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Abstract. Per-instance automated algorithm configuration and selec-
tion are gaining significant moments in evolutionary computation in re-
cent years. Two crucial, sometimes implicit, ingredients for these auto-
mated machine learning (AutoML) methods are 1) feature-based rep-
resentations of the problem instances and 2) performance prediction
methods that take the features as input to estimate how well a spe-
cific algorithm instance will perform on a given problem instance. Non-
surprisingly, common machine learning models fail to make predictions
for instances whose feature-based representation is underrepresented or
not covered in the training data, resulting in poor generalization ability
of the models for problems not seen during training. In this work, we
study leave-one-problem-out (LOPO) performance prediction. We an-
alyze whether standard random forest (RF) model predictions can be
improved by calibrating it with a weighted average of performance val-
ues obtained by the algorithm on problem instances that are sufficiently
close to the problem for which a performance prediction is sought, mea-
sured by cosine similarity in feature space. While our RF+clust approach
obtains more accurate performance prediction for several problems, its
predictive power crucially depends on the chosen similarity threshold as
well as on the feature portfolio for which the cosine similarity is mea-
sured, thereby opening a new angle for feature selection in a zero-shot
learning setting, as LOPO is termed in machine learning.

Keywords: Algorithm Performance Prediction · AutoML · Zero-Shot
Learning · Single-Objective Black-Box Optimization.

1 Introduction

Various algorithms for continuous single-objective optimization (SOO) have al-
ready been developed and their performance investigated through statistical
analyses, in most cases reporting the average performance across a selected set
of benchmark problem instances [25]. However, the algorithm instance behav-
ior varies substantially depending on the problem instance that is being solved.
For this purpose, there is a predictive task known as automated algorithm se-
lection, where the main goal is selecting the best-performing algorithm from a
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set of algorithm instances for a given problem instance [1, 5, 11, 17]. To achieve
it, automated algorithm performance prediction is a crucial step that should be
done. The automated algorithm performance prediction is tackled as a super-
vised machine learning problem, such as classification (i.e., predicts whether or
not the algorithm solves the instance given some precision) or a regression (i.e.,
predicts the performance of the algorithm as a real value). To train a super-
vised machine learning algorithm a set of examples, problem instances described
by their landscape features used as input data (i.e., benchmark suite) and al-
gorithm performance achieved on them used as target (i.e., solution precision)
are required. Nowadays, if we want to generalize a supervised prediction model
to another benchmark suite, whose problems were not involved in the training
data, the predictive model performance decreases greatly. This occurs because
the training data does not cover some regions of the landscape space involved
in the test data, or the model is biased toward some over-represented landscape
regions that are present in the training data. This is the reason why most of
the studies focus on the Black-box Optimization Benchmarking (BBOB) bench-
mark suite [9] since it involves several instances from the same problem class
involved in the training data which makes it a suitable resource for training
an ML-supervised model. However, if we remove the instances from the same
problem class from the training data (leave all instances from a single problem
out for testing), the performance of the model for automated algorithm perfor-
mance prediction decreases significantly [24]. This issue makes all approaches for
automated algorithm performance prediction that are developed based on the
BBOB benchmark suite difficult to generalize on other benchmark suites such
as CEC [16], Nevergrad [22], etc. since in their definition there is only a single
instance per each problem class. In practice, an application such as algorithm
performance prediction requires making predictions for problem instances whose
problem class (i.e., landscape properties) has not been seen previously by the
underlying model or we have a leave-one-problem-out (LOPO) learning scenario.

Our contribution. In this study, we propose a LOPO approach for auto-
mated algorithm performance prediction. Our RF+clust approach calibrates a
classic random forest (RF) predictive model with a prediction obtained by a
similarity relationship method that aggregates the ground algorithm instance
performance for the most similar problem instances from the training data. In
contrast to a classic KNN approach, we use a similarity threshold to decide which
problems are taken into account for the performance prediction. The number of
considered ‘neighbors’ can therefore differ between problems. We evaluate our
approach on performance data of three differential evolution (DE) variants on
the CEC 2014 and the BBOB benchmark suite of the COmparing Continuous
Optimizers (COCO) environment [10]. We observe better results for RF+clust
than for stand-alone RF performance prediction on a number of cases. However,
there are also cases when similar landscape representations can lead to different
performances of the algorithm, which can affect the prediction of the RF+clust
approach. This further points out that in the future we need to focus on finding
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problem feature representations with sufficient discriminate power that will be
also able to capture the performance of the algorithm.

Outline. The remainder of the paper is organized as follows: Section 2 sur-
veys past work on automated algorithm performance prediction. The proposed
LOPO regression method is introduced in Section 3. Section 4 details the bench-
mark problem suites and algorithms used for the validation of the proposed
approach, the problem landscape features, as well as the machine learning al-
gorithm tuning and evaluation. The results and discussion are provided in Sec-
tion 5. Finally, the conclusions are drawn in Section 6.

2 Related Work

Next, we point out some of the works which are addressing the critical issue of
generalization over new problem classes.

Bischl et al. [3] consider automated algorithm selection as a cost-sensitive
classification task using one-sided Support Vector Machines. Problem instance-
specific miss-classification costs are defined, unlike standard classification where
all the errors in classification are penalized the same by the algorithm. The prede-
fined miss-classification costs represent external information to aid the learning
process. The approach was tested on problem instance feature representations
consisting of “cheap” and “expensive” ELA features [18], with respect to sam-
ple size required for their calculation. It was shown that the model is able to
generalize over new instances, however, the prediction error gets worse for new
problem classes, when the prediction is based only on the “cheap” ELA features
representation. To discover the source of the larger model errors, analysis of the
feature space is performed based on the euclidean distances between the prob-
lem instances representations. They conclude that the degree of classification
performance tends to correlate with the proximity in feature space for the case
of using the entire feature set, however, this was not that straightforward for the
“cheap” features.

The work [7] brings to attention the possibility to personalize regression
models (Decision Tree, Random Forest and Bagging Tree Regression) to specific
types of optimization problems. Instead of aiming for a single model that works
well across a whole set of possibly diverse problems, the personalized regression
approach acknowledges that different models may suite different problem types.

In [24] a classification-based algorithm selection approach is evaluated on the
COCO benchmark suite [9] and artificially generated problems [6]. The results
show that such a model has low generalization power between datasets, and in
the leave-one problem-out cross-validation procedure where each problem class
was removed once at a time from the same dataset. However, a model trained
and tested in a leave-instance-out scenario achieves much higher accuracy. A
correlation analysis using the Pearson correlation coefficient was performed for
the problem representations based on the “cheap” ELA features, showing that a
large number of both, the COCO and the artificial problems are highly correlated



4 Ana Nikolikj, Carola Doerr, and Tome Eftimov

within their own set of problems. i.e., the poor generalization is due to the
differences between the two data sets in feature space.

The feasibility of a “per-run” algorithm selection scheme is investigated in [14],
based on ELA features that are calculated from the observed trajectory of the
algorithm (i.e., the samples the algorithm visits during the optimization proce-
dure). This avoids the usually required additional evaluation of (quasi-)random
samples implemented by classic per-instance algorithm selection schemes. Re-
sults for the COCO benchmark suite show performance comparable to the per-
function virtual best solver. However, these results did not directly generalize to
the other benchmark suites used in the experiments, namely the YABBOB suite
from the Nevergrad platform [22].

3 LOPO Algorithm Performance Prediction

Let us assume a set of benchmark problem instances P i
t , i = 1, . . . , n, which are

grouped into training problem classes Pt, t = 1 . . . ,m, and performance data for
an algorithm instance A on the selected set of benchmark problem instances. To
predict the performance yiq of the algorithm instance A on a problem instance
P i
q from a new problem class Pq that is not involved in the training data, we

have propose the following LOPO approach:
1) Represent the selected benchmark problem instances from the m problem
classes by calculating the ELA features and linking them to the performance of
the algorithm instance after a certain number of function evaluations.
2) Train a supervised regression model that uses the ELA features as input data
and predicts the algorithm instance performance.
3) For a new problem instance P i

q from a new problem class Pq that is not in-
volved in the training data, use its ELA features as input data into the learned
model to make the prediction yiq.
4) For the new problem instance, select the k-nearest problem instances from
the training set that are the most similar to the new problem instance based on
their landscape features representation. The similarity is measured by a similar-
ity metric, s, and the selection is done by defining a prior similarity threshold. We
selected cosine similarity as a similarity measure. Finally, all problem instances
from the training data that have a similarity greater or equal to the predefined
threshold are selected, from which the actual algorithm performance is retrieved
p1, p2, . . . , pk. We need to point out here that the number of the nearest problem
instances, k, differs for different problem instances, so it is discovered by the
selection rule and the predefined threshold.
5) The final prediction of the algorithm instance performance on the new prob-
lem instance is made by calibrating the actual prediction obtained by the learned
model yiq with the actual algorithm instance performance retrieved for the se-
lected nearest problem instances from the training data. This is performed as
an aggregation procedure as follows: ŷiq =

(
yiq + F (p1, p2, . . . , pk)

)
/2, where

F (p1, p2, . . . , pk) is an aggregation function, which can be for example Weighted
mean. 6) If there are no problem instances in the training data to which the
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new problem instance is similar above the threshold, only the prediction of the
model is considered, yq.

4 Experimental Design

Here, we are going to present all experimental details starting from the data that
is involved and the techniques used for the ML learning process.

Problem Benchmark Suites. We evaluate the proposed method by using
two of the most currently used benchmark problem suites in the field of numeric
single-objective optimization. The first benchmark suite involved in the experi-
ments is the 2014 CEC Special Sessions & Competitions (CEC 2014) suite. The
suite consists of 30 problems where only one instance per problem is available.
The problems are provided in dimension 10. The full problem list and descrip-
tions of all the problems are available at [16]. The second problem set is the 24
noiseless single-objective optimization problems from the BBOB collection of the
COCO benchmarking platform [10]. Different problem instances can be derived
by transforming the base problem with predefined transformations to both its
domain and its objective space, resulting in a set of different instances for each
base problem class, that have the same global characteristics. We consider the
first five instances of each BBOB problem, resulting in a dataset 120 problem
instances. In coherence with the CEC problem suite, the problem dimension D
was set to 10.

Algorithm Performance Data. Performance data is collected for three
different randomly selected Differential Evolution (DE) [26] configurations, on
both the CEC 2014 and BBOB benchmark suites. The DE hyper-parameters are
as presented in Table 1. We indexed the algorithm configurations starting from
DE1 to DE3 for easier notation of the results. DE is an iterative population-
based meta-heuristic. The population size of DE is set to equal the problem
dimension D (D = 10 in our study). The three DE configurations were run 30
times on each problem instance, and we extracted the precision after a budget of
500D = 5000 function evaluations. In our study, we consider the median target
precision achieved in these 30 runs. Following the approach suggested in [11],
we also consider the logarithm (log10) of the median solution precision. This
algorithm performance measure estimates the order of magnitude of the distance
of the reached solution to the optimum. Figure 1 presents DE1 performance (log-
scale) obtained per benchmark problem on the CEC 2014, and Figure 2 on the
BBOB benchmark suite (aggregated for all problem instances).

Table 1: Differential Evolution configurations.
Index strategy F Cr

DE1 Best/3/Bin 0.533 0.809
DE2 Best/1/Bin 0.617 0.514
DE3 Rand/Rand/Bin 0.516 0.686
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Fig. 1: DE1 solution precision (log-scale) per problem instance on the CEC 2014
suite.

Fig. 2: DE1 solution precision (log-scale) per problem instance on the BBOB
suite.

Exploratory Landscape Analysis (ELA). To create a feature representa-
tion that encodes problem properties, the static Exploratory Landscape Analysis
(ELA) [18] features are used. The features are calculated by the evaluation of a
sample of candidate solutions generated by systematic sampling of the decision
space of the problem. The corresponding fitness values are then fed to different
statistical and mathematical methods to calculate the feature values. The Im-
proved Latin Hypercube Sampling (ILHS) [27] was used as a sampling technique,
with a sample size of 800D (8000). In reality, this is a really big sample size, how-
ever, we are interested in whether the approach works, so we want to reduce the
randomness from the feature computation [15]. For each benchmark problem in-
stance, the calculation of the features was repeated 30 times, as it is a stochastic
process and the median value was taken as the final feature value that numeri-
cally quantifies some property of the problem. The R package “flacco” [13] was
utilized for their calculation. We selected all the ELA features which are cheap
to calculate with regard to sample size, and do not require additional sampling.
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Table 2: RF hyper-parameters and the considered search spaces.
hyper-parameter search space
n estimators {10, 20, 50, 70}
max features {all, sqrt, log2}
max depth {3, 5, 7, 10}
min samples split {2, 5, 7, 10}

This way, a total of 64 features were calculated. The selected features are com-
ing from the following groups: classical ELA (y-distribution measures, level-set,
meta-model), Dispersion, Information Content, Nearest Better Clustering, and
Principal Component Analysis.

Regression Models for Algorithm Performance Prediction. For the
learning process, we considered random forest (RF) regression [2], as it provides
promising results for algorithm performance prediction [12] and is one of the
most commonly used algorithms for algorithm performance prediction studies
in evolutionary computation. The RF algorithm was used as implemented by
the scikit-learn package [20] in Python. We have trained single-target regression
(STR) models. That is, we have a separate model for predicting the performance
of each of the three DE algorithms.

ML Model Evaluation. When splitting the data as described in Section 3
the evaluation of the automated algorithm performance prediction results in
leave-one-problem-out fold validation. At each fold, a model was trained using
one problem class (including all of its instances) left out for testing, while the
remaining are used for training. In order to assess the accuracy of the models,
we compute the Mean Absolute Error (MAE). The prediction errors are the
absolute distances of the prediction to the true algorithm precision value on the
new problem class.

Hyper-parameter Tuning for the Regression Models. The best hyper-
parameters are selected for each RF model from the training portion of the fold.
The hyper-parameters selected for tuning are n estimators - the number of trees
in the random forest; max features - the number of features used for making
the best split; max depth - the maximum depth of the trees, and min samples
split - the minimum number of samples required for splitting an internal node
in the tree. The ranges of the hyper-parameters have been selected concerning
the data set size and the guidelines available in ML to avoid over-fitting. The
search spaces of the hyper-parameters for each problem class are presented in
our repository [link omitted for review].

Feature Selection. Taking into consideration the size of the datasets, in
a scenario where 30 data instances (CEC 2014 benchmark suite) are available,
and 64 features to describe them, we run the risk of overfitting our model.
Therefore, we have performed feature selection. Since we have a LOPO scenario
(i.e., leave all instances for a single problem out), in our case we ended with 30
ML predictive models. To select the top most important features for each model,
the SHAP method [19] was utilized. Finally, the importance of the features was
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Table 3: Mean Absolute Error (mae) obtained by the RF models for predict-
ing the performance of DE1 with different feature portfolios on the CEC 2014
benchmark problems

top features aggregation mae_train mae_test
10 mean 0.504464 1.279261
10 median 0.536681 0.991274
30 mean 0.458142 1.318326
30 median 0.439434 0.770265
64 mean 0.498807 1.465239
64 median 0.480457 0.931685

(a) CEC 2014 (b) BBOB

Fig. 3: The ten most important ELA features for predicting the performance of
DE1 on the CEC 2014 and BBOB benchmark suites.

summarized across all the models, and the 10 and 30 most important features
were used to train the models. These two sizes of feature portfolios were tested
in order to compare the decrease in ML model performance (if any) when using
different feature portfolios (Table 3). Also, the feature portfolio influences the
proposed approach as it is based on the pairwise similarity of the features. So
different feature portfolios can result in different instances retrieved as similar.
Figure 3 shows the feature portfolio of the 10 most important features for CEC
2014 and BBOB accordingly.

5 Results

We apply the approach to three random DE configurations and two benchmark
suites (CEC 2014 and COCO). Due to space limitations, however, we present
here some selected results for algorithm DE1 and the CEC 2014 benchmark
suite, while other results where similar findings are noticed, are available at [link
omitted for review].

In Figure 4 we compare a classical supervised RF model and a RF+clust
model in a leave-one-problem-out scenario. Figure 4 shows the prediction errors
obtained by a standard RF model trained in the LOPO (corresponding to the
"RF" denoted row on the heatmap) and errors of the proposed RF+clust ap-
proach (for similarity thresholds of 0.5, 0.7, and 0.9, also with corresponding
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Fig. 4: The mean absolute error of the RF model and the RF+clust approach
using a similarity threshold of .5, .7, and .9, for each problem in the CEC 2014
benchmark suite, for DE1 and the similarity measure based on the 10 most
important ELA features.

rows on the heatmap). The predictions were obtained by using a feature port-
folio of the ten most important features. Each cell of the heatmap represents
the absolute error obtained by the models. The columns represent each problem
instance separately, while the last column indicates on how many instances the
approach showed lower prediction error). The numbers under the model error
indicate the number of similar instances set above the corresponding threshold
that were present in the training of the model. The blank cells in the heatmap
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Fig. 5: Pairwise similarity of the
ELA features representation (x-
axis) and the pairwise difference
in the ground truth performance
of DE1 (y-axis) for the third
problem in CEC 2014.

Fig. 6: Pairwise similarity of the
ELA features representation (x-
axis) and the pairwise difference
in the ground truth performance
of DE1 (y-axis) for the ninth
problem in CEC 2014.

are places where the RF+clust approach provides the equal result as the RF
model because for those problems we could not find similar problem instances
from the training data using the predefined threshold.

The figure shows that there are problems (1, 3, 6, 11, 12, 13, 14, 16, 17,
23, 24, 28, 29, 30) for which the RF+clust approach shows better predictive
results than using a classically trained RF model. We can see that for the high
similarity threshold (0.9), calibrating the classical prediction with the ground
performance of the optimization algorithm of the retrieved similar problems from
the training data decreases the predictive error. To provide an explanation for
why this happens, Figure 5 presents the relation between the pairwise similarity
of the ELA features representation (x-axis) and the pairwise difference in the
ground truth performance of the optimization algorithm (y-axis) for the third
problem in the CEC 2014, with the other problems. The heatmap shows that
the third problem has four similar problem instances over 0.9 (17, 21, 29, 30),
as visible in Figure 5. In addition, we can see that the difference in ground
algorithm performance of the problem and the similar instances is low, so the
algorithm has similar behavior on these problems (see also Figure 1), and using
them for the calibration helps to obtain better predictive errors.

There are also problems when the predictions are affected by the RF+clust
approach, slightly worse than the prediction obtained from the classical RF
model. Figure 6 presents the relation between the pairwise similarity of the ELA
features representation (x-axis) and the pairwise difference in the ground truth
performance of the optimization algorithm (y-axis) for the ninth problem in
the CEC 2014. The heatmap shows that the ninth problem has three similar
problem instances (8, 13, 14) according to Figure 6. Here, we can see that one
out of three problems is similarly based on the ELA representation and the
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Fig. 7: Pairwise similarity of the
ELA features representation (x-
axis) and the pairwise difference
in the ground truth in the ground
truth performance of DE1 (y-
axis) for the 21st problem in
CEC 2014.

Fig. 8: Pairwise similarity of the
ELA features representation (x-
axis) and the pairwise difference
in the ground truth in the ground
truth performance of DE1 (y-
axis) for the second problem in
CEC 2014.

algorithm has similar behavior on it. However, on the remaining two problems,
we can see that even with high similarity in the landscape space, the difference in
algorithm performance is larger in reality (see Figure 1), so using the performance
to calibrate the prediction yields a larger error. A similar scenario happens for the
21st problems, where the similarity is greater or equal to 0.9 but the difference
in performance between them is very large (see Figure 7). This indicates that
there are problems for which the ELA features representations are not expressive
enough and they could not well describe the problems in such a scenario (i.e.,
similar ELA landscape representation may not lead to similar algorithm behavior
in the performance space).

There are also problems such as the first and the second that are difficult
to be solved by the optimization algorithm (see Figure 1 for ground truth per-
formance). Figure 8 presents the relation between the pairwise similarity of the
ELA features representation (x-axis) and the pairwise difference in the ground
truth performance of the optimization algorithm (y-axis) for the second problem
in the CEC 2014. It is visible that this problem has very few similar instances,
does not have similar instances over 0.9 at all, and also the difference in algo-
rithm performance with similar instances over 0.5 is very large. This is the case
where the test problem class is not covered enough by the train, however, even
in such scenarios, we can be slightly better in the prediction results.

Looking back at the heatmap (Figure 4), we can see that when the similar-
ity threshold decreases (i.e., going to 0.5), some of the predictions are slightly
worse. This was expected since having a lower threshold in the landscape space
does not guarantee capturing similar performance in the performance space (see
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Table 4: Number of times the RF+clust is better, equal or worse to stand-alone
RF for predicting the performance of DE variants on the CEC 2014 benchmark
suite.

algorithm name model # better # equal # worse
DE1 0.9 14.0 10.0 6.0
DE1 0.7 17.0 2.0 11.0
DE1 0.5 18.0 0.0 12.0
DE2 0.9 13.0 5.0 12.0
DE2 0.7 18.0 0.0 12.0
DE2 0.5 21.0 0.0 9.0
DE3 0.9 8.0 15.0 7.0
DE3 0.7 14.0 2.0 14.0
DE3 0.5 16.0 0.0 14.0

Figures 6, 7, and 8). The heatmaps presenting the results for the other two DE
algorithms lead to similar results and explanations.

In Table 4 we summarize for how many out of the 30 problems the RF+clust
approach provides better, worse, or equal predictions (when similar instances
are not found, the prediction is not calibrated) than the classical (stand-alone)
RF model on the CEC 2014 benchmark suite.

To investigate the sensitivity with a different feature portfolio, we repeated
the experiments by selecting the top 30 most important features for prediction
the performance of DE1 on the CEC 2014 benchmark suite. Figure 9 presents the
absolute errors of the RF and RF+clust approaches obtained for each problem
of the CEC 2014. Focusing on similarity threshold of 0.9, the results show that
the RF+clust approach provides better predictions (i.e., improvements) than the
classical RF model for nine problems, worse predictions for five problems, and
equal for 16 problems. We need to point out here that increasing the number
of the top most important features from 10 to 30, it also affect the similarity of
the problem instances. From the heatmap is visible that now we are not able to
detect similar problems for some of the problems (e.g., 1, 21, 23, 24, 28, 29, 30)
for which we were able to detect similar problems above 0.9 when the feature
portfolio of the 10 most important features is used. This further opens new angle
for feature selection that will have discriminate power to capture also differences
that happen in the performance space.

In addition to the results obtained on the CEC 2014 benchmark suite, Fig-
ure 10 presents the prediction results obtained for the DE1 algorithm for the
first instance of each COCO problem. We selected only one instance here, for
visualization purposes (our overall setting remains LOPO, i.e., we omit all in-
stances of the left-out problem, and we use data from the five instances of the
other problems for training. This also explains why the number of similar prob-
lem instances are larger in Figure 10 compared to those for the CEC benchmark
presented in Figure 4). The results are in line with those obtained for the CEC
2014 benchmark. We point out that the top 10 most important features to train
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Fig. 9: The mean absolute error of the RF model and the RF+clust approach
using a similarity threshold of .5, .7, and .9, for each problem in the CEC 2014
benchmark suite, for DE1 and the similarity measure based on the 30 most
important ELA features.

the prediction model differ from those selected on the CEC 2014 benchmark; see
Figure 3 for details. An indirect outcome of this study is that these two bench-
mark suites are different, which also supports previously published findings [23].

6 Conclusions

In this study, we have proposed leave-one-problem-out (LOPO) for algorithm
performance prediction. The idea behind the approach is to predict the per-
formance of an optimization algorithm by using a supervised ML model on a
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Fig. 10: The mean absolute error of the RF model and the RF+clust approach
using a similarity threshold of .5, .7 and .9, for the first instance of each problem
in the BBOB benchmark suite, for DE1 and the ten most important features.

problem that is not presented in the training data. First, a model is learned
from a feature landscape representation of the problem instances from the train
problem classes, and a prediction is made for an instance from a new prob-
lem class in a supervised manner. Second, based on the similarity relationship
between the problem classes based on their feature landscape representation,
the prediction for the new problem instance is calibrated by applying an ag-
gregation procedure over the algorithm performance of the k-nearest problem
instances from the training data.
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The results performed on the CEC 2014 benchmark suite showed promising
results and explanations about the strengths and weaknesses of the proposed
approach. Better results are achieved for problems for which their landscape
feature representation is similar to other problems from the training data and the
algorithm behaves similarly on those problems. However, there are also problems
for which the proposed approach can lead to slightly worse prediction results.
This happens for problems for which the landscape feature representation leads
to finding similar problems from the training data, however, the performance of
the algorithm significantly differs. Such a result indicates that we need to find
an expressive enough landscape feature representation that correlates with the
algorithm’s performance. Also, there are problems for which there are no similar
problems in the training data, which further indicates that we need to enrich
the data that is used in ML setup with new problems (e.g., merging different
benchmark suites or using artificially problem generators [6]) by taking care that
all landscape spaces approximate a uniform distribution in the problem space.

In the future, we are planning to test the approach on a more comprehensive
algorithm portfolio. Next, instead of exploratory landscape features calculated
by a global sampling, we are planning to calculate them using the trajectory
data that was observed by the algorithm during the run (i.e., to capture also
information about the algorithm behavior) [14]. We are also going to try differ-
ent problem feature representations such as topological data analysis [21]. Last
but not least, we are planning to merge different benchmark suites to select rep-
resentative problem instances [4, 8] that will allow us to represent all possible
landscape spaces from the problem space with the same number of problems
that will further help the LOPO approach to have better prediction results.
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