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In optimization, we often encounter expensive black-box problems with unknown problem structures. Bayesian Optimization (BO) is a popular, surrogate-assisted and thus sample-efficient approach for this setting. The BO pipeline itself is highly configurable with many different design choices regarding the initial design, surrogate model and acquisition function (AF). Unfortunately, our understanding of how to select suitable components for a problem at hand is very limited. In this work, we focus on the choice of the AF, whose main purpose it is to balance the trade-off between exploring regions with high uncertainty and those with high promise for good solutions. We propose Self-Adjusting Weighted Expected Improvement (SAWEI), where we let the exploration-exploitation trade-off self-adjust in a data-driven manner based on a convergence criterion for BO. On the BBOB functions of the COCO benchmark, our method performs favorably compared to handcrafted baselines and serves as a robust default choice for any problem structure. With SAWEI, we are a step closer to on-the-fly, data-driven and robust BO designs that automatically adjust their sampling behavior to the problem at hand.

INTRODUCTION

Black-box problems 𝑓 are challenging because we do not know the underlying structure of the landscape. While we can sequentially query different points 𝑥 and learn from these how to choose the next promising points, there is no direct information on the direction of making progress or how to trade off exploration and exploitation. This is especially challenging when we have a low number of available function evaluations in relation to the size of the search space X. Formally, we want to find the minimum 𝑥 * of our function 𝑓 :

𝑥 * ∈ arg min 𝑥 ∈ X 𝑓 (𝑥) (1) 
We focus in our paper on Bayesian optimization (BO) [START_REF] Garnett | Bayesian Optimization[END_REF][START_REF] Mockus | Bayesian approach to global optimization[END_REF], as a well-studied and sample-efficient approach for expensive black-box optimization. The main idea of BO is to use a probabilistic surrogate model (e.g., a Gaussian Process), iteratively refining an approximation of the problem landscape that guides the optimization process. BO starts with an initial design or design of experiment (DoE), obtained from sampling strategies, e.g., random sampling, Sobol sequence or Latin Hypercube desing [START_REF] Brochu | A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning[END_REF][START_REF] Lindauer | SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization[END_REF]. With these initial points, the surrogate model is built to capture the uncertainty of the true cost on unobserved points. The acquisition function (AF) (a.k.a. infill criterion) is a utility function to trade-off exploration of underexplored areas and exploitation of presumable promising areas. The point with the highest acquisition function value is queried next, and the surrogate model is adjusted with the new observation. These steps are repeated for a given overall optimization budget.

Besides accurate probabilistic surrogate models and other bells and whistles [START_REF] Bossek | Initial Design Strategies and Their Effects on Sequential Model-Based Optimization: An Exploratory Case Study Based on BBOB[END_REF][START_REF] Cowen-Rivers | An Empirical Study of Assumptions in Bayesian Optimisation[END_REF][START_REF] Lindauer | Towards Assessing the Impact of Bayesian Optimization's Own Hyperparameters[END_REF], the exploration-exploitation trade-off is crucial for successful and efficient optimization. Since the landscape of the black-box optimization problem is unknown, it is a-priori unknown which AF should be chosen for the optimization problem at hand. Even worse, since each problem has its unique landscape, we need different exploration-exploitation trade-offs [START_REF] Benjamins | Towards Automated Design of Bayesian Optimization via Exploratory Landscape Analysis[END_REF][START_REF] Benjamins | PI is back! Switching Acquisition Functions in Bayesian Optimization[END_REF].

Because there are different choices of AFs, e.g., Probability of Improvement (PI) [START_REF] Kushner | A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise[END_REF], Expected Improvement (EI) [START_REF] Mockus | The application of Bayesian methods for seeking the extremum[END_REF], Upper Confidence Bound (UCB) [START_REF] Alexander | Engineering Design via Surrogate Modelling -A Practical Guide[END_REF] and Thompson Sampling (TS) [START_REF] Thompson | On the Likelihood that One Unknown Probability Exceeds Another in View of the Evidence of Two Samples[END_REF], selecting a suitable one for the problem at hand remains challenging. Furthermore, in the past, the choice of an AF has been considered static over the BO process. Prior works suggest that mixed AFstrategies [START_REF] Hoffman | Portfolio Allocation for Bayesian Optimization[END_REF][START_REF] Kandasamy | Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly[END_REF] or even very simple schedules switching from EI to PI can improve anytime performance of BO; however, for each problem different schedules, incl. static ones, perform best [START_REF] Benjamins | PI is back! Switching Acquisition Functions in Bayesian Optimization[END_REF].

Selecting an AF-schedule with a meta-learned selector based on the exploratory landscape analysis (ELA) features [START_REF] Mersmann | Exploratory landscape analysis[END_REF] of the initial design factors in the problem at hand and further improves performance [START_REF] Benjamins | Towards Automated Design of Bayesian Optimization via Exploratory Landscape Analysis[END_REF]. Nevertheless, this approach has its limitations. First, it requires a large initial design compared to the overall budget, and the ideal size of it is unknown. Second, the selector is trained for a specific budget, and it is unclear how it transfers to other dimensions and budgets.

In this work, we instead aim for an self-adjusting yet simple approach to adapt the exploration-exploitation trade-off in a datadriven way throughout the optimization process. For this, we propose to adaptively set the weight 𝛼 of Weighted Expected Improvement (WEI) [START_REF] Sobester | On the Design of Optimization Strategies Based on Global Response Surface Approximation Models[END_REF] in an online control fashion. The crucial questions to answer here are (i) When should we adjust 𝛼? And (ii) how should we adjust 𝛼? We propose a new method, dubbed Self-Adjusting Weighted Expected Improvement (SAWEI). Inspired by a termination criterion for BO [START_REF] Makarova | Automatic Termination for Hyperparameter Optimization[END_REF], we adjust the weight 𝛼 whenever BO tends to converge, indicated by the Upper Bound Regret (UBR) and adjust 𝛼 opposite to the dominant search attitude of exploration vs exploitation. We demonstrate the effectiveness of our method SAWEI on the BBOB functions of the COCO benchmark [START_REF] Hansen | COCO: A Platform for Comparing Continuous Optimizers in a Black-Box Setting[END_REF] against established AF and handcrafted baseline AF-schedules for 𝛼.

SELF-ADJUSTING WEIGHTED EI

In our method SAWEI, we adaptively set the weight 𝛼 of WEI to steer the exploration-exploitation trade-off. WEI is defined as [START_REF] Sobester | On the Design of Optimization Strategies Based on Global Response Surface Approximation Models[END_REF]:

𝑊 𝐸𝐼 (x; 𝛼 ) = 𝛼 𝑧 (x)𝑠 (x)Φ [𝑧 (x) ] exploitation + (1 -𝛼 ) 𝑠 (x)𝜙 [𝑧 (x) ] exploration (2)
with 𝑧 (x) = (𝑓 minŷ (x))/𝑠 (x), 𝑓 min being the lowest observed function value, ŷ (x) and 𝑠 (x) the predicted mean and standard deviation from the surrogate model, and 𝜙 and Φ being the PDF and CDF of a Gaussian distribution, respectively. 𝛼 weights the exploration and exploitation terms. For example, 𝛼 = 0.5 recovers standard EI [START_REF] Mockus | The application of Bayesian methods for seeking the extremum[END_REF] and 𝛼 = 1 has a similar behavior as PI [START_REF] Kushner | A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise[END_REF].

When To Adjust. In order to be able to set 𝛼 adaptively we need an indicator of the progress of the optimization. Recently, Makarova et al. [START_REF] Makarova | Automatic Termination for Hyperparameter Optimization[END_REF] proposed a termination criterion to stop BO for hyperparameter optimization. If the Upper Bound Regret (UBR) falls under a certain threshold, they terminate. UBR estimates the true regret at iteration 𝑘 by: r𝑘 := min

x∈𝐺 𝑘 UCB 𝑘 (x) -min x∈ X LCB 𝑘 (x) (3) 
with 𝐺 𝑘 being the history of all evaluated points and X being the entire search space. The first term estimates the worst-case function value of the best-observed point, a.k.a. the incumbent, and the second term the lowest function value across the whole search space. This means the smaller the gap between both terms becomes, the closer we are at asymptotic function value under the current settings of the optimizer. Instead of using UBR to stop the optimization process, it serves as an indicator for us when to switch or adjust components. Our rule is: When the gradient of UBR over the last 𝑛 steps becomes close to 0, we adjust the explorationexploitation attitude with 𝛼. Please find the details in Appendix A.

How to Adjust. The remaining question is how to adjust 𝛼, by how much and into which direction. We propose a rather simple, yet effective additive change by Δ 𝛼 . We set Δ 𝛼 = 0.1 to allow for gradual changes. We determine the sign of Δ 𝛼 by the recent optimization attitude: Depending on whether the EI-or PI-term of Equation ( 2) is larger for the last selected point, the current search attitude was either exploring or exploiting, respectively. We inspect the attitude and adjust 𝛼 in the opposite direction, i.e. to provide a chance for more exploration or exploitation in contrast to the currently dominating attitude.

EXPERIMENTS 3.1 Baselines

We compare our data-driven, self-adjusting method SAWEI to (i) the well-established best practice of simply using a single AF and (ii) hand-designed schedules of 𝛼 , see Table 1. We start with static schedules of 𝛼 ∈ {0, 0.5, 1.}, either fully exploring, EI, or a modulated PI*. 1 We can also adjust 𝛼 whenever there is an incumbent change and either increase (WEI Turn Up), decrease 𝛼 (WEI Turn Down) or define the direction via the attitude (WEI Turn Auto). Further, we define a schedule from EI to modulated PI (and vice versa) as a step function with 5 steps. In addition, we compare to hard switches from EI to PI [START_REF] Benjamins | Towards Automated Design of Bayesian Optimization via Exploratory Landscape Analysis[END_REF] as well as the Gutmann-Sobester pulse cycling through 𝛼 [START_REF] Gutmann | A radial basis function method for global optimization[END_REF][START_REF] Sobester | On the Design of Optimization Strategies Based on Global Response Surface Approximation Models[END_REF]. 

Setup

We evaluated SAWEI and the baselines on the BBOB functions of COCO benchmark [START_REF] Hansen | COCO: A Platform for Comparing Continuous Optimizers in a Black-Box Setting[END_REF] in a fixed budget setting. We set the dimensionality of the synthetic functions to 2 and the budget of the initial design to 10 and of the surrogate-based optimization to 40 function evaluations. Our implementations were built upon the BO tool SMAC3 (v2.0.0b1) [START_REF] Lindauer | SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization[END_REF]. We use a standard GP as configured in SMAC's BlackBoxFacade and SMAC optimizes the acquisition function with a combination of local and random search which also applies to minimizing LCB in Equation (3) for calculating the UBR. We 1 Following Eq. ( 2), setting 𝛼 = 1 results in a modulated PI and not the original PI.

Towards Self-Adjusting Weighted Expected Improvement for Bayesian Optimization set 𝛽 𝑡 = 2 log(𝑑𝑡 2 /𝛽), 𝛽 = 1 for UCB/LCB as in SMAC. You can find the code here: https://github.com/automl/SAWEI/tree/GECCO23. We set our convergence check horizon to 𝑛 = 1, i.e. check whether the last gradient is close to 1. Our evaluation protocol repeats the optimization 20 times with different random seeds and calculates the interquartile mean (IQM) across seeds to robustly estimate the regret per function. For each schedule, we then determine the rank for each of the 24 BBOB functions and compute the global rank across functions. In the plots over optimization steps, we show the mean and standard error across all the functions.

Results

Overall Results. Our method SAWEI ranks first across the BBOB functions, followed by a switch from EI to PI and by the step function from EI to PI*, see Figure 3. This supports the intuition of starting with exploration and later leaning towards exploitation. Also, the popular default choice EI ranks second to last.

When we take a look at the ranks across all variants (Table 2 in the Supplementary), SAWEI is quite robust to the exact time of adjustment and for how long the attitude is tracked (see Appendix B for details). Interestingly, the modulated PI, being fairly exploitative, is pretty competitive, although the initial design was quite small. Adjusting 𝛼 after an incumbent change is not beneficial (WEI Turn X schedules).

For the log regret (see Figure 2) we can observe that not one schedule is optimal for each function and we should aim to exploit the complementarity of the different schedules in future work. But what we can also observe is that our SAWEI is a robust default choice. Evolution of 𝛼. The general schedule set by SAWEI is increasing, i.e. changing the attitude from exploring to exploiting. The slope of 𝛼 is smaller or bigger depending on the problem. On a closer inspection, one interesting thing to note here is that sometimes SAWEI resembles a hard switch from EI to PI and sometimes it is almost a linear increase across the optimization budget, resembling the step function, see Figure 4 (right). On this particular schedule, WEI Turn Down (ranking less desirably overall so not a robust default choice, see Supplementary Table 2), performs quite well. This 𝛼 schedule is very opposite to the schedule traversed by SAWEI, suggesting that per function schedules might be very dissimilar yet lead to similar performance. SAWEI also works on highly multimodal functions with weak global structure (F20-F24).

LIMITATIONS AND FUTURE WORK

Although SAWEI performs best on average across a diverse set of functions, our first results have several limitations. First of all, we only considered 2-dimensional, artificial functions so far. As a next step, a study of SAWEI on higher-dimensional functions and black-box problems from practical applications, e.g., HPO [START_REF] Eggensperger | HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO[END_REF] is required. Also, for specific 𝛼 WEI does not select configurations lying on the Pareto front of exploration and exploitation as EI and UCB do [START_REF] De Ath | Greed is Good: Exploration and Exploitation Trade-offs in Bayesian Optimisation[END_REF]. In addition, as a first step how to adjust is a heuristic offering potential for a data-driven approach. Furthermore, SAWEI is still oblivious to the general landscape structure and focuses on rather local properties. Future work could consider a metalearned approach with ELA features [START_REF] Benjamins | Towards Automated Design of Bayesian Optimization via Exploratory Landscape Analysis[END_REF] or guided by reinforcement learning [START_REF] Shala | Learning Step-Size Adaptation in CMA-ES[END_REF].

CONCLUSION

In this paper, we addressed the problem of robustifiying Bayesian Optimization on expensive black-box functions. The main observation is that (i) black-box functions follow different problem structures and (ii) more exploitation is often required in later optimization stages. Thus the optimization process requires self-adjustment. Instead of choosing among many different complementary acquisition functions, we proposed in this work to self-adjust weighted expected improvement in a data-driven manner, which allows for different exploration-exploitation tradeoffs in different stages. In particular, we suggested when and how to adjust: (i) Whenever the Upper Bound Regret (UBR) [START_REF] Makarova | Automatic Termination for Hyperparameter Optimization[END_REF] does not change anymore and (ii) adjust in the opposite direction of the current search attitude. On the BBOB functions of the COCO benchmark [START_REF] Hansen | COCO: A Platform for Comparing Continuous Optimizers in a Black-Box Setting[END_REF] our method ranks favorably compared to handcrafted baselines and is a robust default choice for any problem structure.

A HOW TO DETECT THE ADJUSTMENT POINT

First, we apply a moving interquartile mean (25 %-75 % quartiles) with window size 7 to UBR to smooth the curve because we are interested in a general signal. Then, we calculate the absolute gradients. We signal time to adjust when the last absolute gradient is close to 0 with an absolute tolerance of 𝜖 times the last observed maximum of the absolute gradient.

B RANKS OF ALL VARIANTS

In Table 2 we list the ranks of all variants with our selected method marked in bold. PI* denotes the modulated PI. The sensitivity to the gradient controlling when to adjust is denoted by 𝜖 (see Appendix A). We can either base our attitude only on the last EI and PI terms ("last") or based on the attitudes until the last incumbent change ("until inc change"). We see that SAWEI is fairly robust to 𝜖 and until when the attitude is tracked (𝑛). 

C PERFORMANCE OVER TIME FOR ALL BBOB FUNCTIONS

Here we plot the log regret over time with UBR and 𝛼 of selected schedules. If we have a closer look at highly multi-modal functions with weak global structure we see that often the UBR increases. This might be due that the approximated landscapes changes a lot after each new observed point. 
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 1 Figure 1: With SAWEI we self-adjust the explorationexploitation trade-off parameter 𝛼 based on the Upper Bound Regret (UBR) (left). Whenever the gradient of UBR (2nd left) becomes 0 (marked by vertical lines), we adjust 𝛼 (2nd right), further reducing the log regret (right).
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 2 Figure 2: Box-Plots of all 24 BBOB functions of COCO. Each shows the final log regret after 20 repeated runs with different random seeds.
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 3 Figure 3: Ranks across BBOB Functions
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 4 Figure 4: Exemplary insights on BBOB Function 18. SAWEI increases 𝛼 from exploring to exploiting.
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Table 1 :

 1 Baselines. PI* denotes WEI(𝛼 = 1).

	Explore	𝛼 = 0.0
	EI	𝛼 = 0.5
	PI*	𝛼 = 1.0
	WEI Turn Auto	Δ 𝛼 ∼ attitude
	WEI Turn Down	𝛼 0 = 1., Δ 𝛼 = -0.1
	WEI Turn Up	𝛼 0 = 0.5, Δ 𝛼 = +0.1
	EI → PI* (Linear)	5 steps
	PI* → EI (Linear)	5 steps
	EI → PI	switch after 25 %
	EI → PI	switch after 50 %
	EI → PI	switch after 75 %
	Gutmann-Sobester Pulse Cycle 𝛼 ∈ [0.1, 0.3, 0.5, 0.7, 0.9]

Table 2 :

 2 Ranks of All Schedules. PI* denotes the modulated PI.

	Schedule	Rank
	SAWEI 𝜖 = 0.1 (last)	7.583
	SAWEI 𝜖 = 0.5 (last)	8.583
	SAWEI 𝜖 = 0.25 (last)	9.083
	SAWEI 𝜖 = 0.1 (until inc change)	9.167
	EI → PI* (Linear)	9.333
	SAWEI 𝜖 = 0.05 (until inc change)	9.333
	SAWEI 𝜖 = 0.5 (until inc change)	9.667
	EI → PI* (25%)	9.750
	SAWEI 𝜖 = 0.25 (until inc change)	9.750
	EI → PI (25%)	9.833
	EI → PI* (50%)	11.667
	PI*	11.917
	SAWEI 𝜖 = 0.05 (last)	12.000
	WEI Turn Up	12.250
	WEI Turn Down	13.167
	EI → PI* (75%)	13.333
	PI	13.833
	EI → PI (75%)	14.083
	WEI Turn Auto	14.917
	EI → PI (50%)	15.600
	Gutmann-Sobester Pulse	18.167
	EI	19.000
	PI* → EI (Linear)	19.250
	Explore	22.500
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