (𝑝𝑜𝑜𝑟, 𝑔𝑜𝑜𝑑) cluster.
DE1 footprints generated by different ML models. Figure 6
presents the footprints generated for DE1 and the first fold by using
different ML predictive models, KNN and SVM. The tolerance error
for both ML models is set at 15% in order to benchmark the foot-
prints with the footprint generated by the RF model. Comparing
the footprints with the footprint presented in Figure 3a, it is obvi-
ous that the distribution of the problem instances in the space is
different since the meta-representations are model-specific and gen-
erated by using different supervised ML models. Table 2 presents
the distribution of the BBOB problem instances across the foot-
prints generated for all folds by RF, KNN, and SVM. All ML models
provided similar results on the first fold which is also visible by the
distribution of the problem instances across all four deterministic
clusters. No matter which model is used, the clusters are almost the
same. The distributions of the problem instances slightly change
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(a) First fold. (b) First fold.

(c) Second fold. (d) Second fold.

Figure 5: The distribution of two randomly selected (from the top 10) ELA features across the algorithm instance footprint. The
color in the plots represents the normalized feature values.

for the other remaining folds, which indicates the model-specific as-
pect and the importance of selecting a good-performing ML model.
However, similar distributions that are achieved across the folds
support the fact that the proposed methodology can be used to
analyze the strengths and weaknesses of algorithm instance behav-
ior. Currently, the explanations (i.e., important landscape features)
are model-specific, they depend on the selection of the supervised
regression model. In the future, we are planning to find the inter-
section of important landscape features across footprints generated
with different ML models in order to go through a model-agnostic
approach.

Discussion. Our methodology is proposed as an exploratory
tool for analyzing and understanding the strengths and weaknesses
of a selected algorithm instance. It cannot be used to benchmark
different algorithm instances based on their footprints. This comes
with the fact that the footprint of each algorithm is generated using
explanations of a single-target regression model, which means that
each footprint is generated in its own vector space. As future work,
we are going to purpose footprints that can be used for transparent
benchmarking where the algorithm performance prediction will
be done as multi-task learning where the performance of different
algorithm instances will be treated as multiple learning tasks that
are solved at the same time while exploiting commonalities and
differences across tasks.

In our experiments, the predefined target precision for the al-
gorithm instance performance, 𝑡 , and the tolerance percentage of
the ML error, 𝑝 , were set only for illustration purposes. Those pa-
rameters can be set by the researchers/users depending on their
application requirements. They can also be changed in order to ex-
plore the sensitivity of the footprints. In addition, when training the

ML predictive model for algorithm instance performance prediction,
more advanced techniques based on AutoML [6] are recommended
to find the best ML predictive model (i.e., in our experiments we
use RF with default parameters for illustration purposes).

We illustrate the generation of the algorithm instance footprint
using 10𝐷 problem instances. In the future, footprints for the same
algorithm instance can be generated for a different dimension to
explore the distribution of the problem instances across the foot-
print and also to explore the importance of the landscape features
when the dimension of the problem instances increases.

We use ELA features that provide some information but are
still low-interpretable. In the future, this methodology can also
be performed using another portfolio of landscape features (e.g.,
high-level features) in order to provide more human-interpretable
explanations. Currently, the explanations are model-specific, they
depend on the selection of the supervised regression model. In
the future, we are planning to generate footprints for the same
algorithm instance with regard to different regression models and
try to find the intersection between them in order to go through a
model-agnostic approach.

While sharing philosophical foundations, the proposed method-
ology differs in approach to ISA [21]. For example, ISA attempts to
give both an indication of the diversity of the benchmark instances
and serve as a tool for developing hypotheses on the strengths and
weaknesses of the algorithms. For this, ISA finds a common space
for all algorithms, by selecting features that, after a linear projection,
are the most predictive of performance on average across the portfo-
lio. Moreover, ISA constructs andmeasures the footprints as regions
of the space through a combination of clustering and geometric
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(a) First fold of KNN. (b) First fold of SVM.

Figure 6: 2D UMAP visualization of the algorithm footprints obtained with the deterministic clustering on the test portion
of the first fold. The tolerance error for the KNN and SVM model is within 15%. The blue color represents regions of good
algorithm performance, and the yellow to regions of poor algorithm performance. The marker shape corresponds to good (O)
and poor (X) ML model performance.

Table 2: Distribution of the BBOB problem instances across the deterministic clusters for each fold.

model fold number (good, good) (good, poor) (poor, good) (poor, poor)
RF 1 16, 19, 20, 21, 22 1, 2, 5, 14, 17, 18, 23 3, 4, 6, 7, 8, 9, 10, 11, 12, 15, 24 13
KNN 1 2, 16, 18, 19, 20, 21, 23 1, 5, 14, 17, 22 4, 6, 7, 8, 9, 10, 11, 12, 15, 24 3, 13
SVM 1 16, 19, 20, 21, 22 1, 2, 5, 14, 17, 18, 23 3, 4, 6, 7, 8, 9, 10, 11, 12, 24 13, 15
RF 2 19, 20, 21 1, 2, 5, 14, 17, 22, 23 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 24 18
KNN 2 5, 17, 19, 20, 23 1, 2, 14, 21, 22 3, 4, 6, 7, 8, 9, 10, 11, 12, 16, 24 13, 15, 18
SVM 2 19, 21 1, 2, 5, 14, 17, 20, 22, 23 6, 8, 9, 12, 15, 16, 18, 24 3, 4, 7, 10, 11, 13
RF 3 19, 20, 21, 22 1, 2, 5, 14, 16, 17, 18, 23 3, 4, 6, 8, 9, 12, 13, 15, 24 7, 10, 11
KNN 3 1, 16, 18, 19, 20, 21, 22, 23 2, 5, 14, 17 6, 8, 9, 10, 12, 13, 24 3, 4, 7, 11, 15
SVM 3 6, 22 1, 2, 5, 14, 17, 18, 19, 20, 21, 23 9, 12, 13, 24 3, 4, 6, 7, 8, 10, 11, 15
RF 4 5, 16, 18, 19, 20, 21, 22 1, 2, 7, 14, 17, 23 3, 4, 6, 8, 9, 10, 12, 13, 15, 24 11
KNN 4 1, 7, 16, 19, 20, 21, 22, 23 2, 5, 14, 17, 18 4, 6, 8, 9, 10, 12, 24 3, 11, 13, 15
SVM 4 16, 20, 21 1, 2, 5, 7, 14, 17, 18, 19, 22, 23 6, 9, 11, 13, 24 3, 4, 8, 10, 12, 15
RF 5 19, 20, 21 1, 2, 5, 7, 14, 16, 17, 22, 23 6, 8, 9, 11, 12, 13, 15, 24 3, 4, 10, 18
KNN 5 1, 14, 16, 19, 20, 21, 22, 23 2, 5, 7, 17 4, 6, 8, 9, 11, 12, 15, 24 3, 10, 13, 18
SVM 5 5, 16, 19, 21, 22 1, 2, 7, 14, 17, 20, 23 3, 8, 9, 10, 11, 12, 18, 24 4, 6, 13, 15

methods [27], to account for the diversity of the instances. Never-
theless, no investigation of multiple algorithm instances through
ISA has been made in SOO. The interpretation in ISA is human-
driven, with an analysis of the visualizations by the researchers
being an important step, with a standardized post-hoc analysis not
being part of the ISA yet. A comparison between the results of the
proposed methodology and ISA is left for further research.

5 CONCLUSIONS
In the context of black-box optimization, it’s crucial to comprehend
the reasons why an algorithm instance works well on some problem
instances and fails on others. We introduce a method for creating an
algorithm instance footprint, which consists of dividing the prob-
lem instances into two sets: those that are easily solvable and those
that are challenging. This is achieved by linking the algorithm’s
behavior to the properties of the problem landscape, providing
explanations of why some problem instances are easier or harder.
Our methodology employs meta-representations, which embed the
properties of the problem instances and the performance of the
algorithm into the same vector space. These meta-representations
are obtained through training a supervised machine learning re-
gression model and examining feature importance. Additionally,
deterministic clustering of the meta-representations reveals regions

of good and poor algorithm performance, along with an explana-
tion of which landscape properties are responsible. This analysis
enables us to gain insight into the strengths and weaknesses of the
algorithm instance and move away from treating it as a black-box.
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