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Abstract. Empirical data plays an important role in evolutionary com-
putation research. To make better use of the available data, ontologies
have been proposed in the literature to organize their storage in a struc-
tured way. However, the full potential of these formal methods to capture
our domain knowledge has yet to be demonstrated. In this work, we eval-
uate a performance prediction model built on top of the extension of the
recently proposed OPTION ontology. More specifically, we first extend
the OPTION ontology with the vocabulary needed to represent modular
black-box optimization algorithms. Then, we use the extended OPTION
ontology, to create knowledge graphs with fixed-budget performance data
for two modular algorithm frameworks, modCMA, and modDE, for the
24 noiseless BBOB benchmark functions. We build the performance pre-
diction model using a knowledge graph embedding-based methodology.
Using a number of different evaluation scenarios, we show that a triple
classification approach, a fairly standard predictive modeling task in the
context of knowledge graphs, can correctly predict whether a given al-
gorithm instance will be able to achieve a certain target precision for
a given problem instance. This approach requires feature representation
of algorithms and problems. While the latter is already well developed,
we hope that our work will motivate the community to collaborate on
appropriate algorithm representations.

Keywords: Algorithm Performance Prediction · KG Completion · Evo-
lutionary Computation · Black-box Optimization

1 Introduction

Reproducibility is slowly becoming the norm in many areas of computer sci-
ence [11]. In the domain of black-box optimization, this means that many re-
searchers are making available not just the code, but also large amounts of bench-
mark data. While this increasing availability of data is beneficial to the entire
community, tools to structure and interpret data are not yet widely adopted.
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While performance data is becoming easier to use thanks to increasing interop-
erability between benchmarking environments, information about the algorithms
that collected that data is not as readily available. This is in part due to the
complexities inherent in describing optimization heuristics. Even within a sin-
gle family of algorithms, differences in operator choices, parameter adjustment
strategies, and hyper-parameter settings can result in very different algorithm
behavior. If these design decisions can be stored in combination with the corre-
sponding performance data, this would open the door to extracting knowledge
from the vast amount of data generated every day. One way that this could be
achieved is through the use of ontologies. The data structured with the help
of ontologies can then be used in various predictive studies, such as algorithm
performance prediction.

In the context of computer science, ontologies are “explicit formal speci-
fications of the concepts and relations among them that can exist in a given
domain” [5]. Ontologies are generalized data models, i.e., they model only gen-
eral types of things that share certain properties, but do not contain information
about specific individuals in the domain. On the other hand, data about spe-
cific individuals stored in a directed labeled graph in which the labels have a
well-defined meaning that comes from an ontology is commonly referred to as a
Knowledge Graph (KG). Knowledge Graph Embeddings (KGEs) are
low-dimensional feature-based representations of the entities and relations in
a knowledge graph. They provide a generalizable context over the entire KG,
which can be used for tasks such as KG completion, triple classification, link
prediction, and node classification [2,19]. The flexibility of the KG model and
the explicit storage of data relationships facilitate not only the management of
data from different sources, but also the search and exploration of these data to
discover new insights that would be very difficult to discover using classical ML
approaches.

Several efforts have been made to conceptualize various aspects of domain
knowledge about black-box optimization, such as Evolutionary Computation
Ontology [20], Diversity-Oriented Optimization Ontology [1], Preference-based
Multi-Objective Ontology [10], and Semantic Multi-Criteria Decision Making
Ontology [12]. The above ontologies are strongly focused on specifics, leading
to classifications of algorithms that allow users to query only for high-level re-
lations. For example, searching for algorithms that can solve problems from
a particular class, and searching for algorithms that have been applied to a
specific engineering problem. The OPTImization Algorithm Benchmarking ON-
tology (OPTION) [9] formalizes knowledge about benchmarking optimization
algorithms, focusing on the formal representation of data from the performance
and problem landscape space, but currently lacks descriptors for optimization
algorithms.

Despite various efforts to conceptualize knowledge in black-box optimization,
the main goal of these studies has been limited to the representation and orga-
nization of domain knowledge. In other words, as far as we know, the obtained
representations have never been used to test their performance in predictive
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studies. In this work, we propose a novel approach that leverages and evaluates
black-box optimization knowledge (i.e., optimization algorithms, performance
data, optimization problems, and problem landscape data) represented by a
formal semantic representation in the form of an ontology and KGs for predict-
ing algorithm performance. The predictive model is developed by utilizing KG
embedding-based algorithm performance classifiers.

Our contributions: We test the utility of using a formal semantic represen-
tation for black-box optimization data in the form of KGs to predict algorithm
performance. The KGs contain information about the problem landscape, algo-
rithm performance, and algorithm descriptor data. To capture this knowledge,
we first extended the OPTION ontology, which already provides a vocabulary
for representing problem landscape and algorithm performance data, to include
representations (i.e., descriptors) that describe optimization algorithms. Proof-
of-concept was performed by extending the OPTION ontology with algorithm
descriptors representing two modular frameworks related to the CMA-ES (mod-
CMA) and differential evolution (modDE) algorithms. The same ontology can be
used to represent other modular algorithms. However, we note that describing all
existing algorithms proposed outside of modular frameworks is a time-consuming
and challenging process that requires the participation of the entire community
to reach a consensus on the standard unified representation of black-box opti-
mization algorithms.

Next, we converted the knowledge base of the extended OPTION ontology
into a KG and used it to learn a binary classifier that can predict whether or
not an algorithm can solve a given problem (represented as ‘solved’ and ‘not-
solved’ relations in the KG) within a predefined target precision in a fixed-budget
scenario. In the context of KGs, this task is referred to as triple classification. We
performed an experimental evaluation of the proposed approach by predicting
the performance of 324 modCMA and 576 modDE algorithm configurations on
the 24 noiseless problem classes from the BBOB benchmark suite in 5 and 30
dimensions, respectively.

We explore different evaluation scenarios to assess the predictive power of our
KG-based performance classifier. The results show that our classifier correctly
predicts whether an algorithm achieves a certain target precision for a given in-
stance in the case of balanced classification. However, in the case of imbalanced
classification, the baseline (the classifier that predicts the majority class) is su-
perior. We succeeded in improving the performance of the KG embedding-based
classifier in the case of imbalanced classification by modifying the pipeline and
training an additional predictive model built on the learned embeddings.
Paper outline. In Section 2, we present our extension of the OPTION ontol-
ogy for the formal representation of modular optimization algorithms. Section 3
describes the construction of the KGs as well as the proposed methodology
for performance prediction of modular optimization algorithms. The experimen-
tal results are discussed in Section 4. Section 5 proposes a modification of the
pipeline to address the case of imbalanced classification performance prediction.
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Finally, we conclude the paper with a summary of contributions and plans for
future work in Section 6.

2 Formal Representation of Modular Optimization
Algorithms

In this paper we consider two different families of evolutionary algorithms: Differ-
ential Evolution (DE) [17] and Covariance Matrix Adaptation Evolution Strate-
gies (CMA-ES) [7]. Since these two algorithms have been well-researched for
over a decade, many variations and modifications have been proposed. Some of
these modifications may be relatively minor, such as proposing an alternative
initialization of the population. Larger changes may affect the structure of the
algorithm by introducing restart mechanisms or new adaptation schemes for in-
ternal parameters. Since most of these changes are proposed in isolation, it is
often difficult to understand how these variations interact. All of this has led to
the development of modular algorithms. These frameworks combine large sets
of variations into a single code base, where arbitrary combinations of variations
can be combined into a variety of possible algorithm configurations. This not
only allows a fair comparison between two different variations of the algorithm
but also a more robust analysis of the potential interplay between algorithm
components.

For the CMA-ES, we use the modCMA framework [13], which contains many
variants of the core algorithm. This ranges from modifications of the sampling
distributions (including mirrored or orthogonal sampling) to different weighting
schemes for recombination to different restart strategies.

For DE, we use the modDE package available at https://github.com/
Dvermetten/ModDE, v0.0.1-beta. This framework provides a wide range of mu-
tation mechanisms, with different modules for selecting the base component,
the number of differences included, and the use of an archive for some of the
difference components. In addition, the usual crossover mechanisms can be en-
abled, as well as update mechanisms for internal parameters based on several
state-of-the-art DE versions. For the formal representation of modular optimiza-
tion algorithms, we extend the OPTION ontology by creating a new ontology
module that is fully compatible with OPTION. We adhere to the same ontol-
ogy design principles as in OPTION. For example, we align the new classes
with the same upper- and middle-level ontologies, we follow the specification-
implementation-execution ontology design pattern, and we use relations from
the Relations Ontology [16].

Our extension allows us to specify the different steps in the optimization
process and link them to the corresponding module parameters (see Figure 1).
For this purpose, we introduced the modular optimization algorithm class 5 as
a subclass of the optimization algorithm class, which is already defined in OP-
TION. For modular algorithms, we have also defined a specialized class modular
5 In the rest of this paper, we will refer to the ontology classes in italic, while the

relations between the classes will be written in typewriter.

https://github.com/Dvermetten/ModDE
https://github.com/Dvermetten/ModDE
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Fig. 1: The entities and relations included in the extension of the OPTION on-
tology for the representation of modular optimization algorithms.

optimization algorithm execution. Optimization algorithm execution can be a
composition of several subprocesses (e.g., initialization, mutation, and recombi-
nation). To model this in the ontology, we have defined the modular optimization
algorithm execution part class and linked it to the modular optimization algo-
rithm execution class via the has-part relation. The algorithm execution flow
is represented with the precedes relation. Algorithm module parameters are
linked to both modular optimization algorithm execution and modular algorithm
execution part through the has-parameter relation.

In Figure 2 we illustrate the ontological representation of the modDE algo-
rithm. In the ontology, we create specialized subclasses of the general classes
corresponding to the modDE versions. For example, the modDE execution class
is a subclass of modular optimization algorithm execution. It inherits all the
properties of its superclass but also contains definitions that are unique to the
modDE algorithm, such as the different execution parts, their execution order,
and links to the modDE module parameters. We note here that in Figure 2
only the execution parts such as initialization, mutation, and recombination are
shown, while the others (i.e., boundary correction, evaluation, selection, param-
eter update, and termination check) have been omitted due to space constraints.
Finally, in Figure 2, we present two modDE configurations (as instances of the
modDE class) that differ by the crossover type, which is a parameter that af-
fects the recombination part of the optimization process. The modeling of the
modCMA algorithm is done in a similar way.
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Fig. 2: An illustration of the representation of the modDE algorithm in the on-
tology and two examples of annotation of modDE configurations. Rectangular
boxes correspond to the ontology classes. Dashed rectangular boxes correspond
to the class instances.

3 Performance Prediction via KG Triple Classification

Representing optimization algorithms, benchmark problems, performance, and
problem landscape data in a unified ontological framework facilitates the con-
struction of KGs that can be used as data resources for a variety of predictive
modeling tasks. In this paper, we investigate whether KG embeddings can be
used to predict algorithm performance by performing the task of KG completion.
More specifically, we are interested in predicting unseen performance relations
between problem instances and algorithm configurations. This corresponds to
the task of triple classification (i.e., whether an algorithm configuration solves
a problem instance with a given target precision ). This task can be translated
to a binary classification task and easily addressed by using standard machine
learning algorithms.

In this section, we first focus on the construction of the KG. Then we de-
scribe the details of the KG embedding-based pipeline for automated algorithm
performance prediction.

3.1 Construction of the KG

The two main node types in the KGs are problem instances and algorithm in-
stances/configurations (see Figure 3). We collected data for the first five in-
stances of each of the 24 noiseless BBOB problems [6] in dimensions D = 5 and
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Fig. 3: A snippet of our KG constructed from the original OPTION ontology
and the new algorithm representation module depicting its general structure.

D = 30, resulting in two problem sets (one for each dimension) with 120 problem
instances each. Each problem instance is described with high-level and low-level
landscape features. As high-level features, we used the five problem classes (i.e.,
separable, low or moderate conditioning, high conditioning, and unimodal multi-
modal with adequate global structure and multi-modal with weak global struc-
ture) introduced in the BBOB test suite that group benchmark problems with
similar properties. The low-level landscape features consist of 46 exploratory
landscape analysis (ELA) features implemented in the R package flacco [8].
The ELA features are numerical representations of the problem instances that
capture the characteristics of optimization problems. We use a publicly available
dataset [15] containing the 46 ELA features computed for the first five instances
of the 24 BBOB functions using the Sobol sampling strategy and a sample size of
100D with a total of 100 independent repetitions. For a more robust analysis, we
use the median of the 100 calculated feature values. Finally, each ELA feature
is discretized into 10 bins using the uniform binning strategy. These data are
available through the OPTION ontology [9] knowledge base and we used their
API to extract them.

The data described below were generated as part of this study and matched
with data extracted from OPTION to create the KGs. The algorithm configura-
tions are from two different modular algorithms, modular CMA-ES, and modular
DE. Since it is computationally infeasible to collect data based on a complete
enumeration of all possible combinations of modular CMA-ES and modular DE
modules, we use a set of 324 and 576 configurations, respectively. Table 1 and
Table 2 contain the details of the modules and parameter spaces used, which we
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Table 1: The list of modCMA modules and their respective parameter space
yielding a total of 324 algorithm configurations.

Module Parameter space
Elitist True, False
Mirrored_sampling None, mirrored, mirrored pairwise
base_sampler gaussian, sobol, halton
weights_option default, equal, 1/2ˆlambda
local_restart None, IPOP, BIPOP
step_size_adaptation csa, psr

Table 2: The list of modDE modules and their respective parameter space yield-
ing a total of 576 algorithm configurations.

Module Parameter space
mutation_base rand, best, target
mutation_reference None, pbest, best, rand
mutation_n_comps 1, 2
use_archive True, False
crossover bin, exp
adaptation_method None, shade, jDE
lpsr True, False

then use to create a Cartesian product to obtain the different algorithm config-
urations. In KG, each algorithm configuration is represented as a node and is
connected to the different modules via labeled links/edges.

To obtain performance data for each of these configurations, we perform 10
independent algorithm runs for each problem instance and calculate the me-
dian value. As a performance measure, we use the target precision achieved
by the algorithm in the context of a fixed- budget (i.e., after a fixed num-
ber of function evaluations), and use the best precision achieved after B =
{2 000, 5 000, 10 000, 50 000} function evaluations.

Finally, the problem instances and the algorithm configurations are associ-
ated with a solved or not-solved edge, depending on the performance of the algo-
rithm considering three different target precision thresholds, T = {1, 0.1, 0.001}
in the case of the 5D benchmark problems and T = {10, 1, 0.1} for the 30D
benchmark problems. More precisely, if an algorithm configuration achieves a
target precision equal to or lower than the specified threshold for a given prob-
lem instance, we associate the algorithm configuration and the problem instance
with a solved edge; otherwise, we associate the algorithm configuration and the
problem instance with a not-solved edge.

3.2 KG embedding-based pipeline for automated algorithm
performance prediction

Our knowledge graph G can be represented as a collection of triples {(h, r, t)} ⊆
E × R × E, where E and R are the entity and relation set. One of the tasks
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Fig. 4: KG embedding-based training and inference pipeline for triple classifica-
tion.

in KG completion is to predict unseen relations r between two existing entities
(h, ?, t). In this paper, we focus on the {(a, s, p)} ⊆ A × S × P triples, where
A ⊂ E and P ⊂ E are the algorithm configuration and the problem instance set,
respectively, and S = {solved, not-solved} ⊂ R is the performance relation. To
predict the unseen performance relation between algorithm configurations and
problem instances (a, ?, p), we perform triple classification.

Our proposed pipeline for predicting algorithm performance is shown in Fig-
ure 4. For training the KG embeddings, we use the Ampligraph library [3]. In
the training phase, we initialize the KG embeddings with the Xhavier initial-
izer [4] and update them throughout several training epochs. During training,
we minimize a loss function using Adam Optimizer that includes a ComplEx
scoring function [18] – a model-specific function that assigns a score to a triple.
Scoring functions for knowledge graph embeddings measure how far away two
entities are relative to the relation in the embedding space. In general, the goal
is to maximize the ComplEx model score for the positive triples and minimize
it for the negative ones.

In the inference phase, we iterate over the (a, ?, p) triples with a missing per-
formance relation and calculate the ComplEx model score for the (a, solved, p)
and (a, not-solved, p) triples by using the learned embeddings. We select the
triple with the larger ComplEx score.

To find the best hyperparameters for the triple classifier, we used the grid
search methodology, which performs an exhaustive search over the selected hy-
perparameters and their corresponding search spaces. Three different hyperpa-
rameters were selected for tuning: (1) k - the dimensionality of the embedding
space; (2) optimizer_lr - the learning rate of the optimizer; and (3) loss - the
type of loss function to be used during training, such as pairwise margin-based
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Table 3: Hyperparameters of the KG embedding model and their corresponding
values considered in the grid search.

Hyperparameter Search space
k [50, 100, 150, 200]

optimizer_lr [1e− 3, 1e− 4]
loss [pairwise,nll, self_adversarial]

loss, negative loss probability, and adversarial sampling loss. The search spaces
of the hyperparameters used in our study are shown in Table 3.

The optimal set of hyperparameters is estimated using a separate validation
set. We initially set the number of training epochs to 500, but we activate a mech-
anism that terminates training early if 10 consecutive validation checks/epochs
do not improve performance.

For the triple classifiers, we report the F1 score, which is defined as the
harmonic mean of precision and recall: F1 = 2∗Precision∗Recall

Precision+Recall = 2∗TP
2∗TP+FP+FN .

As a baseline, we use the classifier that predicts the majority class (solved/not-
solved class). The same evaluation metric is used as a heuristic in the grid search
step, where based on the F1 score we identify the best-performing model.

4 Evaluation Results

In this section, we report the results of two different evaluation scenarios based on
how we select the data for training and testing. The first one uses leave random
performance triplets out validation, while the second one uses leave problem
instances/algorithm configurations out validation.

4.1 Leave random performance triplets out validation

For our first set of experiments, we perform algorithm performance prediction
using the method described in Section 3. Since we consider two dimensionalities
of problems, four budgets, and three target precision thresholds, we have a total
of 24 different KGs for each of the two algorithms (modCMA and modDE).

For each of the KGs, we split the performance triples in the ratio 60:20:20.
That is, 60% of the triples are assigned to the training set, 20% to the validation
set, and the remaining 20% to the test set. We do this in a stratified fashion,
keeping the distribution of performance links as in the original KG. Since the
split is based on a stratified sample of the performance links, performance links
related to a particular problem instance or algorithm configuration can be split
between the training/validation set and the test set. This approach can be used
when the performance of algorithm configurations is known for the majority
of problem instances in the selected problem portfolio but is unknown for some
problem instances. Note that the training KG contains not only the performance
triples but also other types of entities and relations, such as the high-level and
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low-level landscape features and the description of the algorithm configuration
in terms of the modules and their parameters, while the validation and test sets
contain only the links/triples of interest - ‘solved’ and ‘not-solved’ performance
links.

The percentage of the ‘solved’ performance relations with respect to ‘not-
solved’ ones for the modCMA and modDE KGs for the KG composite problem
in 5 and 30 dimensions are shown in Table 4. We can notice that in some of the
scenarios, we are dealing with imbalanced classification, especially in the case of
30D problems.

Table 4: The percentage of solved links for the modCMA and modDE algorithms
in the KGs composed of a) 5D and b) 30D problems across the different fixed-
budget scenarios and target precision thresholds.

modCMA modDE
2000 5000 10000 50000 2000 5000 10000 50000

1 62.9 68.2 71.3 78.9 27.7 42.2 58.1 81.4
0.1 46.8 54.1 57.1 63.7 13.2 23.3 33.1 62.8
0.001 36.9 47.8 50.7 55.9 9.4 14.4 21.7 56.2

(a) 5D problems

modCMA modDE
2000 5000 10000 50000 2000 5000 10000 50000

10 35.1 46.2 49.9 68.1 13.0 21.6 29.1 46.1
1 10.7 16.0 21.0 40.9 1.6 4.4 8.0 17.5
0.1 6.1 08.8 12.5 31.5 1.2 3.2 6.2 12.7

(b) 30D problems

Table 5 presents the F1 scores of the triple classifier and the percentage of
improvement of the classifier compared to the baseline across the different fixed-
budget scenarios and target precision thresholds for both 5D and 30D problems.
Results show that the triple classifier improves the performance, in the case when
we do not have imbalanced classification. In the case of imbalanced classification,
we have a performance drop, meaning that in this case our proposed pipeline
should be adjusted.

4.2 Leave problem instances/algorithm configurations out
validation

Our second set of experiments evaluates a practically relevant scenario when
there is no performance data for a given problem instance/algorithm configura-
tion. To evaluate the performance of the triple classifier in this setup, we have
investigated two additional evaluation scenarios:

– Leave problem instances out validation: In this scenario, we use all
performance triples of one problem instance from each of the 24 BBOB
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Table 5: The F1 score and the percentage of improvement compared to the
baseline of the modCMA and modDE algorithm performance triple classifier
obtained using the ComplEx scoring model for the KGs composed of 5D and
30D problems across the different fixed-budget scenarios and target precision
thresholds.

2000 5000 10000 50000
1 0.922/19.43% 0.942/16.15% 0.944/13.33% 0.953/8.05%
0.1 0.905/30.22% 0.933/32.91% 0.937/29.06% 0.942/21.08%
0.001 0.893/15.37% 0.944/37.61% 0.944/40.48% 0.946/31.75%

(a) 5D problems - modCMA

2000 5000 10000 50000
1 0.848/1.07% 0.876/19.67% 0.901/22.59% 0.946/5.46%
0.1 0.788/-15.18% 0.82/-5.53% 0.858/6.98% 0.922/19.43%
0.001 0.831/-12.62% 0.745/-19.20% 0.803/-8.65% 0.919/27.64%

(b) 5D problems - modDE

2000 5000 10000 50000
10 0.937/19.06% 0.927/32.62% 0.939/40.78% 0.953/17.51%
1 0.902/-4.45% 0.808/-11.50% 0.855/-3.17% 0.929/25.03%
0.1 0.935/-3.41% 0.89/-6.71% 0.852/-8.68% 0.921/13.28%

(c) 30D problems - modCMA

2000 5000 10000 50000
10 0.9/-3.23% 0.931/5.92% 0.947/14.10% 0.948/35.24%
1 0.504/-49.19% 0.792/-19.02% 0.846/-11.69% 0.87/-3.76%
0.1 0.695/-30.08% 0.735/-25.30% 0.835/-13.74%% 0.885/-5.04%

(d) 30D problems - modDE

problems for testing, select the performance triples from another problem
instance for validation, and use the remaining three for training. For example,
we use the first three instances of each of the 24 BBOB problems for training,
the fourth instance for validation, and the fifth instance for testing. We
repeat this five times so that each of the five instances appears once in the
test set.

– Leave algorithm configurations out validation: in this scenario, the
algorithm configurations are split with a 60:20:20 ratio and their performance
triples are selected for training, validation, and testing, respectively. In order
to assess the robustness of the results, we repeat this procedure five times
independently.

We have applied these evaluation scenarios to the KGs comprised of 5D
benchmark problems and modCMA algorithm configurations across the four
different budgets with a target precision threshold of 0.1. The average F1 scores
of the triple classifier (averaged over the five runs), their standard deviations,
as well as the percentage of improvement, are displayed in Table 6. Similarly as
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Table 6: The F1 score and the percentage of improvement compared to the
baseline of the modCMA algorithm performance triple classifier for the KGs
where all performance links are removed for a subset of problems and algorithm
configurations composed of 5D problems across the different budgets and a target
precision threshold of 0.1.

Leave-problems-out Leave-algorithms-out
2000 0.728 (0.006)/4.90 0.893 (0.009)/28.67
5000 0.761 (0.018)/8.40 0.915 (0.011)/30.34

10000 0.766(0.008)/5.36 0.91 (0.011)/25.17
50000 0.797(0.014)/2.44 0.913 (0.002)/17.35

Table 7: The F1 score and the percentage of improvement compared to the base-
line of the modDE algorithm performance triple classifier for the KGs where all
performance links are removed for a subset of problems and algorithm config-
urations composed of 5D problems across the different budgets and a target
precision threshold of 0.1.

Leave-problems-out Leave-algorithms-out
2000 0.854(0.061)/-8.07% 0.79(0.035)/-14.96%
5000 0.837(0.022)/-3.57% 0.85(0.021)/-2.07%

10000 0.796(0.024)/-0.75% 0.825(0.010)/2.87%
50000 0.83(0.010)/7.51% 0.822(0.013)/6.48%

in Section 4.1, our approach improves compared to the baseline when we have
a balanced classification. Table 7 presents the evaluation results for the modDE
performance classifier, where similar patterns can be observed as in the previous
case.

5 Addressing the problem of imbalanced classification

To solve the problem that arises in the case of imbalanced classification, we
modify the pipeline described in Section 3.2. More specifically, after the KG
training phase, we add an additional training layer, where we train a Random
Forest (RF) classifier based on the learned embeddings. Our data instances are
the performance triples. In order to generate the data for the RF classifier, we
represent each (a, s, p) triple as a concatenation of the embedding vectors of the
a and p entities. We perform inference by using the RF classifier instead of the
ComplEx model scores.

We evaluate this approach using the most imbalanced scenario from the ex-
periments in Section 4.1, i.e., the setup where we predict modDE performance
on 30D problem instances with a target precision threshold of 0.1. We train
RF classifier with 10 estimators, implemented in the scikit-learn library[14]. The
rest of the hyperparameters are used with their default values. In Table 8, we
compare the F1 scores of the classifiers trained using the pipeline presented in
Section 3.2 with the scores of the RF classifiers described in this section. The re-
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Table 8: Comparison of the two proposed pipelines for modDE performance
prediction on the 30D problem instances with a target precision of 0.1. Re-
sults are reported in the format: F1-score of the classifier/F1-score of the base-
line/Percentage of improvement compared to the baseline.

KG - ComplEx scoring RF classifier
2000 0.695/0.994/-30.08% 0.999/0.994/0.52%
5000 0.735/0.984/-25.30% 0.998/0.984/1.43%
10000 0.835/0.968/-13.74% 0.996/0.968/2.91%
50000 0.885/0.932/-5.04% 0.991/0.932/6.27%

Table 9: Performance of the RF classifier for modDE performance prediction on
the 30D problem instances with a target precision of 0.1. Results are reported
in the format: Performance of the classifier/Performance of the baseline.

RF classifier
AUC ROC Average precision G-mean

2000 0.994/0.5 0.962/0.012 0.963/0.0
5000 0.998/0.5 0.975/0.032 0.962/0.0
10000 0.998/0.5 0.977/0.062 0.954/0.0
50000 0.987/0.5 0.964/0.127 0.947/0.0

sults show that training a RF classifier on the learned embeddings improves the
performance in terms of F1 score. As we are dealing with imbalanced classifica-
tion, the choice of the evaluation measure is essential. In Table 9, we additionally
report the AUC ROC, average precision, and geometric mean scores. We reach
the same conclusion that the embedding-based RF classifier improves the per-
formance prediction method. We believe that the results improve because there
is a separability in the embeddings space that the RF models manage to capture
when predicting the algorithm’s performance. However, this assumption requires
further investigation.

6 Conclusions and Future Work

In this paper, we investigate the predictive power of a formal semantic repre-
sentation of black-box optimization for automated prediction of algorithm per-
formance. To this end, we evaluate the feasibility of using KGs to predict the
performance of the modCMA and modDE optimization algorithms on the noise-
less BBOB functions. More specifically, our goal was to investigate whether we
can train KG embeddings that can be used to predict performance links/triplets
(solved or not-solved links) in the KG between algorithm configurations and
problem instances with a given target precision in a fixed- budget scenario. The
KGs combine the problem landscape and algorithm performance data with the
data related to the modular algorithm configuration.

The results show that when we randomly select performance triples for the
test set (a classic KG completion scenario), our proposed triple classifier out-
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performs the baseline in the cases where we have balanced classification. In the
case of imbalanced classification, the performance of the classifier decreases and
it is worse than the baseline. In our second set of experiments, we have a ”more
rigorous” evaluation scenario where we try to predict all the performance links
belonging to the problem instances and algorithm configurations that appear in
the test set (no performance links appear in the training set). We observe similar
patterns as in the previous case. To solve the performance degradation problem
in the case of imbalanced classification, we modify the proposed pipeline and
train a Random Forest classifier on top of the learned embeddings.

For our future work, we plan investigate different class-balancing techniques
in the case of imbalanced classification. Additionally, we plan to test different
methods for training KG embeddings and improve their explainability. It would
also be interesting to compare our results with other approaches such as rela-
tional learning and graph frequent pattern mining.

We have shown that KGs of experimental data about the modCMA and
modDE modular optimization algorithms created from ontology knowledge bases
can be used in predictive studies. It would be interesting to test the applicability
of this approach to other modular frameworks. However, the more challenging
task would be to extend it outside of modular frameworks, as we would need to
develop a formal, standard vocabulary that can be used to represent algorithm
operators, their hyperparameters, and interactions. We hope that our work will
inspire the community to collaborate on the development of appropriate algo-
rithm representations.
Data and code availability. Our source code, data, the OPTION ontology extension,
the generated KGs, and figures are available at: https://github.com/KostovskaAna/
KG4AlgorithmPerformancePrediction.git.
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