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ABSTRACT
In optimization, we often encounter expensive black-box problems
with unknown problem structures. Bayesian Optimization (BO) is
a popular, surrogate-assisted and thus sample-efficient approach
for this setting. The BO pipeline itself is highly configurable with
many different design choices regarding the initial design, surrogate
model and acquisition function (AF). Unfortunately, our understand-
ing of how to select suitable components for a problem at hand is
very limited. In this work, we focus on the choice of the AF, whose
main purpose it is to balance the trade-off between exploring re-
gions with high uncertainty and those with high promise for good
solutions. We propose Self-Adjusting Weighted Expected Improve-
ment (SAWEI), where we let the exploration-exploitation trade-off
self-adjust in a data-driven manner based on a convergence crite-
rion for BO. On the BBOB functions of the COCO benchmark, our
method performs favorably compared to handcrafted baselines and
serves as a robust default choice for any problem structure. With
SAWEI, we are a step closer to on-the-fly, data-driven and robust
BO designs that automatically adjust their sampling behavior to
the problem at hand.

CCS CONCEPTS
• Computing methodologies→ Randomized search.

KEYWORDS
Bayesian Optimization, Self-Adjusting Weighted Expected Improve-
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1 INTRODUCTION
Black-box problems 𝑓 are challenging because we do not know
the underlying structure of the landscape. While we can sequen-
tially query different points 𝑥 and learn from these how to choose
the next promising points, there is no direct information on the
direction of making progress or how to trade off exploration and
exploitation. This is especially challenging when we have a low
number of available function evaluations in relation to the size of
the search space X. Formally, we want to find the minimum 𝑥∗ of
our function 𝑓 :

𝑥∗ ∈ arg min
𝑥∈X

𝑓 (𝑥) (1)

We focus in our paper on Bayesian optimization (BO) [9, 19], as a
well-studied and sample-efficient approach for expensive black-box
optimization. The main idea of BO is to use a probabilistic surrogate

model (e.g., a Gaussian Process), iteratively refining an approxima-
tion of the problem landscape that guides the optimization process.
BO starts with an initial design or design of experiment (DoE), ob-
tained from sampling strategies, e.g., random sampling, Sobol se-
quence or Latin Hypercube desing [4, 15]. With these initial points,
the surrogate model is built to capture the uncertainty of the true
cost on unobserved points. The acquisition function (AF) (a.k.a. infill
criterion) is a utility function to trade-off exploration of underex-
plored areas and exploitation of presumable promising areas. The
point with the highest acquisition function value is queried next,
and the surrogate model is adjusted with the new observation.
These steps are repeated for a given overall optimization budget.

Besides accurate probabilistic surrogate models and other bells
and whistles [3, 5, 16], the exploration-exploitation trade-off is
crucial for successful and efficient optimization. Since the landscape
of the black-box optimization problem is unknown, it is a-priori
unknown which AF should be chosen for the optimization problem
at hand. Even worse, since each problem has its unique landscape,
we need different exploration-exploitation trade-offs [1, 2].

Because there are different choices of AFs, e.g., Probability of
Improvement (PI) [14], Expected Improvement (EI) [20], Upper
Confidence Bound (UCB) [8] and Thompson Sampling (TS) [23],
selecting a suitable one for the problem at hand remains challenging.
Furthermore, in the past, the choice of an AF has been considered
static over the BO process. Prior works suggest that mixed AF-
strategies [12, 13] or even very simple schedules switching from EI
to PI can improve anytime performance of BO; however, for each
problem different schedules, incl. static ones, perform best [2].

Selecting an AF-schedule with a meta-learned selector based
on the exploratory landscape analysis (ELA) features [18] of the
initial design factors in the problem at hand and further improves
performance [1]. Nevertheless, this approach has its limitations.
First, it requires a large initial design compared to the overall budget,
and the ideal size of it is unknown. Second, the selector is trained
for a specific budget, and it is unclear how it transfers to other
dimensions and budgets.

In this work, we instead aim for an self-adjusting yet simple
approach to adapt the exploration-exploitation trade-off in a data-
driven way throughout the optimization process. For this, we pro-
pose to adaptively set the weight 𝛼 of Weighted Expected Improve-
ment (WEI) [22] in an online control fashion. The crucial questions
to answer here are (i)When should we adjust 𝛼? And (ii) how should
we adjust 𝛼?
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Figure 1: With SAWEI we self-adjust the exploration-
exploitation trade-off parameter 𝛼 based on the Upper Bound
Regret (UBR) (left). Whenever the gradient of UBR (2nd left)
becomes 0 (marked by vertical lines), we adjust 𝛼 (2nd right),
further reducing the log regret (right).

We propose a new method, dubbed Self-Adjusting Weighted
Expected Improvement (SAWEI). Inspired by a termination criterion
for BO [17], we adjust the weight 𝛼 whenever BO tends to converge,
indicated by the Upper Bound Regret (UBR) and adjust 𝛼 opposite
to the dominant search attitude of exploration vs exploitation. We
demonstrate the effectiveness of our method SAWEI on the BBOB
functions of the COCO benchmark [11] against established AF and
handcrafted baseline AF-schedules for 𝛼 .

2 SELF-ADJUSTINGWEIGHTED EI
In our method SAWEI, we adaptively set the weight 𝛼 of WEI to
steer the exploration-exploitation trade-off. WEI is defined as [22]:

𝑊𝐸𝐼 (x;𝛼 ) = 𝛼 𝑧 (x)𝑠 (x)Φ [𝑧 (x) ]︸                  ︷︷                  ︸
exploitation

+ (1 − 𝛼 ) 𝑠 (x)𝜙 [𝑧 (x) ]︸           ︷︷           ︸
exploration

(2)

with 𝑧 (x) = (𝑓min − 𝑦 (x))/𝑠 (x), 𝑓min being the lowest observed
function value, 𝑦 (x) and 𝑠 (x) the predicted mean and standard
deviation from the surrogate model, and 𝜙 and Φ being the PDF
and CDF of a Gaussian distribution, respectively. 𝛼 weights the
exploration and exploitation terms. For example, 𝛼 = 0.5 recovers
standard EI [20] and 𝛼 = 1 has a similar behavior as PI [14].

When To Adjust. In order to be able to set 𝛼 adaptively we need
an indicator of the progress of the optimization. Recently, Makarova
et al. [17] proposed a termination criterion to stop BO for hyperpa-
rameter optimization. If the Upper Bound Regret (UBR) falls under
a certain threshold, they terminate. UBR estimates the true regret
at iteration 𝑘 by:

𝑟𝑘 := min
x∈𝐺𝑘

UCB𝑘 (x) − min
x∈X

LCB𝑘 (x) (3)

with 𝐺𝑘 being the history of all evaluated points and X being
the entire search space. The first term estimates the worst-case
function value of the best-observed point, a.k.a. the incumbent,
and the second term the lowest function value across the whole
search space. This means the smaller the gap between both terms
becomes, the closer we are at asymptotic function value under
the current settings of the optimizer. Instead of using UBR to stop
the optimization process, it serves as an indicator for us when to
switch or adjust components. Our rule is: When the gradient of UBR

over the last 𝑛 steps becomes close to 0, we adjust the exploration-
exploitation attitude with 𝛼 . Please find the details in Appendix A.

How to Adjust. The remaining question is how to adjust 𝛼 , by
how much and into which direction. We propose a rather simple,
yet effective additive change by Δ𝛼 . We set Δ𝛼 = 0.1 to allow
for gradual changes. We determine the sign of Δ𝛼 by the recent
optimization attitude: Depending on whether the EI- or PI-term of
Equation (2) is larger for the last selected point, the current search
attitude was either exploring or exploiting, respectively. We inspect
the attitude and adjust 𝛼 in the opposite direction, i.e. to provide
a chance for more exploration or exploitation in contrast to the
currently dominating attitude.

3 EXPERIMENTS
3.1 Baselines
We compare our data-driven, self-adjustingmethod SAWEI to (i) the
well-established best practice of simply using a single AF and
(ii) hand-designed schedules of 𝛼 , see Table 1. We start with static
schedules of 𝛼 ∈ {0, 0.5, 1.}, either fully exploring, EI, or a modu-
lated PI*.1 We can also adjust 𝛼 whenever there is an incumbent
change and either increase (WEI Turn Up), decrease 𝛼 (WEI Turn
Down) or define the direction via the attitude (WEI Turn Auto).
Further, we define a schedule from EI to modulated PI (and vice
versa) as a step function with 5 steps. In addition, we compare to
hard switches from EI to PI [1] as well as the Gutmann-Sobester
pulse cycling through 𝛼 [10, 22].

Table 1: Baselines. PI* denotes WEI(𝛼 = 1).

Explore 𝛼 = 0.0
EI 𝛼 = 0.5
PI* 𝛼 = 1.0

WEI Turn Auto Δ𝛼 ∼ attitude
WEI Turn Down 𝛼0 = 1., Δ𝛼 = −0.1
WEI Turn Up 𝛼0 = 0.5, Δ𝛼 = +0.1

EI → PI* (Linear) 5 steps
PI*→ EI (Linear) 5 steps

EI → PI switch after 25 %
EI → PI switch after 50 %
EI → PI switch after 75 %

Gutmann-Sobester Pulse Cycle 𝛼 ∈ [0.1, 0.3, 0.5, 0.7, 0.9]

3.2 Setup
We evaluated SAWEI and the baselines on the BBOB functions of
COCO benchmark [11] in a fixed budget setting. We set the di-
mensionality of the synthetic functions to 2 and the budget of the
initial design to 10 and of the surrogate-based optimization to 40
function evaluations. Our implementations were built upon the BO
tool SMAC3 (v2.0.0b1) [15]. We use a standard GP as configured in
SMAC’s BlackBoxFacade and SMAC optimizes the acquisition func-
tion with a combination of local and random search which also ap-
plies to minimizing LCB in Equation (3) for calculating the UBR. We
1Following Eq. (2), setting 𝛼 = 1 results in a modulated PI and not the original PI.
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Figure 2: Box-Plots of all 24 BBOB functions of COCO. Each shows the final log regret after 20 repeated runs with different
random seeds.

set 𝛽𝑡 = 2 log(𝑑𝑡2/𝛽), 𝛽 = 1 for UCB/LCB as in SMAC. You can find
the code here: https://github.com/automl/SAWEI/tree/GECCO23.
We set our convergence check horizon to 𝑛 = 1, i.e. check whether
the last gradient is close to 1. Our evaluation protocol repeats the
optimization 20 times with different random seeds and calculates
the interquartile mean (IQM) across seeds to robustly estimate the
regret per function. For each schedule, we then determine the rank
for each of the 24 BBOB functions and compute the global rank
across functions. In the plots over optimization steps, we show the
mean and standard error across all the functions.

3.3 Results
Overall Results. Our method SAWEI ranks first across the BBOB

functions, followed by a switch from EI to PI and by the step func-
tion from EI to PI*, see Figure 3. This supports the intuition of
starting with exploration and later leaning towards exploitation.
Also, the popular default choice EI ranks second to last.

When we take a look at the ranks across all variants (Table 2
in the Supplementary), SAWEI is quite robust to the exact time of
adjustment and for how long the attitude is tracked (see Appendix B
for details). Interestingly, the modulated PI, being fairly exploitative,
is pretty competitive, although the initial design was quite small.
Adjusting 𝛼 after an incumbent change is not beneficial (WEI Turn
X schedules).

For the log regret (see Figure 2) we can observe that not one
schedule is optimal for each function and we should aim to exploit
the complementarity of the different schedules in future work. But
what we can also observe is that our SAWEI is a robust default
choice.

2.5 5.0
Rank

SAWEI (ours)

EI  PI (25%)

EI  PI* (Linear)

PI

Gutmann-Sobester Pulse

EI

Explore

Figure 3: Ranks across BBOB Functions

Evolution of 𝛼 . The general schedule set by SAWEI is increasing,
i.e. changing the attitude from exploring to exploiting. The slope
of 𝛼 is smaller or bigger depending on the problem. On a closer
inspection, one interesting thing to note here is that sometimes
SAWEI resembles a hard switch from EI to PI and sometimes it is
almost a linear increase across the optimization budget, resembling
the step function, see Figure 4 (right). On this particular schedule,
WEI Turn Down (ranking less desirably overall so not a robust
default choice, see Supplementary Table 2), performs quite well.
This𝛼 schedule is very opposite to the schedule traversed by SAWEI,
suggesting that per function schedules might be very dissimilar yet
lead to similar performance. SAWEI also works on highly multi-
modal functions with weak global structure (F20-F24).

4 LIMITATIONS AND FUTUREWORK
Although SAWEI performs best on average across a diverse set
of functions, our first results have several limitations. First of all,

https://github.com/automl/SAWEI/tree/GECCO23
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Figure 4: Exemplary insights on BBOB Function 18. SAWEI
increases 𝛼 from exploring to exploiting.

we only considered 2-dimensional, artificial functions so far. As a
next step, a study of SAWEI on higher-dimensional functions and
black-box problems from practical applications, e.g., HPO [7] is
required. Also, for specific 𝛼 WEI does not select configurations
lying on the Pareto front of exploration and exploitation as EI and
UCB do [6]. In addition, as a first step how to adjust is a heuristic
offering potential for a data-driven approach. Furthermore, SAWEI
is still oblivious to the general landscape structure and focuses
on rather local properties. Future work could consider a meta-
learned approach with ELA features [1] or guided by reinforcement
learning [21].

5 CONCLUSION
In this paper, we addressed the problem of robustifiying Bayesian
Optimization on expensive black-box functions. The main observa-
tion is that (i) black-box functions follow different problem struc-
tures and (ii) more exploitation is often required in later optimiza-
tion stages. Thus the optimization process requires self-adjustment.
Instead of choosing among many different complementary acquisi-
tion functions, we proposed in this work to self-adjust weighted
expected improvement in a data-driven manner, which allows for
different exploration-exploitation tradeoffs in different stages. In
particular, we suggested when and how to adjust: (i) Whenever
the Upper Bound Regret (UBR) [17] does not change anymore and
(ii) adjust in the opposite direction of the current search attitude.
On the BBOB functions of the COCO benchmark [11] our method
ranks favorably compared to handcrafted baselines and is a robust
default choice for any problem structure.
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A HOW TO DETECT THE ADJUSTMENT
POINT

First, we apply a moving interquartile mean (25 %-75 % quartiles)
with window size 7 to UBR to smooth the curve because we are
interested in a general signal. Then, we calculate the absolute gra-
dients. We signal time to adjust when the last absolute gradient is
close to 0 with an absolute tolerance of 𝜖 times the last observed
maximum of the absolute gradient.

B RANKS OF ALL VARIANTS
In Table 2 we list the ranks of all variants with our selected method
marked in bold. PI* denotes the modulated PI. The sensitivity to
the gradient controlling when to adjust is denoted by 𝜖 (see Ap-
pendix A). We can either base our attitude only on the last EI and
PI terms ("last") or based on the attitudes until the last incumbent
change ("until inc change"). We see that SAWEI is fairly robust to 𝜖
and until when the attitude is tracked (𝑛).

Table 2: Ranks of All Schedules. PI* denotes the modulated
PI.

Schedule Rank

SAWEI 𝜖 = 0.1 (last) 7.583
SAWEI 𝜖 = 0.5 (last) 8.583
SAWEI 𝜖 = 0.25 (last) 9.083
SAWEI 𝜖 = 0.1 (until inc change) 9.167
EI → PI* (Linear) 9.333
SAWEI 𝜖 = 0.05 (until inc change) 9.333
SAWEI 𝜖 = 0.5 (until inc change) 9.667
EI → PI* (25%) 9.750
SAWEI 𝜖 = 0.25 (until inc change) 9.750
EI → PI (25%) 9.833
EI → PI* (50%) 11.667
PI* 11.917
SAWEI 𝜖 = 0.05 (last) 12.000
WEI Turn Up 12.250
WEI Turn Down 13.167
EI → PI* (75%) 13.333
PI 13.833
EI → PI (75%) 14.083
WEI Turn Auto 14.917
EI → PI (50%) 15.600
Gutmann-Sobester Pulse 18.167
EI 19.000
PI*→ EI (Linear) 19.250
Explore 22.500
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Figure 8: BBOB Function 4

Figure 9: BBOB Function 5

Figure 10: BBOB Function 6

Figure 11: BBOB Function 7

C PERFORMANCE OVER TIME FOR ALL BBOB
FUNCTIONS

Here we plot the log regret over time with UBR and 𝛼 of selected
schedules. If we have a closer look at highly multi-modal functions
with weak global structure we see that often the UBR increases.
This might be due that the approximated landscapes changes a lot
after each new observed point.

Figure 5: BBOB Function 1

Figure 6: BBOB Function 2

Figure 7: BBOB Function 3
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Figure 16: BBOB Function 12

Figure 17: BBOB Function 13

Figure 18: BBOB Function 14

Figure 19: BBOB Function 15

Figure 20: BBOB Function 16

Figure 21: BBOB Function 17

Figure 22: BBOB Function 18

Figure 23: BBOB Function 19
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Figure 28: BBOB Function 24
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